mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-05 17:11:06 +00:00
816 lines
22 KiB
ArmAsm
816 lines
22 KiB
ArmAsm
|
.file "exp.s"
|
||
|
|
||
|
// Copyright (c) 2000, 2001, Intel Corporation
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
|
||
|
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
|
||
|
//
|
||
|
// WARRANTY DISCLAIMER
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
||
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Intel Corporation is the author of this code, and requests that all
|
||
|
// problem reports or change requests be submitted to it directly at
|
||
|
// http://developer.intel.com/opensource.
|
||
|
//
|
||
|
// History
|
||
|
//==============================================================
|
||
|
// 2/02/00 Initial version
|
||
|
// 3/07/00 exp(inf) = inf but now does NOT call error support
|
||
|
// exp(-inf) = 0 but now does NOT call error support
|
||
|
// 4/04/00 Unwind support added
|
||
|
// 8/15/00 Bundle added after call to __libm_error_support to properly
|
||
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
||
|
// 11/30/00 Reworked to shorten main path, widen main path to include all
|
||
|
// args in normal range, and add quick exit for 0, nan, inf.
|
||
|
// 12/05/00 Loaded constants earlier with setf to save 2 cycles.
|
||
|
|
||
|
// API
|
||
|
//==============================================================
|
||
|
// double exp(double)
|
||
|
|
||
|
// Overview of operation
|
||
|
//==============================================================
|
||
|
// Take the input x. w is "how many log2/128 in x?"
|
||
|
// w = x * 128/log2
|
||
|
// n = int(w)
|
||
|
// x = n log2/128 + r + delta
|
||
|
|
||
|
// n = 128M + index_1 + 2^4 index_2
|
||
|
// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
|
||
|
|
||
|
// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
|
||
|
// Construct 2^M
|
||
|
// Get 2^(index_1/128) from table_1;
|
||
|
// Get 2^(index_2/8) from table_2;
|
||
|
// Calculate exp(r) by series
|
||
|
// r = x - n (log2/128)_high
|
||
|
// delta = - n (log2/128)_low
|
||
|
// Calculate exp(delta) as 1 + delta
|
||
|
|
||
|
|
||
|
// Special values
|
||
|
//==============================================================
|
||
|
// exp(+0) = 1.0
|
||
|
// exp(-0) = 1.0
|
||
|
|
||
|
// exp(+qnan) = +qnan
|
||
|
// exp(-qnan) = -qnan
|
||
|
// exp(+snan) = +qnan
|
||
|
// exp(-snan) = -qnan
|
||
|
|
||
|
// exp(-inf) = +0
|
||
|
// exp(+inf) = +inf
|
||
|
|
||
|
// Overfow and Underfow
|
||
|
//=======================
|
||
|
// exp(-x) = smallest double normal when
|
||
|
// x = -708.396 = c086232bdd7abcd2
|
||
|
|
||
|
// exp(x) = largest double normal when
|
||
|
// x = 709.7827 = 40862e42fefa39ef
|
||
|
|
||
|
|
||
|
|
||
|
// Registers used
|
||
|
//==============================================================
|
||
|
// Floating Point registers used:
|
||
|
// f8, input
|
||
|
// f9 -> f15, f32 -> f60
