2006-01-28 00:15:15 +00:00
|
|
|
/*
|
|
|
|
* ====================================================
|
|
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software is freely granted, provided that this notice
|
|
|
|
* is preserved.
|
|
|
|
* ====================================================
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Expansions and modifications for 128-bit long double are
|
|
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
|
|
and are incorporated herein by permission of the author. The author
|
|
|
|
reserves the right to distribute this material elsewhere under different
|
|
|
|
copying permissions. These modifications are distributed here under
|
|
|
|
the following terms:
|
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
2012-02-09 23:18:22 +00:00
|
|
|
License along with this library; if not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
2006-01-28 00:15:15 +00:00
|
|
|
|
|
|
|
/* __ieee754_powl(x,y) return x**y
|
|
|
|
*
|
|
|
|
* n
|
|
|
|
* Method: Let x = 2 * (1+f)
|
|
|
|
* 1. Compute and return log2(x) in two pieces:
|
|
|
|
* log2(x) = w1 + w2,
|
|
|
|
* where w1 has 113-53 = 60 bit trailing zeros.
|
|
|
|
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
|
|
* arithmetic, where |y'|<=0.5.
|
|
|
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
|
|
*
|
|
|
|
* Special cases:
|
|
|
|
* 1. (anything) ** 0 is 1
|
|
|
|
* 2. (anything) ** 1 is itself
|
|
|
|
* 3. (anything) ** NAN is NAN
|
|
|
|
* 4. NAN ** (anything except 0) is NAN
|
|
|
|
* 5. +-(|x| > 1) ** +INF is +INF
|
|
|
|
* 6. +-(|x| > 1) ** -INF is +0
|
|
|
|
* 7. +-(|x| < 1) ** +INF is +0
|
|
|
|
* 8. +-(|x| < 1) ** -INF is +INF
|
|
|
|
* 9. +-1 ** +-INF is NAN
|
|
|
|
* 10. +0 ** (+anything except 0, NAN) is +0
|
|
|
|
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
|
|
* 12. +0 ** (-anything except 0, NAN) is +INF
|
|
|
|
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
|
|
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
|
|
* 15. +INF ** (+anything except 0,NAN) is +INF
|
|
|
|
* 16. +INF ** (-anything except 0,NAN) is +0
|
|
|
|
* 17. -INF ** (anything) = -0 ** (-anything)
|
|
|
|
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
|
|
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2012-03-09 19:29:16 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
2018-05-10 00:53:04 +00:00
|
|
|
#include <math-underflow.h>
|
2006-01-28 00:15:15 +00:00
|
|
|
|
|
|
|
static const long double bp[] = {
|
|
|
|
1.0L,
|
|
|
|
1.5L,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* log_2(1.5) */
|
|
|
|
static const long double dp_h[] = {
|
|
|
|
0.0,
|
|
|
|
5.8496250072115607565592654282227158546448E-1L
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Low part of log_2(1.5) */
|
|
|
|
static const long double dp_l[] = {
|
|
|
|
0.0,
|
|
|
|
1.0579781240112554492329533686862998106046E-16L
|
|
|
|
};
|
|
|
|
|
|
|
|
static const long double zero = 0.0L,
|
|
|
|
one = 1.0L,
|
|
|
|
two = 2.0L,
|
|
|
|
two113 = 1.0384593717069655257060992658440192E34L,
|
2012-03-21 10:51:17 +00:00
|
|
|
huge = 1.0e300L,
|
|
