2001-03-16 22:26:45 +00:00
|
|
|
/*
|
|
|
|
* ====================================================
|
|
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software is freely granted, provided that this notice
|
|
|
|
* is preserved.
|
|
|
|
* ====================================================
|
|
|
|
*/
|
|
|
|
|
2002-08-26 22:40:48 +00:00
|
|
|
/* Long double expansions are
|
|
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
2013-06-05 20:44:03 +00:00
|
|
|
and are incorporated herein by permission of the author. The author
|
2002-08-28 02:30:36 +00:00
|
|
|
reserves the right to distribute this material elsewhere under different
|
2013-06-05 20:44:03 +00:00
|
|
|
copying permissions. These modifications are distributed here under
|
2002-08-28 02:30:36 +00:00
|
|
|
the following terms:
|
2002-08-26 22:40:48 +00:00
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
2012-02-09 23:18:22 +00:00
|
|
|
License along with this library; if not, see
|
Prefer https to http for gnu.org and fsf.org URLs
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
$(find $(git ls-files) -prune -type f \
! -name '*.po' \
! -name 'ChangeLog*' \
! -path COPYING ! -path COPYING.LIB \
! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
! -path manual/texinfo.tex ! -path scripts/config.guess \
! -path scripts/config.sub ! -path scripts/install-sh \
! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
! -path INSTALL ! -path locale/programs/charmap-kw.h \
! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
! '(' -name configure \
-execdir test -f configure.ac -o -f configure.in ';' ')' \
! '(' -name preconfigure \
-execdir test -f preconfigure.ac ';' ')' \
-print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
chmod a+x sysdeps/unix/sysv/linux/riscv/configure
# Omit irrelevant whitespace and comment-only changes,
# perhaps from a slightly-different Autoconf version.
git checkout -f \
sysdeps/csky/configure \
sysdeps/hppa/configure \
sysdeps/riscv/configure \
sysdeps/unix/sysv/linux/csky/configure
# Omit changes that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
git checkout -f \
sysdeps/powerpc/powerpc64/ppc-mcount.S \
sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
# Omit change that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 05:40:42 +00:00
|
|
|
<https://www.gnu.org/licenses/>. */
|
2001-03-16 22:26:45 +00:00
|
|
|
|
|
|
|
/* double erf(double x)
|
|
|
|
* double erfc(double x)
|
|
|
|
* x
|
|
|
|
* 2 |\
|
|
|
|
* erf(x) = --------- | exp(-t*t)dt
|
2001-11-16 20:19:31 +00:00
|
|
|
* sqrt(pi) \|
|
2001-03-16 22:26:45 +00:00
|
|
|
* 0
|
|
|
|
*
|
|
|
|
* erfc(x) = 1-erf(x)
|
|
|
|
* Note that
|
|
|
|
* erf(-x) = -erf(x)
|
|
|
|
* erfc(-x) = 2 - erfc(x)
|
|
|
|
*
|
|
|
|
* Method:
|
|
|
|
* 1. For |x| in [0, 0.84375]
|
|
|
|
* erf(x) = x + x*R(x^2)
|
|
|
|
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
|
|
|
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
|
|
|
* Remark. The formula is derived by noting
|
|
|
|
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
|
|
|
* and that
|
|
|
|
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
|
|
|
* is close to one. The interval is chosen because the fix
|
|
|
|
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
|
|
|
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
2001-11-16 20:19:31 +00:00
|
|
|
* guarantee the error is less than one ulp for erf.
|
2001-03-16 22:26:45 +00:00
|
|
|
*
|
|
|
|
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
|
|
|
* c = 0.84506291151 rounded to single (24 bits)
|
2001-11-16 20:19:31 +00:00
|
|
|
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
|
|
|
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
2001-03-16 22:26:45 +00:00
|
|
|
* 1+(c+P1(s)/Q1(s)) if x < 0
|
|
|
|
* Remark: here we use the taylor series expansion at x=1.