|
||
|
|
||
|
// General registers used:
|
||
|
// r32 -> r60
|
||
|
|
||
|
// Predicate registers used:
|
||
|
// p6 -> p15
|
||
|
|
||
|
#include "libm_support.h"
|
||
|
|
||
|
// Assembly macros
|
||
|
//==============================================================
|
||
|
|
||
|
exp_GR_rshf = r33
|
||
|
EXP_AD_TB1 = r34
|
||
|
EXP_AD_TB2 = r35
|
||
|
EXP_AD_P = r36
|
||
|
|
||
|
exp_GR_N = r37
|
||
|
exp_GR_index_1 = r38
|
||
|
exp_GR_index_2_16 = r39
|
||
|
|
||
|
exp_GR_biased_M = r40
|
||
|
exp_GR_index_1_16 = r41
|
||
|
EXP_AD_T1 = r42
|
||
|
EXP_AD_T2 = r43
|
||
|
exp_GR_sig_inv_ln2 = r44
|
||
|
|
||
|
exp_GR_17ones = r45
|
||
|
exp_GR_one = r46
|
||
|
exp_TB1_size = r47
|
||
|
exp_TB2_size = r48
|
||
|
exp_GR_rshf_2to56 = r49
|
||
|
|
||
|
exp_GR_gt_ln = r50
|
||
|
exp_GR_exp_2tom56 = r51
|
||
|
|
||
|
exp_GR_17ones_m1 = r52
|
||
|
|
||
|
GR_SAVE_B0 = r53
|
||
|
GR_SAVE_PFS = r54
|
||
|
GR_SAVE_GP = r55
|
||
|
GR_SAVE_SP = r56
|
||
|
|
||
|
GR_Parameter_X = r57
|
||
|
GR_Parameter_Y = r58
|
||
|
GR_Parameter_RESULT = r59
|
||
|
GR_Parameter_TAG = r60
|
||
|
|
||
|
|
||
|
FR_X = f10
|
||
|
FR_Y = f1
|
||
|
FR_RESULT = f8
|
||
|
|
||
|
EXP_RSHF_2TO56 = f6
|
||
|
EXP_INV_LN2_2TO63 = f7
|
||
|
EXP_W_2TO56_RSH = f9
|
||
|
EXP_2TOM56 = f11
|
||
|
exp_P4 = f12
|
||
|
exp_P3 = f13
|
||
|
exp_P2 = f14
|
||
|
exp_P1 = f15
|
||
|
|
||
|
exp_ln2_by_128_hi = f33
|
||
|
exp_ln2_by_128_lo = f34
|
||
|
|
||
|
EXP_RSHF = f35
|
||
|
EXP_Nfloat = f36
|
||
|
exp_W = f37
|
||
|
exp_r = f38
|
||
|
exp_f = f39
|
||
|
|
||
|
exp_rsq = f40
|
||
|
exp_rcube = f41
|
||
|
|
||
|
EXP_2M = f42
|
||
|
exp_S1 = f43
|
||
|
exp_T1 = f44
|
||
|
|
||
|
EXP_MIN_DBL_OFLOW_ARG = f45
|
||
|
EXP_MAX_DBL_ZERO_ARG = f46
|
||
|
EXP_MAX_DBL_NORM_ARG = f47
|
||
|
EXP_MAX_DBL_UFLOW_ARG = f48
|
||
|
EXP_MIN_DBL_NORM_ARG = f49
|
||
|
exp_rP4pP3 = f50
|
||
|
exp_P_lo = f51
|
||
|
exp_P_hi = f52
|
||
|
exp_P = f53
|
||
|
exp_S = f54
|
||
|
|
||
|
EXP_NORM_f8 = f56
|
||
|
|
||
|
exp_wre_urm_f8 = f57
|
||
|
exp_ftz_urm_f8 = f57
|
||
|
|
||
|
exp_gt_pln = f58
|
||
|
|
||
|
exp_S2 = f59
|
||
|
exp_T2 = f60
|
||
|
|
||
|
|
||
|
// Data tables
|
||
|
//==============================================================
|
||
|
|
||
|
#ifdef _LIBC
|
||
|
.rodata
|
||
|
#else
|
||
|
.data
|
||
|
#endif
|
||
|
|
||
|
.align 16
|
||
|
|
||
|
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
|
||
|
|
||
|
// double-extended 1/ln(2)
|
||
|
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
|
||
|
// 3fff b8aa 3b29 5c17 f0bc
|
||
|
// For speed the significand will be loaded directly with a movl and setf.sig
|
||
|
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
|
||
|
// computations need to scale appropriately.
|
||
|
// The constant 128/ln(2) is needed for the computation of w. This is also
|
||
|
// obtained by scaling the computations.
|
||
|
//
|
||
|
// Two shifting constants are loaded directly with movl and setf.d.
