1996-12-04 01:41:27 +00:00
|
|
|
/* Machine-dependent ELF dynamic relocation inline functions. MIPS version.
|
2021-01-02 19:32:25 +00:00
|
|
|
Copyright (C) 1996-2021 Free Software Foundation, Inc.
|
1996-12-04 01:41:27 +00:00
|
|
|
This file is part of the GNU C Library.
|
|
|
|
Contributed by Kazumoto Kojima <kkojima@info.kanagawa-u.ac.jp>.
|
1996-07-26 04:37:17 +00:00
|
|
|
|
1996-12-04 01:41:27 +00:00
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
2001-07-06 04:56:23 +00:00
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
1996-07-26 04:37:17 +00:00
|
|
|
|
1996-12-04 01:41:27 +00:00
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
2001-07-06 04:56:23 +00:00
|
|
|
Lesser General Public License for more details.
|
1996-07-26 04:37:17 +00:00
|
|
|
|
2001-07-06 04:56:23 +00:00
|
|
|
You should have received a copy of the GNU Lesser General Public
|
2012-03-09 23:56:38 +00:00
|
|
|
License along with the GNU C Library. If not, see
|
Prefer https to http for gnu.org and fsf.org URLs
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
$(find $(git ls-files) -prune -type f \
! -name '*.po' \
! -name 'ChangeLog*' \
! -path COPYING ! -path COPYING.LIB \
! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
! -path manual/texinfo.tex ! -path scripts/config.guess \
! -path scripts/config.sub ! -path scripts/install-sh \
! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
! -path INSTALL ! -path locale/programs/charmap-kw.h \
! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
! '(' -name configure \
-execdir test -f configure.ac -o -f configure.in ';' ')' \
! '(' -name preconfigure \
-execdir test -f preconfigure.ac ';' ')' \
-print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
chmod a+x sysdeps/unix/sysv/linux/riscv/configure
# Omit irrelevant whitespace and comment-only changes,
# perhaps from a slightly-different Autoconf version.
git checkout -f \
sysdeps/csky/configure \
sysdeps/hppa/configure \
sysdeps/riscv/configure \
sysdeps/unix/sysv/linux/csky/configure
# Omit changes that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
git checkout -f \
sysdeps/powerpc/powerpc64/ppc-mcount.S \
sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
# Omit change that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 05:40:42 +00:00
|
|
|
<https://www.gnu.org/licenses/>. */
|
1996-07-26 04:37:17 +00:00
|
|
|
|
2000-04-17 21:22:59 +00:00
|
|
|
/* FIXME: Profiling of shared libraries is not implemented yet. */
|
1997-06-21 02:00:23 +00:00
|
|
|
#ifndef dl_machine_h
|
|
|
|
#define dl_machine_h
|
|
|
|
|
1996-07-26 04:37:17 +00:00
|
|
|
#define ELF_MACHINE_NAME "MIPS"
|
|
|
|
|
1997-07-12 23:22:49 +00:00
|
|
|
#include <entry.h>
|
|
|
|
|
|
|
|
#ifndef ENTRY_POINT
|
|
|
|
#error ENTRY_POINT needs to be defined for MIPS.
|
|
|
|
#endif
|
|
|
|
|
2004-11-24 04:36:11 +00:00
|
|
|
#include <sgidefs.h>
|
2015-01-05 17:39:33 +00:00
|
|
|
#include <sysdep.h>
|
2003-03-14 08:43:13 +00:00
|
|
|
#include <sys/asm.h>
|
2005-03-28 09:32:04 +00:00
|
|
|
#include <dl-tls.h>
|
elf: Fix dynamic-link.h usage on rtld.c
The 4af6982e4c fix does not fully handle RTLD_BOOTSTRAP usage on
rtld.c due two issues:
1. RTLD_BOOTSTRAP is also used on dl-machine.h on various
architectures and it changes the semantics of various machine
relocation functions.
2. The elf_get_dynamic_info() change was done sideways, previously
to 490e6c62aa get-dynamic-info.h was included by the first
dynamic-link.h include *without* RTLD_BOOTSTRAP being defined.
It means that the code within elf_get_dynamic_info() that uses
RTLD_BOOTSTRAP is in fact unused.
To fix 1. this patch now includes dynamic-link.h only once with
RTLD_BOOTSTRAP defined. The ELF_DYNAMIC_RELOCATE call will now have
the relocation fnctions with the expected semantics for the loader.
And to fix 2. part of 4af6982e4c is reverted (the check argument
elf_get_dynamic_info() is not required) and the RTLD_BOOTSTRAP
pieces are removed.
To reorganize the includes the static TLS definition is moved to
its own header to avoid a circular dependency (it is defined on
dynamic-link.h and dl-machine.h requires it at same time other
dynamic-link.h definition requires dl-machine.h defitions).
Also ELF_MACHINE_NO_REL, ELF_MACHINE_NO_RELA, and ELF_MACHINE_PLT_REL
are moved to its own header. Only ancient ABIs need special values
(arm, i386, and mips), so a generic one is used as default.
The powerpc Elf64_FuncDesc is also moved to its own header, since
csu code required its definition (which would require either include
elf/ folder or add a full path with elf/).