|
|
|
|
* erf(1+s) = erf(1) + s*Poly(s)
|
|
|
|
* = 0.845.. + P1(s)/Q1(s)
|
|
|
|
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
|
|
|
*
|
|
|
|
* 3. For x in [1.25,1/0.35(~2.857143)],
|
2001-11-16 20:19:31 +00:00
|
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z))
|
2001-03-16 22:26:45 +00:00
|
|
|
* z=1/x^2
|
2001-11-16 20:19:31 +00:00
|
|
|
* erf(x) = 1 - erfc(x)
|
2001-03-16 22:26:45 +00:00
|
|
|
*
|
|
|
|
* 4. For x in [1/0.35,107]
|
2001-11-16 20:19:31 +00:00
|
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
2001-03-16 22:26:45 +00:00
|
|
|
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z))
|
|
|
|
* if -6.666<x<0
|
|
|
|
* = 2.0 - tiny (if x <= -6.666)
|
|
|
|
* z=1/x^2
|
2001-11-16 20:19:31 +00:00
|
|
|
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6.666, else
|
|
|
|
* erf(x) = sign(x)*(1.0 - tiny)
|
2001-03-16 22:26:45 +00:00
|
|
|
* Note1:
|
|
|
|
* To compute exp(-x*x-0.5625+R/S), let s be a single
|
|
|
|
* precision number and s := x; then
|
|
|
|
* -x*x = -s*s + (s-x)*(s+x)
|
|
|
|
* exp(-x*x-0.5626+R/S) =
|
|
|
|
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
|
|
|
* Note2:
|
|
|
|
* Here 4 and 5 make use of the asymptotic series
|
|
|
|
* exp(-x*x)
|
|
|
|
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
|
|
|
|
* x*sqrt(pi)
|
|
|
|
*
|
|
|
|
* 5. For inf > x >= 107
|
2001-11-16 20:19:31 +00:00
|
|
|
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
|
|
|
* erfc(x) = tiny*tiny (raise underflow) if x > 0
|
2001-03-16 22:26:45 +00:00
|
|
|
* = 2 - tiny if x<0
|
|
|
|
*
|
|
|
|
* 7. Special case:
|
2001-11-16 20:19:31 +00:00
|
|
|
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
|
|
|
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
|
|
|
* erfc/erf(NaN) is NaN
|
2001-03-16 22:26:45 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
2013-12-03 16:25:18 +00:00
|
|
|
#include <errno.h>
|
2014-05-14 12:34:03 +00:00
|
|
|
#include <float.h>
|
2012-03-09 19:29:16 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
2018-05-10 00:53:04 +00:00
|
|
|
#include <math-underflow.h>
|
2017-10-05 21:13:40 +00:00
|
|
|
#include <libm-alias-ldouble.h>
|
2001-03-16 22:26:45 +00:00
|
|
|
|
|
|
|
static const long double
|
|
|
|
tiny = 1e-4931L,
|
|
|
|
half = 0.5L,
|
|
|
|
one = 1.0L,
|
|
|
|
two = 2.0L,
|
|
|
|
/* c = (float)0.84506291151 */
|
|
|
|
erx = 0.845062911510467529296875L,
|
|
|
|
/*
|
|
|
|
* Coefficients for approximation to erf on [0,0.84375]
|
|
|
|
*/
|
|
|
|
/* 2/sqrt(pi) - 1 */
|
|
|
|
efx = 1.2837916709551257389615890312154517168810E-1L,
|
|
|
|
|
|
|
|
pp[6] = {
|
|
|
|
1.122751350964552113068262337278335028553E6L,
|
|
|
|
-2.808533301997696164408397079650699163276E6L,
|
|
|
|
-3.314325479115357458197119660818768924100E5L,
|
|
|
|
-6.848684465326256109712135497895525446398E4L,
|
|
|
|
-2.657817695110739185591505062971929859314E3L,
|
|
|
|
-1.655310302737837556654146291646499062882E2L,