|
||
|
// 1. EXP_RSHF_2TO56 = 1.1000..00 * 2^(63-7)
|
||
|
// This constant is added to x*1/ln2 to shift the integer part of
|
||
|
// x*128/ln2 into the rightmost bits of the significand.
|
||
|
// The result of this fma is EXP_W_2TO56_RSH.
|
||
|
// 2. EXP_RSHF = 1.1000..00 * 2^(63)
|
||
|
// This constant is subtracted from EXP_W_2TO56_RSH * 2^(-56) to give
|
||
|
// the integer part of w, n, as a floating-point number.
|
||
|
// The result of this fms is EXP_Nfloat.
|
||
|
|
||
|
|
||
|
exp_table_1:
|
||
|
ASM_TYPE_DIRECTIVE(exp_table_1,@object)
|
||
|
data8 0x40862e42fefa39f0 // smallest dbl overflow arg
|
||
|
data8 0xc0874c0000000000 // approx largest arg for zero result
|
||
|
data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
|
||
|
data8 0xc086232bdd7abcd3 // largest dbl underflow arg
|
||
|
data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result
|
||
|
data8 0x0 // pad
|
||
|
data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
|
||
|
data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
|
||
|
|
||
|
// Table 1 is 2^(index_1/128) where
|
||
|
// index_1 goes from 0 to 15
|
||
|
|
||
|
data8 0x8000000000000000 , 0x00003FFF
|
||
|
data8 0x80B1ED4FD999AB6C , 0x00003FFF
|
||
|
data8 0x8164D1F3BC030773 , 0x00003FFF
|
||
|
data8 0x8218AF4373FC25EC , 0x00003FFF
|
||
|
data8 0x82CD8698AC2BA1D7 , 0x00003FFF
|
||
|
data8 0x8383594EEFB6EE37 , 0x00003FFF
|
||
|
data8 0x843A28C3ACDE4046 , 0x00003FFF
|
||
|
data8 0x84F1F656379C1A29 , 0x00003FFF
|
||
|
data8 0x85AAC367CC487B15 , 0x00003FFF
|
||
|
data8 0x8664915B923FBA04 , 0x00003FFF
|
||
|
data8 0x871F61969E8D1010 , 0x00003FFF
|
||
|
data8 0x87DB357FF698D792 , 0x00003FFF
|
||
|
data8 0x88980E8092DA8527 , 0x00003FFF
|
||
|
data8 0x8955EE03618E5FDD , 0x00003FFF
|
||
|
data8 0x8A14D575496EFD9A , 0x00003FFF
|
||
|
data8 0x8AD4C6452C728924 , 0x00003FFF
|
||
|
ASM_SIZE_DIRECTIVE(exp_table_1)
|
||
|
|
||
|
// Table 2 is 2^(index_1/8) where
|
||
|
// index_2 goes from 0 to 7
|
||
|
exp_table_2:
|
||
|
ASM_TYPE_DIRECTIVE(exp_table_2,@object)
|
||
|
data8 0x8000000000000000 , 0x00003FFF
|
||
|
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
|
||
|
data8 0x9837F0518DB8A96F , 0x00003FFF
|
||
|
data8 0xA5FED6A9B15138EA , 0x00003FFF
|
||
|
data8 0xB504F333F9DE6484 , 0x00003FFF
|
||
|
data8 0xC5672A115506DADD , 0x00003FFF
|
||
|
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
|
||
|
data8 0xEAC0C6E7DD24392F , 0x00003FFF
|
||
|
ASM_SIZE_DIRECTIVE (exp_table_2)
|
||
|
|
||
|
|
||
|
exp_p_table:
|
||
|
ASM_TYPE_DIRECTIVE(exp_p_table,@object)
|
||
|
data8 0x3f8111116da21757 //P_4
|
||
|
data8 0x3fa55555d787761c //P_3
|
||
|
data8 0x3fc5555555555414 //P_2
|
||
|
data8 0x3fdffffffffffd6a //P_1
|
||
|
ASM_SIZE_DIRECTIVE(exp_p_table)
|
||
|
|
||
|
|
||
|
.align 32
|
||
|
.global exp#
|
||
|
|
||
|
.section .text
|
||
|
.proc exp#
|
||
|
.align 32
|
||
|
exp:
|
||
|
#ifdef _LIBC
|
||
|
.global __ieee754_exp#
|
||
|
__ieee754_exp:
|
||
|
#endif
|
||
|
|
||
|
{ .mlx
|
||
|
alloc r32=ar.pfs,1,24,4,0
|
||
|
movl exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
|
||
|
}
|
||
|
{ .mlx
|
||
|
addl EXP_AD_TB1 = @ltoff(exp_table_1), gp
|
||
|
movl exp_GR_rshf_2to56 = 0x4768000000000000 ;; // 1.10000 2^(63+56)
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
// We do this fnorm right at the beginning to take any enabled
|
||
|
// faults and to normalize any input unnormals so that SWA is not taken.