Checked on x86_64, i686, aarch64, armhf, powerpc64, powerpc32,
and powerpc64le.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
(cherry picked from commit d6d89608ac8cf2b37c75debad1fff653f6939f90)
Resolved conflicts:
elf/rtld.c
2021-10-13 12:49:34 +00:00
|
|
|
#include <dl-static-tls.h>
|
|
|
|
#include <dl-machine-rel.h>
|
2003-03-14 08:43:13 +00:00
|
|
|
|
2000-04-17 21:22:59 +00:00
|
|
|
/* The offset of gp from GOT might be system-dependent. It's set by
|
|
|
|
ld. The same value is also */
|
|
|
|
#define OFFSET_GP_GOT 0x7ff0
|
|
|
|
|
1997-07-12 23:22:49 +00:00
|
|
|
#ifndef _RTLD_PROLOGUE
|
2000-09-18 16:40:35 +00:00
|
|
|
# define _RTLD_PROLOGUE(entry) \
|
|
|
|
".globl\t" __STRING(entry) "\n\t" \
|
|
|
|
".ent\t" __STRING(entry) "\n\t" \
|
|
|
|
".type\t" __STRING(entry) ", @function\n" \
|
|
|
|
__STRING(entry) ":\n\t"
|
1997-07-12 23:22:49 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef _RTLD_EPILOGUE
|
2000-09-18 16:40:35 +00:00
|
|
|
# define _RTLD_EPILOGUE(entry) \
|
|
|
|
".end\t" __STRING(entry) "\n\t" \
|
|
|
|
".size\t" __STRING(entry) ", . - " __STRING(entry) "\n\t"
|
1997-07-12 23:22:49 +00:00
|
|
|
#endif
|
|
|
|
|
1999-11-23 15:49:22 +00:00
|
|
|
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries.
|
2008-10-01 13:28:14 +00:00
|
|
|
This only makes sense on MIPS when using PLTs, so choose the
|
|
|
|
PLT relocation (not encountered when not using PLTs). */
|
|
|
|
#define ELF_MACHINE_JMP_SLOT R_MIPS_JUMP_SLOT
|
|
|
|
#define elf_machine_type_class(type) \
|
|
|
|
((((type) == ELF_MACHINE_JMP_SLOT) * ELF_RTYPE_CLASS_PLT) \
|
|
|
|
| (((type) == R_MIPS_COPY) * ELF_RTYPE_CLASS_COPY))
|
|
|
|
|
1996-12-20 01:35:29 +00:00
|
|
|
/* Translate a processor specific dynamic tag to the index
|
1996-07-26 04:37:17 +00:00
|
|
|
in l_info array. */
|
|
|
|
#define DT_MIPS(x) (DT_MIPS_##x - DT_LOPROC + DT_NUM)
|
|
|
|
|
2015-06-11 09:43:48 +00:00
|
|
|
/* If there is a DT_MIPS_RLD_MAP_REL or DT_MIPS_RLD_MAP entry in the dynamic
|
|
|
|
section, fill in the debug map pointer with the run-time address of the
|
|
|
|
r_debug structure. */
|
1997-06-21 02:00:23 +00:00
|
|
|
#define ELF_MACHINE_DEBUG_SETUP(l,r) \
|
2015-06-11 09:43:48 +00:00
|
|
|
do { if ((l)->l_info[DT_MIPS (RLD_MAP_REL)]) \
|
|
|
|
{ \
|
|
|
|
char *ptr = (char *)(l)->l_info[DT_MIPS (RLD_MAP_REL)]; \
|
|
|
|
ptr += (l)->l_info[DT_MIPS (RLD_MAP_REL)]->d_un.d_val; \
|
|
|
|
*(ElfW(Addr) *)ptr = (ElfW(Addr)) (r); \
|
|
|
|
} \
|
|
|
|
else if ((l)->l_info[DT_MIPS (RLD_MAP)]) \
|
1996-07-26 04:37:17 +00:00
|
|
|
*(ElfW(Addr) *)((l)->l_info[DT_MIPS (RLD_MAP)]->d_un.d_ptr) = \
|
|
|
|
(ElfW(Addr)) (r); \
|
|
|
|
} while (0)
|
|
|
|
|
MIPS: IEEE 754-2008 NaN encoding support
It has been a long practice for software using IEEE 754 floating-point
arithmetic run on MIPS processors to use an encoding of Not-a-Number
(NaN) data different to one used by software run on other processors.
And as of IEEE 754-2008 revision [1] this encoding does not follow one
recommended in the standard, as specified in section 6.2.1, where it
is stated that quiet NaNs should have the first bit (d1) of their
significand set to 1 while signalling NaNs should have that bit set to
0, but MIPS software interprets the two bits in the opposite manner.
As from revision 3.50 [2][3] the MIPS Architecture provides for
processors that support the IEEE 754-2008 preferred NaN encoding format.
As the two formats (further referred to as "legacy NaN" and "2008 NaN")
are incompatible to each other, tools have to provide support for the
two formats to help people avoid using incompatible binary modules.
The change is comprised of two functional groups of features, both of
which are required for correct support.
1. Dynamic linker support.
To enforce the NaN encoding requirement in dynamic linking a new ELF
file header flag has been defined. This flag is set for 2008-NaN
shared modules and executables and clear for legacy-NaN ones. The
dynamic linker silently ignores any incompatible modules it
encounters in dependency processing.