|
|
tiny = 1.0e-300L;
|
2006-01-28 00:15:15 +00:00
|
|
|
|
|
|
|
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
|
|
|
|
z = (x-1)/(x+1)
|
|
|
|
1 <= x <= 1.25
|
|
|
|
Peak relative error 2.3e-37 */
|
|
|
|
static const long double LN[] =
|
|
|
|
{
|
|
|
|
-3.0779177200290054398792536829702930623200E1L,
|
|
|
|
6.5135778082209159921251824580292116201640E1L,
|
|
|
|
-4.6312921812152436921591152809994014413540E1L,
|
|
|
|
1.2510208195629420304615674658258363295208E1L,
|
|
|
|
-9.9266909031921425609179910128531667336670E-1L
|
|
|
|
};
|
|
|
|
static const long double LD[] =
|
|
|
|
{
|
|
|
|
-5.129862866715009066465422805058933131960E1L,
|
|
|
|
1.452015077564081884387441590064272782044E2L,
|
|
|
|
-1.524043275549860505277434040464085593165E2L,
|
|
|
|
7.236063513651544224319663428634139768808E1L,
|
|
|
|
-1.494198912340228235853027849917095580053E1L
|
|
|
|
/* 1.0E0 */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
|
|
|
|
0 <= x <= 0.5
|
|
|
|
Peak relative error 5.7e-38 */
|
|
|
|
static const long double PN[] =
|
|
|
|
{
|
|
|
|
5.081801691915377692446852383385968225675E8L,
|
|
|
|
9.360895299872484512023336636427675327355E6L,
|
|
|
|
4.213701282274196030811629773097579432957E4L,
|
|
|
|
5.201006511142748908655720086041570288182E1L,
|
|
|
|
9.088368420359444263703202925095675982530E-3L,
|
|
|
|
};
|
|
|
|
static const long double PD[] =
|
|
|
|
{
|
|
|
|
3.049081015149226615468111430031590411682E9L,
|
|
|
|
1.069833887183886839966085436512368982758E8L,
|
|
|
|
8.259257717868875207333991924545445705394E5L,
|
|
|
|
1.872583833284143212651746812884298360922E3L,
|
|
|
|
/* 1.0E0 */
|
|
|
|
};
|
|
|
|
|
|
|
|
static const long double
|
|
|
|
/* ln 2 */
|
|
|
|
lg2 = 6.9314718055994530941723212145817656807550E-1L,
|
|
|
|
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
|
|
|
|
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
|
|
|
|
ovt = 8.0085662595372944372e-0017L,
|
|
|
|
/* 2/(3*log(2)) */
|
|
|
|
cp = 9.6179669392597560490661645400126142495110E-1L,
|
|
|
|
cp_h = 9.6179669392597555432899980587535537779331E-1L,
|
|
|
|
cp_l = 5.0577616648125906047157785230014751039424E-17L;
|
|
|
|
|
|
|
|
long double
|
|
|
|
__ieee754_powl (long double x, long double y)
|
|
|
|
{
|
|
|
|
long double z, ax, z_h, z_l, p_h, p_l;
|
2016-02-19 01:07:40 +00:00
|
|
|
long double y1, t1, t2, r, s, sgn, t, u, v, w;
|
2012-11-22 14:59:45 +00:00
|
|
|
long double s2, s_h, s_l, t_h, t_l, ay;
|
2006-01-28 00:15:15 +00:00
|
|
|
int32_t i, j, k, yisint, n;
|
2013-08-17 08:54:58 +00:00
|
|
|
uint32_t ix, iy;
|
|
|
|
int32_t hx, hy, hax;
|
|
|
|
double ohi, xhi, xlo, yhi, ylo;
|
|
|
|
uint32_t lx, ly, lj;
|
2006-01-28 00:15:15 +00:00
|
|
|
|
2013-08-17 08:54:58 +00:00
|
|
|
ldbl_unpack (x, &xhi, &xlo);
|
|
|
|
EXTRACT_WORDS (hx, lx, xhi);
|
2006-01-28 00:15:15 +00:00
|
|
|
ix = hx & 0x7fffffff;
|
|
|
|
|
2013-08-17 08:54:58 +00:00
|
|
|
ldbl_unpack (y, &yhi, &ylo);
|
|
|
|
EXTRACT_WORDS (hy, ly, yhi);
|
2006-01-28 00:15:15 +00:00
|
|
|
iy = hy & 0x7fffffff;
|
|
|
|
|
|
|
|
/* y==zero: x**0 = 1 */
|
Fix sysdeps/ieee754 pow handling of sNaN arguments (bug 20916).