|
|
|
|
},
|
|
|
|
|
|
|
|
qq[6] = {
|
|
|
|
8.745588372054466262548908189000448124232E6L,
|
|
|
|
3.746038264792471129367533128637019611485E6L,
|
|
|
|
7.066358783162407559861156173539693900031E5L,
|
|
|
|
7.448928604824620999413120955705448117056E4L,
|
|
|
|
4.511583986730994111992253980546131408924E3L,
|
|
|
|
1.368902937933296323345610240009071254014E2L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
|
|
},
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Coefficients for approximation to erf in [0.84375,1.25]
|
|
|
|
*/
|
|
|
|
/* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
|
|
|
|
-0.15625 <= x <= +.25
|
|
|
|
Peak relative error 8.5e-22 */
|
|
|
|
|
|
|
|
pa[8] = {
|
|
|
|
-1.076952146179812072156734957705102256059E0L,
|
|
|
|
1.884814957770385593365179835059971587220E2L,
|
|
|
|
-5.339153975012804282890066622962070115606E1L,
|
|
|
|
4.435910679869176625928504532109635632618E1L,
|
|
|
|
1.683219516032328828278557309642929135179E1L,
|
|
|
|
-2.360236618396952560064259585299045804293E0L,
|
|
|
|
1.852230047861891953244413872297940938041E0L,
|
|
|
|
9.394994446747752308256773044667843200719E-2L,
|
|
|
|
},
|
|
|
|
|
|
|
|
qa[7] = {
|
|
|
|
4.559263722294508998149925774781887811255E2L,
|
|
|
|
3.289248982200800575749795055149780689738E2L,
|
|
|
|
2.846070965875643009598627918383314457912E2L,
|
|
|
|
1.398715859064535039433275722017479994465E2L,
|
|
|
|
6.060190733759793706299079050985358190726E1L,
|
|
|
|
2.078695677795422351040502569964299664233E1L,
|
|
|
|
4.641271134150895940966798357442234498546E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
|
|
},
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
|
|
|
*/
|
|
|
|
/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
|
|
|
|
1/2.85711669921875 < 1/x < 1/1.25
|
|
|
|
Peak relative error 3.1e-21 */
|
|
|
|
|
|
|
|
ra[] = {
|
|
|
|
1.363566591833846324191000679620738857234E-1L,
|
|
|
|
1.018203167219873573808450274314658434507E1L,
|
|
|
|
1.862359362334248675526472871224778045594E2L,
|
|
|
|
1.411622588180721285284945138667933330348E3L,
|
|
|
|
5.088538459741511988784440103218342840478E3L,
|
|
|
|
8.928251553922176506858267311750789273656E3L,
|
|
|
|
7.264436000148052545243018622742770549982E3L,
|
|
|
|
2.387492459664548651671894725748959751119E3L,
|
|
|
|
2.220916652813908085449221282808458466556E2L,
|
|
|
|
},
|
|
|
|
|
|
|
|
sa[] = {
|
|
|
|
-1.382234625202480685182526402169222331847E1L,
|
|
|
|
-3.315638835627950255832519203687435946482E2L,
|
|
|
|
-2.949124863912936259747237164260785326692E3L,
|
|
|
|
-1.246622099070875940506391433635999693661E4L,
|
|
|
|
-2.673079795851665428695842853070996219632E4L,
|
|
|
|
-2.880269786660559337358397106518918220991E4L,
|
|
|
|
-1.450600228493968044773354186390390823713E4L,
|
|
|
|
-2.874539731125893533960680525192064277816E3L,
|
|
|
|
-1.402241261419067750237395034116942296027E2L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
|