To avoid unnecessary processing of incompatible modules in the
presence of a shared module cache, a set of new cache flags has been
defined to mark 2008-NaN modules for the three ABIs supported.
Changes to sysdeps/unix/sysv/linux/mips/readelflib.c have been made
following an earlier code quality suggestion made here:
http://sourceware.org/ml/libc-ports/2009-03/msg00036.html
and are therefore a little bit more extensive than the minimum
required.
Finally a new name has been defined for the dynamic linker so that
2008-NaN and legacy-NaN binaries can coexist on a single system that
supports dual-mode operation and that a legacy dynamic linker that
does not support verifying the 2008-NaN ELF file header flag is not
chosen to interpret a 2008-NaN binary by accident.
2. Floating environment support.
IEEE 754-2008 features are controlled in the Floating-Point Control
and Status (FCSR) register and updates are needed to floating
environment support so that the 2008-NaN flag is set correctly and
the kernel default, inferred from the 2008-NaN ELF file header flag
at the time an executable is loaded, respected.
As the NaN encoding format is a property of GCC code generation that is
both a user-selected GCC configuration default and can be overridden
with GCC options, code that needs to know what NaN encoding standard it
has been configured for checks for the __mips_nan2008 macro that is
defined internally by GCC whenever the 2008-NaN mode has been selected.
This mode is determined at the glibc configuration time and therefore a
few consistency checks have been added to catch cases where compilation
flags have been overridden by the user.
The 2008 NaN set of features relies on kernel support as the in-kernel
floating-point emulator needs to be aware of the NaN encoding used even
on hard-float processors and configure the FPU context according to the
value of the 2008 NaN ELF file header flag of the executable being
started. As at this time work on kernel support is still in progress
and the relevant changes have not made their way yet to linux.org master
repository.
Therefore the minimum version supported has been artificially set to
10.0.0 so that 2008-NaN code is not accidentally run on a Linux kernel
that does not suppport it. It is anticipated that the version is
adjusted later on to the actual initial linux.org kernel version to
support this feature. Legacy NaN encoding support is unaffected, older
kernel versions remain supported.
[1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer
Society, IEEE Std 754-2008, 29 August 2008
[2] "MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS32 Architecture", MIPS Technologies, Inc., Document Number:
MD00082, Revision 3.50, September 20, 2012
[3] "MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS64 Architecture", MIPS Technologies, Inc., Document Number:
MD00083, Revision 3.50, September 20, 2012
2013-09-18 20:04:27 +00:00
|
|
|
#if ((defined __mips_nan2008 && !defined HAVE_MIPS_NAN2008) \
|
|
|
|
|| (!defined __mips_nan2008 && defined HAVE_MIPS_NAN2008))
|
|
|
|
# error "Configuration inconsistency: __mips_nan2008 != HAVE_MIPS_NAN2008, overridden CFLAGS?"
|
|
|
|
#endif
|
|
|
|
#ifdef __mips_nan2008
|
|
|
|
# define ELF_MACHINE_NAN2008 EF_MIPS_NAN2008
|
|
|
|
#else
|
|
|
|
# define ELF_MACHINE_NAN2008 0
|
|
|
|
#endif
|
|
|
|
|
2000-10-20 17:04:28 +00:00
|
|
|
/* Return nonzero iff ELF header is compatible with the running host. */
|
2002-02-08 18:56:57 +00:00
|
|
|
static inline int __attribute_used__
|
2000-10-20 17:04:28 +00:00
|
|
|
elf_machine_matches_host (const ElfW(Ehdr) *ehdr)
|
1996-07-26 04:37:17 +00:00
|
|
|
{
|
2004-11-24 04:36:11 +00:00
|
|
|
#if _MIPS_SIM == _ABIO32 || _MIPS_SIM == _ABIN32
|
2003-03-14 08:43:13 +00:00
|
|
|
/* Don't link o32 and n32 together. */
|
2004-11-24 04:36:11 +00:00
|
|
|
if (((ehdr->e_flags & EF_MIPS_ABI2) != 0) != (_MIPS_SIM == _ABIN32))
|
2003-03-14 08:43:13 +00:00
|
|
|
return 0;
|
|
|
|
#endif
|
|
|
|
|
MIPS: IEEE 754-2008 NaN encoding support
It has been a long practice for software using IEEE 754 floating-point
arithmetic run on MIPS processors to use an encoding of Not-a-Number
(NaN) data different to one used by software run on other processors.
And as of IEEE 754-2008 revision [1] this encoding does not follow one
recommended in the standard, as specified in section 6.2.1, where it
is stated that quiet NaNs should have the first bit (d1) of their
significand set to 1 while signalling NaNs should have that bit set to
0, but MIPS software interprets the two bits in the opposite manner.
As from revision 3.50 [2][3] the MIPS Architecture provides for
processors that support the IEEE 754-2008 preferred NaN encoding format.
As the two formats (further referred to as "legacy NaN" and "2008 NaN")
are incompatible to each other, tools have to provide support for the
two formats to help people avoid using incompatible binary modules.
The change is comprised of two functional groups of features, both of
which are required for correct support.
1. Dynamic linker support.
To enforce the NaN encoding requirement in dynamic linking a new ELF
file header flag has been defined. This flag is set for 2008-NaN
shared modules and executables and clear for legacy-NaN ones. The
dynamic linker silently ignores any incompatible modules it
encounters in dependency processing.