Various pow function implementations mishandle sNaN arguments in
various ways. This includes returning sNaN instead of qNaN for sNaN
arguments. For arguments (1, sNaN) and (sNaN, 0), TS 18661-1
semantics are also that the result should be qNaN, whereas with a qNaN
argument there the result should be 1, but for the dbl-64
implementation of pow there are issues with sNaN arguments beyond not
implementing the TS 18661-1 semantics in those special cases.
This patch makes the implementations in sysdeps/ieee754 follow the TS
18661-1 semantics consistently. Because x86 / x86_64 implementations
still need fixing, testcases are not included with this patch; they
will be included with the fix for the x86 / x86_64 versions.
Tested for x86_64, x86, mips64 and powerpc (with such testcases, which
pass in the mips64 and powerpc cases).
[BZ #20916]
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Do not return 1
for arguments (sNaN, 0) or (1, sNaN). Do arithmetic on NaN
arguments to compute result.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Do not return
1 for arguments (sNaN, 0) or (1, sNaN).
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
2016-12-02 23:21:15 +00:00
|
|
|
if ((iy | ly) == 0 && !issignaling (x))
|
2006-01-28 00:15:15 +00:00
|
|
|
return one;
|
|
|
|
|
|
|
|
/* 1.0**y = 1; -1.0**+-Inf = 1 */
|
Fix sysdeps/ieee754 pow handling of sNaN arguments (bug 20916).
Various pow function implementations mishandle sNaN arguments in
various ways. This includes returning sNaN instead of qNaN for sNaN
arguments. For arguments (1, sNaN) and (sNaN, 0), TS 18661-1
semantics are also that the result should be qNaN, whereas with a qNaN
argument there the result should be 1, but for the dbl-64
implementation of pow there are issues with sNaN arguments beyond not
implementing the TS 18661-1 semantics in those special cases.
This patch makes the implementations in sysdeps/ieee754 follow the TS
18661-1 semantics consistently. Because x86 / x86_64 implementations
still need fixing, testcases are not included with this patch; they
will be included with the fix for the x86 / x86_64 versions.
Tested for x86_64, x86, mips64 and powerpc (with such testcases, which
pass in the mips64 and powerpc cases).
[BZ #20916]
* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Do not return 1
for arguments (sNaN, 0) or (1, sNaN). Do arithmetic on NaN
arguments to compute result.
* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Do not return
1 for arguments (sNaN, 0) or (1, sNaN).
* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
2016-12-02 23:21:15 +00:00
|
|
|
if (x == one && !issignaling (y))
|
2006-01-28 00:15:15 +00:00
|
|
|
return one;
|
2013-08-17 08:54:58 +00:00
|
|
|
if (x == -1.0L && ((iy - 0x7ff00000) | ly) == 0)
|
2006-01-28 00:15:15 +00:00
|
|
|
return one;
|
|
|
|
|
|
|
|
/* +-NaN return x+y */
|
2013-08-17 08:54:58 +00:00
|
|
|
if ((ix >= 0x7ff00000 && ((ix - 0x7ff00000) | lx) != 0)
|
|
|
|
|| (iy >= 0x7ff00000 && ((iy - 0x7ff00000) | ly) != 0))
|
2006-01-28 00:15:15 +00:00
|
|
|