|
||
|
{ .mfi
|
||
|
ld8 EXP_AD_TB1 = [EXP_AD_TB1]
|
||
|
fclass.m p8,p0 = f8,0x07 // Test for x=0
|
||
|
mov exp_GR_17ones = 0x1FFFF
|
||
|
}
|
||
|
{ .mfi
|
||
|
mov exp_TB1_size = 0x100
|
||
|
fnorm EXP_NORM_f8 = f8
|
||
|
mov exp_GR_exp_2tom56 = 0xffff-56
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
// Form two constants we need
|
||
|
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
|
||
|
// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
|
||
|
|
||
|
{ .mmf
|
||
|
setf.sig EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // form 1/ln2 * 2^63
|
||
|
setf.d EXP_RSHF_2TO56 = exp_GR_rshf_2to56 // Form const 1.100 * 2^(63+56)
|
||
|
fclass.m p9,p0 = f8,0x22 // Test for x=-inf
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mlx
|
||
|
setf.exp EXP_2TOM56 = exp_GR_exp_2tom56 // form 2^-56 for scaling Nfloat
|
||
|
movl exp_GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
|
||
|
}
|
||
|
{ .mfb
|
||
|
mov exp_TB2_size = 0x80
|
||
|
(p8) fma.d f8 = f1,f1,f0 // quick exit for x=0
|
||
|
(p8) br.ret.spnt b0
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
ldfpd EXP_MIN_DBL_OFLOW_ARG, EXP_MAX_DBL_ZERO_ARG = [EXP_AD_TB1],16
|
||
|
fclass.m p10,p0 = f8,0x21 // Test for x=+inf
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
(p9) fma.d f8 = f0,f0,f0 // quick exit for x=-inf
|
||
|
(p9) br.ret.spnt b0
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mmf
|
||
|
ldfpd EXP_MAX_DBL_NORM_ARG, EXP_MAX_DBL_UFLOW_ARG = [EXP_AD_TB1],16
|
||
|
setf.d EXP_RSHF = exp_GR_rshf // Form right shift const 1.100 * 2^63
|
||
|
fclass.m p11,p0 = f8,0xc3 // Test for x=nan
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfb
|
||
|
ldfd EXP_MIN_DBL_NORM_ARG = [EXP_AD_TB1],16
|
||
|
nop.f 999
|
||
|
(p10) br.ret.spnt b0 // quick exit for x=+inf
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
ldfe exp_ln2_by_128_hi = [EXP_AD_TB1],16
|
||
|
nop.f 999
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
{ .mfb
|
||
|
ldfe exp_ln2_by_128_lo = [EXP_AD_TB1],16
|
||
|
(p11) fmerge.s f8 = EXP_NORM_f8, EXP_NORM_f8
|
||
|
(p11) br.ret.spnt b0 // quick exit for x=nan
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
// After that last load, EXP_AD_TB1 points to the beginning of table 1
|
||
|
|
||
|
// W = X * Inv_log2_by_128
|
||
|
// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
|
||
|
// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 EXP_W_2TO56_RSH = EXP_NORM_f8, EXP_INV_LN2_2TO63, EXP_RSHF_2TO56
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Divide arguments into the following categories:
|
||
|
// Certain Underflow/zero p11 - -inf < x <= MAX_DBL_ZERO_ARG
|
||
|
// Certain Underflow p12 - MAX_DBL_ZERO_ARG < x <= MAX_DBL_UFLOW_ARG
|
||
|
// Possible Underflow p13 - MAX_DBL_UFLOW_ARG < x < MIN_DBL_NORM_ARG
|
||
|
// Certain Safe - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG
|
||
|
// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
|
||
|
// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf
|
||
|
//
|
||
|
// If the input is really a double arg, then there will never be "Possible
|
||
|
// Underflow" or "Possible Overflow" arguments.