To avoid unnecessary processing of incompatible modules in the
presence of a shared module cache, a set of new cache flags has been
defined to mark 2008-NaN modules for the three ABIs supported.
Changes to sysdeps/unix/sysv/linux/mips/readelflib.c have been made
following an earlier code quality suggestion made here:
http://sourceware.org/ml/libc-ports/2009-03/msg00036.html
and are therefore a little bit more extensive than the minimum
required.
Finally a new name has been defined for the dynamic linker so that
2008-NaN and legacy-NaN binaries can coexist on a single system that
supports dual-mode operation and that a legacy dynamic linker that
does not support verifying the 2008-NaN ELF file header flag is not
chosen to interpret a 2008-NaN binary by accident.
2. Floating environment support.
IEEE 754-2008 features are controlled in the Floating-Point Control
and Status (FCSR) register and updates are needed to floating
environment support so that the 2008-NaN flag is set correctly and
the kernel default, inferred from the 2008-NaN ELF file header flag
at the time an executable is loaded, respected.
As the NaN encoding format is a property of GCC code generation that is
both a user-selected GCC configuration default and can be overridden
with GCC options, code that needs to know what NaN encoding standard it
has been configured for checks for the __mips_nan2008 macro that is
defined internally by GCC whenever the 2008-NaN mode has been selected.
This mode is determined at the glibc configuration time and therefore a
few consistency checks have been added to catch cases where compilation
flags have been overridden by the user.
The 2008 NaN set of features relies on kernel support as the in-kernel
floating-point emulator needs to be aware of the NaN encoding used even
on hard-float processors and configure the FPU context according to the
value of the 2008 NaN ELF file header flag of the executable being
started. As at this time work on kernel support is still in progress
and the relevant changes have not made their way yet to linux.org master
repository.
Therefore the minimum version supported has been artificially set to
10.0.0 so that 2008-NaN code is not accidentally run on a Linux kernel
that does not suppport it. It is anticipated that the version is
adjusted later on to the actual initial linux.org kernel version to
support this feature. Legacy NaN encoding support is unaffected, older
kernel versions remain supported.
[1] "IEEE Standard for Floating-Point Arithmetic", IEEE Computer
Society, IEEE Std 754-2008, 29 August 2008
[2] "MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS32 Architecture", MIPS Technologies, Inc., Document Number:
MD00082, Revision 3.50, September 20, 2012
[3] "MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS64 Architecture", MIPS Technologies, Inc., Document Number:
MD00083, Revision 3.50, September 20, 2012
2013-09-18 20:04:27 +00:00
|
|
|
/* Don't link 2008-NaN and legacy-NaN objects together. */
|
|
|
|
if ((ehdr->e_flags & EF_MIPS_NAN2008) != ELF_MACHINE_NAN2008)
|
|
|
|
return 0;
|
|
|
|
|
Add support for MIPS O32 FPXX and .MIPS.abiflags
* elf/elf.h (PT_MIPS_ABIFLAGS): Define.
(Elf_MIPS_ABIFlags_v0): New structure.
(EF_MIPS_FP64): Define.
(MIPS_AFL_REG_NONE, MIPS_AFL_REG_32, MIPS_AFL_REG_64): Likewise.
(MIPS_AFL_REG_128, MIPS_AFL_ASE_DSP, MIPS_AFL_ASE_DSP64): Likewise.
(MIPS_AFL_ASE_DSPR2, MIPS_AFL_ASE_EVA, MIPS_AFL_ASE_MCU): Likewise.
(MIPS_AFL_ASE_MDMX, MIPS_AFL_ASE_MIPS3D, MIPS_AFL_ASE_MT): Likewise.
(MIPS_AFL_ASE_SMARTMIPS, MIPS_AFL_ASE_VIRT): Likewise.
(MIPS_AFL_ASE_VIRT64, MIPS_AFL_ASE_MSA, MIPS_AFL_ASE_MSA64): Likewise.
(MIPS_AFL_ASE_MIPS16, MIPS_AFL_ASE_MICROMIPS): Likewise.
(MIPS_AFL_ASE_XPA, MIPS_AFL_EXT_XLR, MIPS_AFL_EXT_OCTEON2): Likewise.
(MIPS_AFL_EXT_OCTEONP, MIPS_AFL_EXT_LOONGSON_3A): Likewise.
(MIPS_AFL_EXT_OCTEON, MIPS_AFL_EXT_5900, MIPS_AFL_EXT_4010): Likewise.
(MIPS_AFL_EXT_4100, MIPS_AFL_EXT_3900, MIPS_AFL_EXT_10000): Likewise.
(MIPS_AFL_EXT_SB1, MIPS_AFL_EXT_4111, MIPS_AFL_EXT_4120): Likewise.
(MIPS_AFL_EXT_5400, MIPS_AFL_EXT_5500): Likewise.
(MIPS_AFL_EXT_LOONGSON_2E, MIPS_AFL_EXT_LOONGSON_2F): Likewise.
(Val_GNU_MIPS_ABI_FP_ANY, Val_GNU_MIPS_ABI_FP_DOUBLE): New enum values.
(Val_GNU_MIPS_ABI_FP_SINGLE, Val_GNU_MIPS_ABI_FP_SOFT): Likewise.