|
},
|
|
|
|
/*
|
|
|
|
* Coefficients for approximation to erfc in [1/.35,107]
|
|
|
|
*/
|
|
|
|
/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
|
|
|
|
1/6.6666259765625 < 1/x < 1/2.85711669921875
|
|
|
|
Peak relative error 4.2e-22 */
|
|
|
|
rb[] = {
|
|
|
|
-4.869587348270494309550558460786501252369E-5L,
|
|
|
|
-4.030199390527997378549161722412466959403E-3L,
|
|
|
|
-9.434425866377037610206443566288917589122E-2L,
|
|
|
|
-9.319032754357658601200655161585539404155E-1L,
|
|
|
|
-4.273788174307459947350256581445442062291E0L,
|
|
|
|
-8.842289940696150508373541814064198259278E0L,
|
|
|
|
-7.069215249419887403187988144752613025255E0L,
|
|
|
|
-1.401228723639514787920274427443330704764E0L,
|
|
|
|
},
|
|
|
|
|
|
|
|
sb[] = {
|
|
|
|
4.936254964107175160157544545879293019085E-3L,
|
|
|
|
1.583457624037795744377163924895349412015E-1L,
|
|
|
|
1.850647991850328356622940552450636420484E0L,
|
|
|
|
9.927611557279019463768050710008450625415E0L,
|
|
|
|
2.531667257649436709617165336779212114570E1L,
|
|
|
|
2.869752886406743386458304052862814690045E1L,
|
|
|
|
1.182059497870819562441683560749192539345E1L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
|
|
},
|
|
|
|
/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
|
|
|
|
1/107 <= 1/x <= 1/6.6666259765625
|
|
|
|
Peak relative error 1.1e-21 */
|
|
|
|
rc[] = {
|
|
|
|
-8.299617545269701963973537248996670806850E-5L,
|
|
|
|
-6.243845685115818513578933902532056244108E-3L,
|
|
|
|
-1.141667210620380223113693474478394397230E-1L,
|
|
|
|
-7.521343797212024245375240432734425789409E-1L,
|
|
|
|
-1.765321928311155824664963633786967602934E0L,
|
|
|
|
-1.029403473103215800456761180695263439188E0L,
|
|
|
|
},
|
|
|
|
|
|
|
|
sc[] = {
|
|
|
|
8.413244363014929493035952542677768808601E-3L,
|
|
|
|
2.065114333816877479753334599639158060979E-1L,
|
|
|
|
1.639064941530797583766364412782135680148E0L,
|
|
|
|
4.936788463787115555582319302981666347450E0L,
|
|
|
|
5.005177727208955487404729933261347679090E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
|
|
};
|
|
|
|
|
|
|
|
long double
|
|
|
|
__erfl (long double x)
|
|
|
|
{
|
|
|
|
long double R, S, P, Q, s, y, z, r;
|
|
|
|
int32_t ix, i;
|
2017-08-03 19:55:04 +00:00
|
|
|
uint32_t se, i0, i1;
|
2001-03-16 22:26:45 +00:00
|
|
|
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
|
|
ix = se & 0x7fff;
|
|
|
|
|
|
|
|
if (ix >= 0x7fff)
|
|
|
|
{ /* erf(nan)=nan */
|
|
|
|
i = ((se & 0xffff) >> 15) << 1;
|
|
|
|
return (long double) (1 - i) + one / x; /* erf(+-inf)=+-1 */
|
|
|
|
}
|
|
|
|
|
|
|
|
ix = (ix << 16) | (i0 >> 16);
|
|
|
|
if (ix < 0x3ffed800) /* |x|<0.84375 */
|
|
|
|
{
|
|
|
|
if (ix < 0x3fde8000) /* |x|<2**-33 */
|
|
|
|
{
|
|
|
|
if (ix < 0x00080000)
|
2014-05-14 12:34:03 +00:00
|
|
|
{
|
|
|
|
/* Avoid spurious underflow. */
|
|
|
|
long double ret = 0.0625 * (16.0 * x + (16.0 * efx) * x);
|
2015-09-23 22:42:30 +00:00
|
|
|
math_check_force_underflow (ret);