|
||
|
//
|
||
|
|
||
|
{ .mfi
|
||
|
add EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
|
||
|
fcmp.ge.s1 p15,p14 = EXP_NORM_f8,EXP_MIN_DBL_OFLOW_ARG
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
add EXP_AD_P = exp_TB2_size, EXP_AD_TB2
|
||
|
fcmp.le.s1 p11,p12 = EXP_NORM_f8,EXP_MAX_DBL_ZERO_ARG
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfb
|
||
|
ldfpd exp_P4, exp_P3 = [EXP_AD_P] ,16
|
||
|
(p14) fcmp.gt.unc.s1 p14,p0 = EXP_NORM_f8,EXP_MAX_DBL_NORM_ARG
|
||
|
(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW)
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Nfloat = round_int(W)
|
||
|
// The signficand of EXP_W_2TO56_RSH contains the rounded integer part of W,
|
||
|
// as a twos complement number in the lower bits (that is, it may be negative).
|
||
|
// That twos complement number (called N) is put into exp_GR_N.
|
||
|
|
||
|
// Since EXP_W_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
|
||
|
// before the shift constant 1.10000 * 2^63 is subtracted to yield EXP_Nfloat.
|
||
|
// Thus, EXP_Nfloat contains the floating point version of N
|
||
|
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p12) fcmp.le.unc p12,p0 = EXP_NORM_f8,EXP_MAX_DBL_UFLOW_ARG
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfb
|
||
|
ldfpd exp_P2, exp_P1 = [EXP_AD_P]
|
||
|
fms.s1 EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF
|
||
|
(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
getf.sig exp_GR_N = EXP_W_2TO56_RSH
|
||
|
(p13) fcmp.lt.unc p13,p0 = EXP_NORM_f8,EXP_MIN_DBL_NORM_ARG
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
// exp_GR_index_1 has index_1
|
||
|
// exp_GR_index_2_16 has index_2 * 16
|
||
|
// exp_GR_biased_M has M
|
||
|
// exp_GR_index_1_16 has index_1 * 16
|
||
|
|
||
|
// r2 has true M
|
||
|
{ .mfi
|
||
|
and exp_GR_index_1 = 0x0f, exp_GR_N
|
||
|
fnma.s1 exp_r = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8
|
||
|
shr r2 = exp_GR_N, 0x7
|
||
|
}
|
||
|
{ .mfi
|
||
|
and exp_GR_index_2_16 = 0x70, exp_GR_N
|
||
|
fnma.s1 exp_f = EXP_Nfloat, exp_ln2_by_128_lo, f1
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
// EXP_AD_T1 has address of T1
|
||
|
// EXP_AD_T2 has address if T2
|
||
|
|
||
|
{ .mmi
|
||
|
addl exp_GR_biased_M = 0xffff, r2
|
||
|
add EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16
|
||
|
shladd EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Create Scale = 2^M
|
||
|
// r = x - Nfloat * ln2_by_128_hi
|
||
|
// f = 1 - Nfloat * ln2_by_128_lo
|
||
|
|
||
|
{ .mmi
|
||
|
setf.exp EXP_2M = exp_GR_biased_M
|
||
|
ldfe exp_T2 = [EXP_AD_T2]
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
// Load T1 and T2
|
||
|
{ .mfi
|
||
|
ldfe exp_T1 = [EXP_AD_T1]
|
||
|
nop.f 999
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_rsq = exp_r, exp_r, f0
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_rP4pP3 = exp_r, exp_P4, exp_P3
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_rcube = exp_r, exp_rsq, f0
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_P_lo = exp_r, exp_rP4pP3, exp_P2
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_P_hi = exp_rsq, exp_P1, exp_r
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_S2 = exp_f,exp_T2,f0
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_S1 = EXP_2M,exp_T1,f0