(Val_GNU_MIPS_ABI_FP_OLD_64, Val_GNU_MIPS_ABI_FP_XX): Likewise.
(Val_GNU_MIPS_ABI_FP_64, Val_GNU_MIPS_ABI_FP_64A): Likewise.
(Val_GNU_MIPS_ABI_FP_MAX): Likewise.
* sysdeps/mips/Makefile [subdir=elf]: Add tst-abi-interlink,
tst-mode-switch-1, tst-mode-switch-2, tst-mode-switch-3 tests.
* sysdeps/mips/bits/linkmap.h (struct link_map_machine): Add fpmode
field.
* sysdeps/mips/dl-machine.h (elf_machine_matches_host): Reject
EF_MIPS_FP64.
* sysdeps/mips/dl-machine-reject-phdr.h: New file.
* sysdeps/mips/tst-abi-fp32mod.c: Likewise.
* sysdeps/mips/tst-abi-fpxxmod.c: Likewise.
* sysdeps/mips/tst-abi-fpxxomod.c: Likewise.
* sysdeps/mips/tst-abi-fp64mod.c: Likewise.
* sysdeps/mips/tst-abi-fp64amod.c: Likewise.
* sysdeps/mips/tst-abi-interlink.c: Likewise.
* sysdeps/mips/tst-mode-switch-1.c: Likewise.
* sysdeps/mips/tst-mode-switch-2.c: Likewise.
* sysdeps/mips/tst-mode-switch-3.c: Likewise.
* sysdeps/unix/sysv/linux/mips/configure.ac (o32-fpabi): Define to
record the current FP ABI extension.
(mips-mode-switch): Define to show if kernel headers support mode
switching.
* sysdeps/unix/sysv/linux/mips/configure: Regenerate.
* sysdeps/unix/sysv/linux/mips/ldsodefs.h: Increase maximum
supported SYSV ABI version to 3.
* sysdeps/unix/sysv/linux/mips/libc-abis: Add new MIPS_O32_FP64
feature.
2014-05-31 23:16:25 +00:00
|
|
|
/* Ensure that the old O32 FP64 ABI is never loaded, it is not supported
|
|
|
|
on linux. */
|
|
|
|
if (ehdr->e_flags & EF_MIPS_FP64)
|
|
|
|
return 0;
|
|
|
|
|
2000-10-20 17:04:28 +00:00
|
|
|
switch (ehdr->e_machine)
|
1996-07-26 04:37:17 +00:00
|
|
|
{
|
|
|
|
case EM_MIPS:
|
2000-01-10 17:34:40 +00:00
|
|
|
case EM_MIPS_RS3_LE:
|
1996-07-26 04:37:17 +00:00
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline ElfW(Addr) *
|
|
|
|
elf_mips_got_from_gpreg (ElfW(Addr) gpreg)
|
|
|
|
{
|
|
|
|
/* FIXME: the offset of gp from GOT may be system-dependent. */
|
2000-04-17 21:22:59 +00:00
|
|
|
return (ElfW(Addr) *) (gpreg - OFFSET_GP_GOT);
|
1996-07-26 04:37:17 +00:00
|
|
|
}
|
1997-06-21 02:00:23 +00:00
|
|
|
|
1999-11-23 15:49:22 +00:00
|
|
|
/* Return the link-time address of _DYNAMIC. Conveniently, this is the
|
|
|
|
first element of the GOT. This must be inlined in a function which
|
2003-03-14 08:43:13 +00:00
|
|
|
uses global data. We assume its $gp points to the primary GOT. */
|
1999-11-23 15:49:22 +00:00
|
|
|
static inline ElfW(Addr)
|
|
|
|
elf_machine_dynamic (void)
|
1996-07-26 04:37:17 +00:00
|
|
|
{
|
1999-11-23 15:49:22 +00:00
|
|
|
register ElfW(Addr) gp __asm__ ("$28");
|
1999-11-23 15:57:26 +00:00
|
|
|
return *elf_mips_got_from_gpreg (gp);
|
1996-07-26 04:37:17 +00:00
|
|
|
}
|
|
|
|
|
2003-03-14 08:43:13 +00:00
|
|
|
#define STRINGXP(X) __STRING(X)
|
|
|
|
#define STRINGXV(X) STRINGV_(X)
|
|
|
|
#define STRINGV_(...) # __VA_ARGS__
|
1996-07-26 04:37:17 +00:00
|
|
|
|
|
|
|
/* Return the run-time load address of the shared object. */
|
|
|
|
static inline ElfW(Addr)
|
|
|
|
elf_machine_load_address (void)
|
|
|
|
{
|
|
|
|
ElfW(Addr) addr;
|
2013-02-27 23:45:07 +00:00
|
|
|
#ifndef __mips16
|
1996-07-26 04:37:17 +00:00
|
|
|
asm (" .set noreorder\n"
|
2003-03-14 08:43:13 +00:00
|
|
|
" " STRINGXP (PTR_LA) " %0, 0f\n"
|
2015-08-18 21:52:22 +00:00
|
|
|
# if !defined __mips_isa_rev || __mips_isa_rev < 6
|
2003-03-14 08:43:13 +00:00
|
|
|
" bltzal $0, 0f\n"
|
1996-07-26 04:37:17 +00:00
|
|
|
" nop\n"
|
2003-03-14 08:43:13 +00:00
|
|
|
"0: " STRINGXP (PTR_SUBU) " %0, $31, %0\n"
|
2015-01-05 17:39:33 +00:00
|
|
|
# else
|
|
|
|
"0: addiupc $31, 0\n"
|
|
|
|
" " STRINGXP (PTR_SUBU) " %0, $31, %0\n"
|
|
|
|
# endif
|
1996-07-26 04:37:17 +00:00
|
|
|
" .set reorder\n"
|
1997-07-12 23:22:49 +00:00
|
|
|
: "=r" (addr)
|
|
|
|
: /* No inputs */
|
|
|
|
: "$31");
