2013-01-17 20:25:51 +00:00
|
|
|
/* Return arc hyperbole sine for long double value, with the imaginary
|
|
|
|
part of the result possibly adjusted for use in computing other
|
|
|
|
functions.
|
|
|
|
Copyright (C) 1997-2013 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU C Library.
|
|
|
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
|
|
License along with the GNU C Library; if not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include <complex.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
|
|
|
#include <float.h>
|
|
|
|
|
|
|
|
/* To avoid spurious overflows, use this definition to treat IBM long
|
|
|
|
double as approximating an IEEE-style format. */
|
|
|
|
#if LDBL_MANT_DIG == 106
|
|
|
|
# undef LDBL_EPSILON
|
|
|
|
# define LDBL_EPSILON 0x1p-106L
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Return the complex inverse hyperbolic sine of finite nonzero Z,
|
|
|
|
with the imaginary part of the result subtracted from pi/2 if ADJ
|
|
|
|
is nonzero. */
|
|
|
|
|
|
|
|
__complex__ long double
|
|
|
|
__kernel_casinhl (__complex__ long double x, int adj)
|
|
|
|
{
|
|
|
|
__complex__ long double res;
|
|
|
|
long double rx, ix;
|
|
|
|
__complex__ long double y;
|
|
|
|
|
|
|
|
/* Avoid cancellation by reducing to the first quadrant. */
|
|
|
|
rx = fabsl (__real__ x);
|
|
|
|
ix = fabsl (__imag__ x);
|
|
|
|
|
|
|
|
if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON)
|
|
|
|
{
|
|
|
|
/* For large x in the first quadrant, x + csqrt (1 + x * x)
|
|
|
|
is sufficiently close to 2 * x to make no significant
|
|
|
|
difference to the result; avoid possible overflow from
|
|
|
|
the squaring and addition. */
|
|
|
|
__real__ y = rx;
|
|
|
|
__imag__ y = ix;
|
|
|
|
|
|
|
|
if (adj)
|
|
|
|
{
|
|
|
|
long double t = __real__ y;
|
|
|
|
__real__ y = __copysignl (__imag__ y, __imag__ x);
|
|
|
|
__imag__ y = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
res = __clogl (y);
|
|
|
|
__real__ res += M_LN2l;
|
|
|
|
}
|
2013-01-31 22:55:29 +00:00
|
|
|
else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L)
|
|
|
|
{
|
|
|
|
long double s = __ieee754_hypotl (1.0L, rx);
|
|
|
|
|
|
|
|
__real__ res = __ieee754_logl (rx + s);
|
|
|
|
if (adj)
|
|
|
|
__imag__ res = __ieee754_atan2l (s, __imag__ x);
|
|
|
|
else
|
|
|
|
__imag__ res = __ieee754_atan2l (ix, s);
|
|
|
|
}
|
|
|
|
else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L)
|
|
|
|
{
|
|
|
|
long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L));
|
|
|
|
|
|
|
|
__real__ res = __ieee754_logl (ix + s);
|
|
|
|
if (adj)
|
|
|
|
__imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x));
|
|
|
|
else
|
|
|
|
__imag__ res = __ieee754_atan2l (s, rx);
|
|
|
|
}
|
2013-03-21 10:27:10 +00:00
|
|
|
else if (ix == 1.0L && rx < 0.5L)
|
|
|
|
{
|
|
|
|
if (rx < LDBL_EPSILON / 8.0L)
|
|
|
|
{
|
|
|
|
__real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L;
|
|
|
|
if (adj)
|
|
|
|
__imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx),
|
|
|
|
__copysignl (1.0L, __imag__ x));
|
|
|
|
else
|
|
|
|
__imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
long double d = rx * __ieee754_sqrtl (4.0L + rx * rx);
|
|
|
|
long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L);
|
|
|
|
long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L);
|
|
|
|
|
|
|
|
__real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L;
|
|
|
|
if (adj)
|
|
|
|
__imag__ res = __ieee754_atan2l (rx + s1,
|
|
|
|
__copysignl (1.0L + s2,
|
|
|
|
__imag__ x));
|
|
|
|
else
|
|
|
|
__imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1);
|
|
|
|
}
|
|
|
|
}
|
2013-01-17 20:25:51 +00:00
|
|
|
else
|
|
|
|
{
|
2013-03-19 22:38:25 +00:00
|
|
|
__real__ y = (rx - ix) * (rx + ix) + 1.0L;
|
|
|
|
__imag__ y = 2.0L * rx * ix;
|
2013-01-17 20:25:51 +00:00
|
|
|
|
|
|
|
y = __csqrtl (y);
|
|
|
|
|
|
|
|
__real__ y += rx;
|
|
|
|
__imag__ y += ix;
|
|
|
|
|
|
|
|
if (adj)
|
|
|
|
{
|
|
|
|
long double t = __real__ y;
|
|
|
|
__real__ y = __copysignl (__imag__ y, __imag__ x);
|
|
|
|
__imag__ y = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
res = __clogl (y);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Give results the correct sign for the original argument. */
|
|
|
|
__real__ res = __copysignl (__real__ res, __real__ x);
|
|
|
|
__imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x));
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|