|
2014-05-14 12:34:03 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2001-03-16 22:26:45 +00:00
|
|
|
return x + efx * x;
|
|
|
|
}
|
|
|
|
z = x * x;
|
|
|
|
r = pp[0] + z * (pp[1]
|
|
|
|
+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
|
|
|
|
s = qq[0] + z * (qq[1]
|
|
|
|
+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
|
|
|
|
y = r / s;
|
|
|
|
return x + x * y;
|
|
|
|
}
|
|
|
|
if (ix < 0x3fffa000) /* 1.25 */
|
|
|
|
{ /* 0.84375 <= |x| < 1.25 */
|
|
|
|
s = fabsl (x) - one;
|
|
|
|
P = pa[0] + s * (pa[1] + s * (pa[2]
|
|
|
|
+ s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
|
|
|
|
Q = qa[0] + s * (qa[1] + s * (qa[2]
|
|
|
|
+ s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
|
|
|
|
if ((se & 0x8000) == 0)
|
|
|
|
return erx + P / Q;
|
|
|
|
else
|
|
|
|
return -erx - P / Q;
|
|
|
|
}
|
|
|
|
if (ix >= 0x4001d555) /* 6.6666259765625 */
|
|
|
|
{ /* inf>|x|>=6.666 */
|
|
|
|
if ((se & 0x8000) == 0)
|
|
|
|
return one - tiny;
|
|
|
|
else
|
|
|
|
return tiny - one;
|
|
|
|
}
|
|
|
|
x = fabsl (x);
|
|
|
|
s = one / (x * x);
|
|
|
|
if (ix < 0x4000b6db) /* 2.85711669921875 */
|
|
|
|
{
|
|
|
|
R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
|
|
|
|
s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
|
|
|
|
S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
|
|
|
|
s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{ /* |x| >= 1/0.35 */
|
|
|
|
R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
|
|
|
|
s * (rb[5] + s * (rb[6] + s * rb[7]))))));
|
|
|
|
S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
|
|
|
|
s * (sb[5] + s * (sb[6] + s))))));
|
|
|
|
}
|
|
|
|
z = x;
|
|
|
|
GET_LDOUBLE_WORDS (i, i0, i1, z);
|
|
|
|
i1 = 0;
|
|
|
|
SET_LDOUBLE_WORDS (z, i, i0, i1);
|
|
|
|
r =
|
|
|
|
__ieee754_expl (-z * z - 0.5625) * __ieee754_expl ((z - x) * (z + x) +
|
|
|
|
R / S);
|
|
|
|
if ((se & 0x8000) == 0)
|
|
|
|
return one - r / x;
|
|
|
|
else
|
|
|
|
return r / x - one;
|
|
|
|
}
|
|
|
|
|
2017-10-05 21:13:40 +00:00
|
|
|
libm_alias_ldouble (__erf, erf)
|
2012-01-27 17:27:55 +00:00
|
|
|
long double
|
|
|
|
__erfcl (long double x)
|
2001-03-16 22:26:45 +00:00
|
|
|
{
|
|
|
|
int32_t hx, ix;
|
|
|
|
long double R, S, P, Q, s, y, z, r;
|
2017-08-03 19:55:04 +00:00
|
|
|
uint32_t se, i0, i1;
|
2001-03-16 22:26:45 +00:00
|
|
|
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
|
|
ix = se & 0x7fff;
|
|
|
|
if (ix >= 0x7fff)
|
|
|
|
{ /* erfc(nan)=nan */
|
|
|
|
/* erfc(+-inf)=0,2 */
|
|
|
|
return (long double) (((se & 0xffff) >> 15) << 1) + one / x;
|
|
|
|
}
|
|
|
|
|
|
|
|
ix = (ix << 16) | (i0 >> 16);
|
|
|
|
if (ix < 0x3ffed800) /* |x|<0.84375 */
|
|
|
|
{
|
|
|
|
if (ix < 0x3fbe0000) /* |x|<2**-65 */
|
|
|
|
return one - x;
|
|
|
|
z = x * x;
|
|
|
|
r = pp[0] + z * (pp[1]
|
|
|
|
+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
|
|
|
|
s = qq[0] + z * (qq[1]
|
|
|
|