|
2013-02-27 23:45:07 +00:00
|
|
|
#else
|
|
|
|
ElfW(Addr) tmp;
|
|
|
|
asm (" .set noreorder\n"
|
|
|
|
" move %1,$gp\n"
|
|
|
|
" lw %1,%%got(0f)(%1)\n"
|
|
|
|
"0: .fill 0\n" /* Clear the ISA bit on 0:. */
|
|
|
|
" la %0,0b\n"
|
|
|
|
" addiu %1,%%lo(0b)\n"
|
|
|
|
" subu %0,%1\n"
|
|
|
|
" .set reorder\n"
|
|
|
|
: "=d" (addr), "=d" (tmp)
|
|
|
|
: /* No inputs */);
|
|
|
|
#endif
|
1996-07-26 04:37:17 +00:00
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
2000-04-15 03:45:10 +00:00
|
|
|
/* The MSB of got[1] of a gnu object is set to identify gnu objects. */
|
2004-11-24 04:36:11 +00:00
|
|
|
#if _MIPS_SIM == _ABI64
|
2003-03-20 07:54:21 +00:00
|
|
|
# define ELF_MIPS_GNU_GOT1_MASK 0x8000000000000000L
|
|
|
|
#else
|
|
|
|
# define ELF_MIPS_GNU_GOT1_MASK 0x80000000L
|
|
|
|
#endif
|
2000-10-18 10:21:16 +00:00
|
|
|
|
2000-09-18 16:40:35 +00:00
|
|
|
/* We can't rely on elf_machine_got_rel because _dl_object_relocation_scope
|
|
|
|
fiddles with global data. */
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
#define ELF_MACHINE_BEFORE_RTLD_RELOC(bootstrap_map, dynamic_info) \
|
2000-09-18 16:40:35 +00:00
|
|
|
do { \
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
struct link_map *map = bootstrap_map; \
|
2000-09-18 16:40:35 +00:00
|
|
|
ElfW(Sym) *sym; \
|
|
|
|
ElfW(Addr) *got; \
|
|
|
|
int i, n; \
|
|
|
|
\
|
|
|
|
got = (ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]); \
|
|
|
|
\
|
|
|
|
if (__builtin_expect (map->l_addr == 0, 1)) \
|
2002-01-29 02:58:00 +00:00
|
|
|
break; \
|
2000-09-18 16:40:35 +00:00
|
|
|
\
|
|
|
|
/* got[0] is reserved. got[1] is also reserved for the dynamic object \
|
|
|
|
generated by gnu ld. Skip these reserved entries from \
|
|
|
|
relocation. */ \
|
|
|
|
i = (got[1] & ELF_MIPS_GNU_GOT1_MASK)? 2 : 1; \
|
|
|
|
n = map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val; \
|
|
|
|
\
|
2000-11-02 09:32:30 +00:00
|
|
|
/* Add the run-time displacement to all local got entries. */ \
|
2000-09-18 16:40:35 +00:00
|
|
|
while (i < n) \
|
|
|
|
got[i++] += map->l_addr; \
|
|
|
|
\
|
|
|
|
/* Handle global got entries. */ \
|
|
|
|
got += n; \
|
|
|
|
sym = (ElfW(Sym) *) D_PTR(map, l_info[DT_SYMTAB]) \
|
|
|
|
+ map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val; \
|
|
|
|
i = (map->l_info[DT_MIPS (SYMTABNO)]->d_un.d_val \
|
|
|
|
- map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val); \
|
|
|
|
\
|
|
|
|
while (i--) \
|
|
|
|
{ \
|
|
|
|
if (sym->st_shndx == SHN_UNDEF || sym->st_shndx == SHN_COMMON) \
|
elf: Unify symbol address run-time calculation [BZ #19818]
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2018-04-04 22:09:37 +00:00
|
|
|
*got = SYMBOL_ADDRESS (map, sym, true); \
|
2000-09-18 16:40:35 +00:00
|
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC \
|
|
|
|
&& *got != sym->st_value) \
|
|
|
|
*got += map->l_addr; \
|
|
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_SECTION) \
|
|
|
|
{ \
|
|
|
|
if (sym->st_other == 0) \
|
|
|
|
*got += map->l_addr; \
|
|
|
|
} \
|
|
|
|
else \
|
elf: Unify symbol address run-time calculation [BZ #19818]
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2018-04-04 22:09:37 +00:00
|
|
|
*got = SYMBOL_ADDRESS (map, sym, true); \
|
2000-09-18 16:40:35 +00:00
|
|
|
\
|
|
|
|
got++; \
|
|
|
|
sym++; \
|
|
|
|
} \
|
|
|
|
} while(0)
|
|
|
|
|
|
|
|
|
1996-07-26 04:37:17 +00:00
|
|
|
/* Mask identifying addresses reserved for the user program,
|
|
|
|
where the dynamic linker should not map anything. */
|
1997-07-12 23:22:49 +00:00
|
|
|
#define ELF_MACHINE_USER_ADDRESS_MASK 0x80000000UL
|
1996-07-26 04:37:17 +00:00
|
|
|
|
1997-06-21 02:00:23 +00:00
|
|
|
|
1996-07-26 04:37:17 +00:00
|
|
|
/* Initial entry point code for the dynamic linker.