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_P = exp_rcube, exp_P_lo, exp_P_hi
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.s1 exp_S = exp_S1,exp_S2,f0
|
||
|
nop.i 999
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
{ .bbb
|
||
|
(p12) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)
|
||
|
(p13) br.cond.spnt L(EXP_POSSIBLE_UNDERFLOW)
|
||
|
(p14) br.cond.spnt L(EXP_POSSIBLE_OVERFLOW)
|
||
|
;;
|
||
|
}
|
||
|
|
||
|
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
fma.d f8 = exp_S, exp_P, exp_S
|
||
|
br.ret.sptk b0 ;; // Normal path exit
|
||
|
}
|
||
|
|
||
|
|
||
|
L(EXP_POSSIBLE_OVERFLOW):
|
||
|
|
||
|
// We got an answer. EXP_MAX_DBL_NORM_ARG < x < EXP_MIN_DBL_OFLOW_ARG
|
||
|
// overflow is a possibility, not a certainty
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fsetc.s2 0x7F,0x42
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.d.s2 exp_wre_urm_f8 = exp_S, exp_P, exp_S
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
// We define an overflow when the answer with
|
||
|
// WRE set
|
||
|
// user-defined rounding mode
|
||
|
// is ldn +1
|
||
|
|
||
|
// Is the exponent 1 more than the largest double?
|
||
|
// If so, go to ERROR RETURN, else get the answer and
|
||
|
// leave.
|
||
|
|
||
|
// Largest double is 7FE (biased double)
|
||
|
// 7FE - 3FF + FFFF = 103FE
|
||
|
// Create + largest_double_plus_ulp
|
||
|
// Create - largest_double_plus_ulp
|
||
|
// Calculate answer with WRE set.
|
||
|
|
||
|
// Cases when answer is ldn+1 are as follows:
|
||
|
// ldn ldn+1
|
||
|
// --+----------|----------+------------
|
||
|
// |
|
||
|
// +inf +inf -inf
|
||
|
// RN RN
|
||
|
// RZ
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fsetc.s2 0x7F,0x40
|
||
|
mov exp_GR_gt_ln = 0x103ff ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
setf.exp exp_gt_pln = exp_GR_gt_ln
|
||
|
nop.f 999
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fcmp.ge.unc.s1 p6, p0 = exp_wre_urm_f8, exp_gt_pln
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
nop.f 999
|
||
|
(p6) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;; // Branch if really overflow
|
||
|
}
|
||
|
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
fma.d f8 = exp_S, exp_P, exp_S
|
||
|
br.ret.sptk b0 ;; // Exit if really no overflow
|
||
|
}
|
||
|
|
||
|
L(EXP_CERTAIN_OVERFLOW):
|
||
|
{ .mmi
|
||
|
sub exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
|
||
|
setf.exp f9 = exp_GR_17ones_m1
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fmerge.s FR_X = f8,f8
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfb
|
||
|
mov GR_Parameter_TAG = 14
|
||
|
fma.d FR_RESULT = f9, f9, f0 // Set I,O and +INF result
|
||
|
br.cond.sptk __libm_error_region ;;
|
||
|
}
|
||
|
|
||
|
L(EXP_POSSIBLE_UNDERFLOW):
|
||
|
|
||
|
// We got an answer. EXP_MAX_DBL_UFLOW_ARG < x < EXP_MIN_DBL_NORM_ARG
|
||
|
// underflow is a possibility, not a certainty
|
||
|
|
||
|
// We define an underflow when the answer with
|
||
|
// ftz set
|
||
|
// is zero (tiny numbers become zero)
|
||
|
|
||
|
// Notice (from below) that if we have an unlimited exponent range,
|
||
|
// then there is an extra machine number E between the largest denormal and
|
||
|
// the smallest normal.