return x + y;
|
|
|
|
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
|
|
* yisint = 0 ... y is not an integer
|
|
|
|
* yisint = 1 ... y is an odd int
|
|
|
|
* yisint = 2 ... y is an even int
|
|
|
|
*/
|
|
|
|
yisint = 0;
|
|
|
|
if (hx < 0)
|
|
|
|
{
|
2013-08-17 08:54:58 +00:00
|
|
|
uint32_t low_ye;
|
|
|
|
|
|
|
|
GET_HIGH_WORD (low_ye, ylo);
|
|
|
|
if ((low_ye & 0x7fffffff) >= 0x43400000) /* Low part >= 2^53 */
|
2006-01-28 00:15:15 +00:00
|
|
|
yisint = 2; /* even integer y */
|
|
|
|
else if (iy >= 0x3ff00000) /* 1.0 */
|
|
|
|
{
|
|
|
|
if (__floorl (y) == y)
|
|
|
|
{
|
|
|
|
z = 0.5 * y;
|
|
|
|
if (__floorl (z) == z)
|
|
|
|
yisint = 2;
|
|
|
|
else
|
|
|
|
yisint = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-08-17 08:54:58 +00:00
|
|
|
ax = fabsl (x);
|
|
|
|
|
2006-01-28 00:15:15 +00:00
|
|
|
/* special value of y */
|
2013-08-17 08:54:58 +00:00
|
|
|
if (ly == 0)
|
2006-01-28 00:15:15 +00:00
|
|
|
{
|
2013-08-17 08:54:58 +00:00
|
|
|
if (iy == 0x7ff00000) /* y is +-inf */
|
2006-01-28 00:15:15 +00:00
|
|
|
{
|
2013-08-17 08:54:58 +00:00
|
|
|
if (ax > one)
|
2006-01-28 00:15:15 +00:00
|
|
|
/* (|x|>1)**+-inf = inf,0 */
|
|
|
|
return (hy >= 0) ? y : zero;
|
|
|
|
else
|
|
|
|
/* (|x|<1)**-,+inf = inf,0 */
|
|
|
|
return (hy < 0) ? -y : zero;
|
|
|
|
}
|
2013-08-17 08:54:58 +00:00
|
|
|
if (ylo == 0.0)
|
|
|
|
{
|
|
|
|
if (iy == 0x3ff00000)
|
|
|
|
{ /* y is +-1 */
|
|
|
|
if (hy < 0)
|
|
|
|
return one / x;
|
|
|
|
else
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
if (hy == 0x40000000)
|
|
|
|
return x * x; /* y is 2 */
|
|
|
|
if (hy == 0x3fe00000)
|
|
|
|
{ /* y is 0.5 */
|
|
|
|
if (hx >= 0) /* x >= +0 */
|
2018-03-15 18:05:03 +00:00
|
|
|
return sqrtl (x);
|
2013-08-17 08:54:58 +00:00
|
|
|
}
|
2006-01-28 00:15:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* special value of x */
|
2013-08-17 08:54:58 +00:00
|
|
|
if (lx == 0)
|
2006-01-28 00:15:15 +00:00
|
|
|
{
|
2013-08-17 08:54:58 +00:00
|
|
|
if (ix == 0x7ff00000 || ix == 0 || (ix == 0x3ff00000 && xlo == 0.0))
|
2006-01-28 00:15:15 +00:00
|
|
|
{
|
|
|
|
z = ax; /*x is +-0,+-inf,+-1 */
|
|
|
|
if (hy < 0)
|
|
|
|
z = one / z; /* z = (1/|x|) */
|
|
|
|
if (hx < 0)
|
|
|
|
{
|
|
|
|
if (((ix - 0x3ff00000) | yisint) == 0)
|
|
|
|
{
|
|
|
|
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
|
|
|
}
|
|
|
|
else if (yisint == 1)
|
|
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
|
|
}
|
|
|
|
return z;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
2017-08-03 19:55:04 +00:00
|
|
|
if (((((uint32_t) hx >> 31) - 1) | yisint) == 0)
|
2006-01-28 00:15:15 +00:00
|
|
|
return (x - x) / (x - x);
|
|
|
|
|
2016-02-19 01:07:40 +00:00
|
|
|
/* sgn (sign of result -ve**odd) = -1 else = 1 */
|
|
|
|
sgn = one;
|
2017-08-03 19:55:04 +00:00
|
|
|
if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
2016-02-19 01:07:40 +00:00
|
|
|
sgn = -one; /* (-ve)**(odd int) */
|
|
|
|
|
2006-01-28 00:15:15 +00:00
|
|
|
/* |y| is huge.
|
|
|
|
2^-16495 = 1/2 of smallest representable value.