|
|
|
|
The C function `_dl_start' is the real entry point;
|
1997-07-12 23:22:49 +00:00
|
|
|
its return value is the user program's entry point.
|
|
|
|
Note how we have to be careful about two things:
|
|
|
|
|
|
|
|
1) That we allocate a minimal stack of 24 bytes for
|
|
|
|
every function call, the MIPS ABI states that even
|
|
|
|
if all arguments are passed in registers the procedure
|
|
|
|
called can use the 16 byte area pointed to by $sp
|
|
|
|
when it is called to store away the arguments passed
|
|
|
|
to it.
|
|
|
|
|
2012-02-15 22:29:31 +00:00
|
|
|
2) That under Unix the entry is named __start
|
1997-07-12 23:22:49 +00:00
|
|
|
and not just plain _start. */
|
1996-07-26 04:37:17 +00:00
|
|
|
|
2013-02-27 23:45:07 +00:00
|
|
|
#ifndef __mips16
|
2015-08-18 21:52:22 +00:00
|
|
|
# if !defined __mips_isa_rev || __mips_isa_rev < 6
|
2015-01-05 17:39:33 +00:00
|
|
|
# define LCOFF STRINGXP(.Lcof2)
|
|
|
|
# define LOAD_31 STRINGXP(bltzal $8) "," STRINGXP(.Lcof2)
|
|
|
|
# else
|
|
|
|
# define LCOFF STRINGXP(.Lcof1)
|
|
|
|
# define LOAD_31 "addiupc $31, 0"
|
|
|
|
# endif
|
2013-02-27 23:45:07 +00:00
|
|
|
# define RTLD_START asm (\
|
2005-03-28 07:47:27 +00:00
|
|
|
".text\n\
|
|
|
|
" _RTLD_PROLOGUE(ENTRY_POINT) "\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXV(SETUP_GPX($25)) "\n\
|
|
|
|
" STRINGXV(SETUP_GPX64($18,$25)) "\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
# i386 ABI book says that the first entry of GOT holds\n\
|
|
|
|
# the address of the dynamic structure. Though MIPS ABI\n\
|
|
|
|
# doesn't say nothing about this, I emulate this here.\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_LA) " $4, _DYNAMIC\n\
|
2000-04-17 21:22:59 +00:00
|
|
|
# Subtract OFFSET_GP_GOT\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_S) " $4, -0x7ff0($28)\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
move $4, $29\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_SUBIU) " $29, 16\n\
|
2000-09-18 16:40:35 +00:00
|
|
|
\n\
|
2015-01-05 17:39:33 +00:00
|
|
|
" STRINGXP(PTR_LA) " $8, " LCOFF "\n\
|
|
|
|
.Lcof1: " LOAD_31 "\n\
|
|
|
|
.Lcof2: " STRINGXP(PTR_SUBU) " $8, $31, $8\n\
|
2000-09-18 16:40:35 +00:00
|
|
|
\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_LA) " $25, _dl_start\n\
|
|
|
|
" STRINGXP(PTR_ADDU) " $25, $8\n\
|
2000-09-18 16:40:35 +00:00
|
|
|
jalr $25\n\
|
|
|
|
\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_ADDIU) " $29, 16\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
# Get the value of label '_dl_start_user' in t9 ($25).\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_LA) " $25, _dl_start_user\n\
|
2005-03-28 07:47:27 +00:00
|
|
|
" _RTLD_EPILOGUE(ENTRY_POINT) "\
|
|
|
|
\n\
|
|
|
|
\n\
|
|
|
|
" _RTLD_PROLOGUE(_dl_start_user) "\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(SETUP_GP) "\n\
|
|
|
|
" STRINGXV(SETUP_GP64($18,_dl_start_user)) "\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
move $16, $28\n\
|
2000-03-31 12:35:12 +00:00
|
|
|
# Save the user entry point address in a saved register.\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
move $17, $2\n\
|
|
|
|
# See if we were run as a command with the executable file\n\
|
|
|
|
# name as an extra leading argument.\n\
|
|
|
|
lw $2, _dl_skip_args\n\
|
|
|
|
beq $2, $0, 1f\n\
|
|
|
|
# Load the original argument count.\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_L) " $4, 0($29)\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
# Subtract _dl_skip_args from it.\n\
|
|
|
|
subu $4, $2\n\
|
|
|
|