+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
|
|
|
|
y = r / s;
|
|
|
|
if (ix < 0x3ffd8000) /* x<1/4 */
|
|
|
|
{
|
|
|
|
return one - (x + x * y);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
r = x * y;
|
|
|
|
r += (x - half);
|
|
|
|
return half - r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ix < 0x3fffa000) /* 1.25 */
|
|
|
|
{ /* 0.84375 <= |x| < 1.25 */
|
|
|
|
s = fabsl (x) - one;
|
|
|
|
P = pa[0] + s * (pa[1] + s * (pa[2]
|
|
|
|
+ s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
|
|
|
|
Q = qa[0] + s * (qa[1] + s * (qa[2]
|
|
|
|
+ s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
|
|
|
|
if ((se & 0x8000) == 0)
|
|
|
|
{
|
|
|
|
z = one - erx;
|
|
|
|
return z - P / Q;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
z = erx + P / Q;
|
|
|
|
return one + z;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ix < 0x4005d600) /* 107 */
|
|
|
|
{ /* |x|<107 */
|
|
|
|
x = fabsl (x);
|
|
|
|
s = one / (x * x);
|
|
|
|
if (ix < 0x4000b6db) /* 2.85711669921875 */
|
2001-11-16 20:19:31 +00:00
|
|
|
{ /* |x| < 1/.35 ~ 2.857143 */
|
2001-03-16 22:26:45 +00:00
|
|
|
R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
|
|
|
|
s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
|
|
|
|
S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
|
|
|
|
s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
|
|
|
|
}
|
|
|
|
else if (ix < 0x4001d555) /* 6.6666259765625 */
|
|
|
|
{ /* 6.666 > |x| >= 1/.35 ~ 2.857143 */
|
|
|
|
R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
|
|
|
|
s * (rb[5] + s * (rb[6] + s * rb[7]))))));
|
|
|
|
S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
|
|
|
|
s * (sb[5] + s * (sb[6] + s))))));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{ /* |x| >= 6.666 */
|
|
|
|
if (se & 0x8000)
|
|
|
|
return two - tiny; /* x < -6.666 */
|
|
|
|
|
|
|
|
R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] +
|
|
|
|
s * (rc[4] + s * rc[5]))));
|
|
|
|
S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] +
|
|
|
|
s * (sc[4] + s))));
|
|
|
|
}
|
|
|
|
z = x;
|
|
|
|
GET_LDOUBLE_WORDS (hx, i0, i1, z);
|
|
|
|
i1 = 0;
|
|
|
|
i0 &= 0xffffff00;
|
|
|
|
SET_LDOUBLE_WORDS (z, hx, i0, i1);
|
|
|
|
r = __ieee754_expl (-z * z - 0.5625) *
|
|
|
|
__ieee754_expl ((z - x) * (z + x) + R / S);
|
|
|
|
if ((se & 0x8000) == 0)
|
2013-12-03 16:25:18 +00:00
|
|
|
{
|
|
|
|
long double ret = r / x;
|
|
|
|
if (ret == 0)
|
|
|
|
__set_errno (ERANGE);
|
|
|
|
return ret;
|
|
|
|
}
|
2001-03-16 22:26:45 +00:00
|
|
|
else
|
|
|
|
return two - r / x;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if ((se & 0x8000) == 0)
|
2013-12-03 16:25:18 +00:00
|
|
|
{
|
|
|
|
__set_errno (ERANGE);
|
|
|
|
return tiny * tiny;
|
|
|
|
}
|
2001-03-16 22:26:45 +00:00
|
|
|
else
|
|
|
|
return two - tiny;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-10-05 21:13:40 +00:00
|
|
|
libm_alias_ldouble (__erfc, erfc)
|