|
|
|
|
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
|
|
|
|
if (iy > 0x41d654b0)
|
|
|
|
{
|
|
|
|
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
|
|
|
|
if (iy > 0x47d654b0)
|
|
|
|
{
|
|
|
|
if (ix <= 0x3fefffff)
|
2016-02-19 01:07:40 +00:00
|
|
|
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
2006-01-28 00:15:15 +00:00
|
|
|
if (ix >= 0x3ff00000)
|
2016-02-19 01:07:40 +00:00
|
|
|
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
2006-01-28 00:15:15 +00:00
|
|
|
}
|
|
|
|
/* over/underflow if x is not close to one */
|
|
|
|
if (ix < 0x3fefffff)
|
2016-02-19 01:07:40 +00:00
|
|
|
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
2006-01-28 00:15:15 +00:00
|
|
|
if (ix > 0x3ff00000)
|
2016-02-19 01:07:40 +00:00
|
|
|
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
2006-01-28 00:15:15 +00:00
|
|
|
}
|
|
|
|
|
2012-11-22 14:59:45 +00:00
|
|
|
ay = y > 0 ? y : -y;
|
|
|
|
if (ay < 0x1p-117)
|
|
|
|
y = y < 0 ? -0x1p-117 : 0x1p-117;
|
|
|
|
|
2006-01-28 00:15:15 +00:00
|
|
|
n = 0;
|
|
|
|
/* take care subnormal number */
|
|
|
|
if (ix < 0x00100000)
|
|
|
|
{
|
|
|
|
ax *= two113;
|
|
|
|
n -= 113;
|
2013-08-17 08:54:58 +00:00
|
|
|
ohi = ldbl_high (ax);
|
|
|
|
GET_HIGH_WORD (ix, ohi);
|
2006-01-28 00:15:15 +00:00
|
|
|
}
|
|
|
|
n += ((ix) >> 20) - 0x3ff;
|
|
|
|
j = ix & 0x000fffff;
|
|
|
|
/* determine interval */
|
|
|
|
ix = j | 0x3ff00000; /* normalize ix */
|
|
|
|
if (j <= 0x39880)
|
|
|
|
k = 0; /* |x|<sqrt(3/2) */
|
|
|
|
else if (j < 0xbb670)
|
|
|
|
k = 1; /* |x|<sqrt(3) */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
k = 0;
|
|
|
|
n += 1;
|
|
|
|
ix -= 0x00100000;
|
|
|
|
}
|
|
|
|
|
2013-08-17 08:54:58 +00:00
|
|
|
ohi = ldbl_high (ax);
|
|
|
|
GET_HIGH_WORD (hax, ohi);
|
|
|
|
ax = __scalbnl (ax, ((int) ((ix - hax) * 2)) >> 21);
|
2006-01-28 00:15:15 +00:00
|
|
|
|
|
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
|
|
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
|
|
v = one / (ax + bp[k]);
|
|
|
|
s = u * v;
|
2013-08-17 08:54:58 +00:00
|
|
|
s_h = ldbl_high (s);
|
2006-01-28 00:15:15 +00:00
|
|
|
|
|
|
|
/* t_h=ax+bp[k] High */
|
|
|
|
t_h = ax + bp[k];
|
2013-08-17 08:54:58 +00:00
|
|
|
t_h = ldbl_high (t_h);
|
2006-01-28 00:15:15 +00:00
|
|
|
t_l = ax - (t_h - bp[k]);
|
|
|
|
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
|
|
|
/* compute log(ax) */
|
|
|
|
s2 = s * s;
|
|
|
|
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
|
|
|
|
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
|
|
|
|
r = s2 * s2 * u / v;
|
|
|
|
r += s_l * (s_h + s);
|
|
|
|
s2 = s_h * s_h;
|
|
|
|
t_h = 3.0 + s2 + r;
|
2013-08-17 08:54:58 +00:00
|
|
|
t_h = ldbl_high (t_h);
|
2006-01-28 00:15:15 +00:00
|
|
|
t_l = r - ((t_h - 3.0) - s2);
|
|
|
|
/* u+v = s*(1+...) */
|
|
|
|
u = s_h * t_h;
|
|
|
|
v = s_l * t_h + t_l * s;
|
|
|
|