|
||
|
|
||
|
// So if with unbounded exponent we round to E or below, then we are
|
||
|
// tiny and underflow has occurred.
|
||
|
|
||
|
// But notice that you can be in a situation where we are tiny, namely
|
||
|
// rounded to E, but when the exponent is bounded we round to smallest
|
||
|
// normal. So the answer can be the smallest normal with underflow.
|
||
|
|
||
|
// E
|
||
|
// -----+--------------------+--------------------+-----
|
||
|
// | | |
|
||
|
// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
|
||
|
// 0.1...11 2^-3ffe (biased, 1)
|
||
|
// largest dn smallest normal
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fsetc.s2 0x7F,0x41
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.d.s2 exp_ftz_urm_f8 = exp_S, exp_P, exp_S
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fsetc.s2 0x7F,0x40
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fcmp.eq.unc.s1 p6, p0 = exp_ftz_urm_f8, f0
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
nop.f 999
|
||
|
(p6) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW) ;; // Branch if really underflow
|
||
|
}
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
fma.d f8 = exp_S, exp_P, exp_S
|
||
|
br.ret.sptk b0 ;; // Exit if really no underflow
|
||
|
}
|
||
|
|
||
|
L(EXP_CERTAIN_UNDERFLOW):
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fmerge.s FR_X = f8,f8
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfb
|
||
|
mov GR_Parameter_TAG = 15
|
||
|
fma.d FR_RESULT = exp_S, exp_P, exp_S // Set I,U and tiny result
|
||
|
br.cond.sptk __libm_error_region ;;
|
||
|
}
|
||
|
|
||
|
L(EXP_CERTAIN_UNDERFLOW_ZERO):
|
||
|
{ .mmi
|
||
|
mov exp_GR_one = 1 ;;
|
||
|
setf.exp f9 = exp_GR_one
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fmerge.s FR_X = f8,f8
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfb
|
||
|
mov GR_Parameter_TAG = 15
|
||
|
fma.d FR_RESULT = f9, f9, f0 // Set I,U and tiny (+0.0) result
|
||
|
br.cond.sptk __libm_error_region ;;
|
||
|
}
|
||
|
|
||
|
.endp exp
|
||
|
ASM_SIZE_DIRECTIVE(exp)
|
||
|
|
||
|
|
||
|
.proc __libm_error_region
|
||
|
__libm_error_region:
|
||
|
.prologue
|
||
|
{ .mfi
|
||
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
||
|
nop.f 0
|
||
|
.save ar.pfs,GR_SAVE_PFS
|
||
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
||
|
}
|
||
|
{ .mfi
|
||
|
.fframe 64
|
||
|
add sp=-64,sp // Create new stack
|
||
|
nop.f 0
|
||
|
mov GR_SAVE_GP=gp // Save gp
|
||
|
};;
|
||
|
{ .mmi
|
||
|
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
|
||
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
||
|
.save b0, GR_SAVE_B0
|
||
|
mov GR_SAVE_B0=b0 // Save b0
|
||
|
};;
|
||
|
.body
|
||
|
{ .mib
|
||
|
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
|
||
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
|
||
|
nop.b 0
|
||
|
}
|
||
|
{ .mib
|
||
|
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
|
||
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
||
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
||
|
};;
|
||
|
{ .mmi
|
||
|
nop.m 0
|
||
|
nop.m 0
|
||
|
add GR_Parameter_RESULT = 48,sp
|
||
|
};;
|
||
|
{ .mmi
|
||
|
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
|
||
|
.restore sp
|
||
|
add sp = 64,sp // Restore stack pointer
|
||
|
mov b0 = GR_SAVE_B0 // Restore return address
|
||
|
};;
|
||
|
{ .mib
|
||
|
mov gp = GR_SAVE_GP // Restore gp
|
||
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
||
|
br.ret.sptk b0 // Return
|
||
|
};;
|
||
|
|
||
|
.endp __libm_error_region
|
||
|
ASM_SIZE_DIRECTIVE(__libm_error_region)
|
||
|
.type __libm_error_support#,@function
|
||
|
.global __libm_error_support#
|