mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-11 22:00:08 +00:00
110 lines
4.2 KiB
C
110 lines
4.2 KiB
C
|
/* Helper for double-precision SVE routines which depend on log1p
|
||
|
|
||
|
Copyright (C) 2024 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, see
|
||
|
<https://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#ifndef AARCH64_FPU_SV_LOG1P_INLINE_H
|
||
|
#define AARCH64_FPU_SV_LOG1P_INLINE_H
|
||
|
|
||
|
#include "sv_math.h"
|
||
|
#include "poly_sve_f64.h"
|
||
|
|
||
|
static const struct sv_log1p_data
|
||
|
{
|
||
|
double poly[19], ln2[2];
|
||
|
uint64_t hf_rt2_top;
|
||
|
uint64_t one_m_hf_rt2_top;
|
||
|
uint32_t bottom_mask;
|
||
|
int64_t one_top;
|
||
|
} sv_log1p_data = {
|
||
|
/* Coefficients generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1].
|
||
|
*/
|
||
|
.poly = { -0x1.ffffffffffffbp-2, 0x1.55555555551a9p-2, -0x1.00000000008e3p-2,
|
||
|
0x1.9999999a32797p-3, -0x1.555555552fecfp-3, 0x1.249248e071e5ap-3,
|
||
|
-0x1.ffffff8bf8482p-4, 0x1.c71c8f07da57ap-4, -0x1.9999ca4ccb617p-4,
|
||
|
0x1.7459ad2e1dfa3p-4, -0x1.554d2680a3ff2p-4, 0x1.3b4c54d487455p-4,
|
||
|
-0x1.2548a9ffe80e6p-4, 0x1.0f389a24b2e07p-4, -0x1.eee4db15db335p-5,
|
||
|
0x1.e95b494d4a5ddp-5, -0x1.15fdf07cb7c73p-4, 0x1.0310b70800fcfp-4,
|
||
|
-0x1.cfa7385bdb37ep-6 },
|
||
|
.ln2 = { 0x1.62e42fefa3800p-1, 0x1.ef35793c76730p-45 },
|
||
|
.hf_rt2_top = 0x3fe6a09e00000000,
|
||
|
.one_m_hf_rt2_top = 0x00095f6200000000,
|
||
|
.bottom_mask = 0xffffffff,
|
||
|
.one_top = 0x3ff
|
||
|
};
|
||
|
|
||
|
static inline svfloat64_t
|
||
|
sv_log1p_inline (svfloat64_t x, const svbool_t pg)
|
||
|
{
|
||
|
/* Helper for calculating log(x + 1). Adapted from v_log1p_inline.h, which
|
||
|
differs from v_log1p_2u5.c by:
|
||
|
- No special-case handling - this should be dealt with by the caller.
|
||
|
- Pairwise Horner polynomial evaluation for improved accuracy.
|
||
|
- Optionally simulate the shortcut for k=0, used in the scalar routine,
|
||
|
using svsel, for improved accuracy when the argument to log1p is close
|
||
|
to 0. This feature is enabled by defining WANT_SV_LOG1P_K0_SHORTCUT as 1
|
||
|
in the source of the caller before including this file.
|
||
|
See sv_log1p_2u1.c for details of the algorithm. */
|
||
|
const struct sv_log1p_data *d = ptr_barrier (&sv_log1p_data);
|
||
|
svfloat64_t m = svadd_x (pg, x, 1);
|
||
|
svuint64_t mi = svreinterpret_u64 (m);
|
||
|
svuint64_t u = svadd_x (pg, mi, d->one_m_hf_rt2_top);
|
||
|
|
||
|
svint64_t ki
|
||
|
= svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, u, 52)), d->one_top);
|
||
|
svfloat64_t k = svcvt_f64_x (pg, ki);
|
||
|
|
||
|
/* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */
|
||
|
svuint64_t utop
|
||
|
= svadd_x (pg, svand_x (pg, u, 0x000fffff00000000), d->hf_rt2_top);
|
||
|
svuint64_t u_red = svorr_x (pg, utop, svand_x (pg, mi, d->bottom_mask));
|
||
|
svfloat64_t f = svsub_x (pg, svreinterpret_f64 (u_red), 1);
|
||
|
|
||
|
/* Correction term c/m. */
|
||
|
svfloat64_t c = svsub_x (pg, x, svsub_x (pg, m, 1));
|
||
|
svfloat64_t cm;
|
||
|
|
||
|
#ifndef WANT_SV_LOG1P_K0_SHORTCUT
|
||
|
#error \
|
||
|
"Cannot use sv_log1p_inline.h without specifying whether you need the k0 shortcut for greater accuracy close to 0"
|
||
|
#elif WANT_SV_LOG1P_K0_SHORTCUT
|
||
|
/* Shortcut if k is 0 - set correction term to 0 and f to x. The result is
|
||
|
that the approximation is solely the polynomial. */
|
||
|
svbool_t knot0 = svcmpne (pg, k, 0);
|
||
|
cm = svdiv_z (knot0, c, m);
|
||
|
if (__glibc_likely (!svptest_any (pg, knot0)))
|
||
|
{
|
||
|
f = svsel (knot0, f, x);
|
||
|
}
|
||
|
#else
|
||
|
/* No shortcut. */
|
||
|
cm = svdiv_x (pg, c, m);
|
||
|
#endif
|
||
|
|
||
|
/* Approximate log1p(f) on the reduced input using a polynomial. */
|
||
|
svfloat64_t f2 = svmul_x (pg, f, f);
|
||
|
svfloat64_t p = sv_pw_horner_18_f64_x (pg, f, f2, d->poly);
|
||
|
|
||
|
/* Assemble log1p(x) = k * log2 + log1p(f) + c/m. */
|
||
|
svfloat64_t ylo = svmla_x (pg, cm, k, d->ln2[0]);
|
||
|
svfloat64_t yhi = svmla_x (pg, f, k, d->ln2[1]);
|
||
|
|
||
|
return svmla_x (pg, svadd_x (pg, ylo, yhi), f2, p);
|
||
|
}
|
||
|
|
||
|
#endif
|