/* 2/(3log2)*(s+...) */
|
|
|
|
p_h = u + v;
|
2013-08-17 08:54:58 +00:00
|
|
|
p_h = ldbl_high (p_h);
|
2006-01-28 00:15:15 +00:00
|
|
|
p_l = v - (p_h - u);
|
|
|
|
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
|
|
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
|
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
|
|
t = (long double) n;
|
|
|
|
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
2013-08-17 08:54:58 +00:00
|
|
|
t1 = ldbl_high (t1);
|
2006-01-28 00:15:15 +00:00
|
|
|
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
|
|
|
|
|
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
2013-08-17 08:54:58 +00:00
|
|
|
y1 = ldbl_high (y);
|
2006-01-28 00:15:15 +00:00
|
|
|
p_l = (y - y1) * t1 + y * t2;
|
|
|
|
p_h = y1 * t1;
|
|
|
|
z = p_l + p_h;
|
2013-08-17 08:54:58 +00:00
|
|
|
ohi = ldbl_high (z);
|
|
|
|
EXTRACT_WORDS (j, lj, ohi);
|
2006-01-28 00:15:15 +00:00
|
|
|
if (j >= 0x40d00000) /* z >= 16384 */
|
|
|
|
{
|
|
|
|
/* if z > 16384 */
|
2013-08-17 08:54:58 +00:00
|
|
|
if (((j - 0x40d00000) | lj) != 0)
|
2016-02-19 01:07:40 +00:00
|
|
|
return sgn * huge * huge; /* overflow */
|
2006-01-28 00:15:15 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
if (p_l + ovt > z - p_h)
|
2016-02-19 01:07:40 +00:00
|
|
|
return sgn * huge * huge; /* overflow */
|
2006-01-28 00:15:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else if ((j & 0x7fffffff) >= 0x40d01b90) /* z <= -16495 */
|
|
|
|
{
|
|
|
|
/* z < -16495 */
|
2013-08-17 08:54:58 +00:00
|
|
|
if (((j - 0xc0d01bc0) | lj) != 0)
|
2016-02-19 01:07:40 +00:00
|
|
|
return sgn * tiny * tiny; /* underflow */
|
2006-01-28 00:15:15 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
if (p_l <= z - p_h)
|
2016-02-19 01:07:40 +00:00
|
|
|
return sgn * tiny * tiny; /* underflow */
|
2006-01-28 00:15:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
/* compute 2**(p_h+p_l) */
|
|
|
|
i = j & 0x7fffffff;
|
|
|
|
k = (i >> 20) - 0x3ff;
|
|
|
|
n = 0;
|
|
|
|
if (i > 0x3fe00000)
|
|
|
|
{ /* if |z| > 0.5, set n = [z+0.5] */
|
|
|
|
n = __floorl (z + 0.5L);
|
|
|
|
t = n;
|
|
|
|
p_h -= t;
|
|
|
|
}
|
|
|
|
t = p_l + p_h;
|
2013-08-17 08:54:58 +00:00
|
|
|
t = ldbl_high (t);
|
2006-01-28 00:15:15 +00:00
|
|
|
u = t * lg2_h;
|
|
|
|
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
|
|
|
z = u + v;
|
|
|
|
w = v - (z - u);
|
|
|
|
/* exp(z) */
|
|
|
|
t = z * z;
|
|
|
|
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
|
|
|
|
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
|
|
|
|
t1 = z - t * u / v;
|
|
|
|
r = (z * t1) / (t1 - two) - (w + z * w);
|
|
|
|
z = one - (r - z);
|
2016-02-19 01:07:40 +00:00
|
|
|
z = __scalbnl (sgn * z, n);
|
|
|
|
math_check_force_underflow (z);
|
|
|
|
return z;
|
2006-01-28 00:15:15 +00:00
|
|
|
}
|
2011-10-12 15:27:51 +00:00
|
|
|
strong_alias (__ieee754_powl, __powl_finite)
|