# Adjust the stack pointer to skip _dl_skip_args words.\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
sll $2, " STRINGXP (PTRLOG) "\n\
|
|
|
|
" STRINGXP(PTR_ADDU) " $29, $2\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
# Save back the modified argument count.\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_S) " $4, 0($29)\n\
|
2000-03-31 12:35:12 +00:00
|
|
|
1: # Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env) \n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_L) " $4, _rtld_local\n\
|
|
|
|
" STRINGXP(PTR_L) /* or lw??? fixme */ " $5, 0($29)\n\
|
|
|
|
" STRINGXP(PTR_LA) " $6, " STRINGXP (PTRSIZE) "($29)\n\
|
|
|
|
sll $7, $5, " STRINGXP (PTRLOG) "\n\
|
|
|
|
" STRINGXP(PTR_ADDU) " $7, $7, $6\n\
|
|
|
|
" STRINGXP(PTR_ADDU) " $7, $7, " STRINGXP (PTRSIZE) " \n\
|
2014-11-04 23:26:39 +00:00
|
|
|
# Make sure the stack pointer is aligned for _dl_init.\n\
|
2005-03-28 07:47:27 +00:00
|
|
|
and $2, $29, -2 * " STRINGXP(SZREG) "\n\
|
2012-07-06 19:12:21 +00:00
|
|
|
move $8, $29\n\
|
2005-03-28 07:47:27 +00:00
|
|
|
" STRINGXP(PTR_SUBIU) " $29, $2, 32\n\
|
2012-07-06 19:12:21 +00:00
|
|
|
" STRINGXP(PTR_S) " $8, (32 - " STRINGXP(SZREG) ")($29)\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(SAVE_GP(16)) "\n\
|
2000-03-31 12:35:12 +00:00
|
|
|
# Call the function to run the initializers.\n\
|
2014-11-04 23:26:39 +00:00
|
|
|
jal _dl_init\n\
|
2005-03-28 07:47:27 +00:00
|
|
|
# Restore the stack pointer for _start.\n\
|
2012-07-06 19:12:21 +00:00
|
|
|
" STRINGXP(PTR_L) " $29, (32 - " STRINGXP(SZREG) ")($29)\n\
|
2000-06-14 13:13:58 +00:00
|
|
|
# Pass our finalizer function to the user in $2 as per ELF ABI.\n\
|
2003-03-14 08:43:13 +00:00
|
|
|
" STRINGXP(PTR_LA) " $2, _dl_fini\n\
|
1996-07-26 04:37:17 +00:00
|
|
|
# Jump to the user entry point.\n\
|
2000-06-18 17:20:01 +00:00
|
|
|
move $25, $17\n\
|
2004-04-15 14:08:16 +00:00
|
|
|
jr $25\n\t"\
|
2005-03-28 07:47:27 +00:00
|
|
|
_RTLD_EPILOGUE(_dl_start_user)\
|
2000-09-18 16:40:35 +00:00
|
|
|
".previous"\
|
1997-07-22 00:03:10 +00:00
|
|
|
);
|
1997-06-21 02:00:23 +00:00
|
|
|
|
2013-02-27 23:45:07 +00:00
|
|
|
#else /* __mips16 */
|
|
|
|
/* MIPS16 version. We currently only support O32 under MIPS16; the proper
|
|
|
|
assembly preprocessor abstractions will need to be added if other ABIs
|
|
|
|
are to be supported. */
|
|
|
|
|
|
|
|
# define RTLD_START asm (\
|
|
|
|
".text\n\
|
|
|
|
.set mips16\n\
|
|
|
|
" _RTLD_PROLOGUE (ENTRY_POINT) "\
|
|
|
|
# Construct GP value in $3.\n\
|
|
|
|
li $3, %hi(_gp_disp)\n\
|
|
|
|
addiu $4, $pc, %lo(_gp_disp)\n\
|
|
|
|
sll $3, 16\n\
|
|
|
|
addu $3, $4\n\
|
|
|
|
move $28, $3\n\
|
|
|
|
lw $4, %got(_DYNAMIC)($3)\n\
|
|
|
|
sw $4, -0x7ff0($3)\n\
|
|
|
|
move $4, $sp\n\
|
|
|
|
addiu $sp, -16\n\
|
|
|
|
# _dl_start() is sufficiently near to use pc-relative\n\
|
|
|
|
# load address.\n\
|
|
|
|
la $3, _dl_start\n\
|
|
|
|
move $25, $3\n\
|
|
|
|
jalr $3\n\
|
|
|
|
addiu $sp, 16\n\
|
|
|
|
" _RTLD_EPILOGUE (ENTRY_POINT) "\
|
|
|
|
\n\
|
|
|
|
\n\
|
|
|
|
" _RTLD_PROLOGUE (_dl_start_user) "\
|
|
|
|
li $16, %hi(_gp_disp)\n\
|
|
|
|
addiu $4, $pc, %lo(_gp_disp)\n\
|
|
|
|
sll $16, 16\n\
|
|
|
|
addu $16, $4\n\
|
|
|
|
move $17, $2\n\
|
|
|
|
move $28, $16\n\
|
|
|
|
lw $4, %got(_dl_skip_args)($16)\n\
|
|
|
|
lw $4, 0($4)\n\
|
|
|
|
beqz $4, 1f\n\
|
|
|
|
# Load the original argument count.\n\
|
|
|
|
lw $5, 0($sp)\n\
|
|
|
|
# Subtract _dl_skip_args from it.\n\
|
|
|
|
subu $5, $4\n\
|
|
|
|
# Adjust the stack pointer to skip _dl_skip_args words.\n\
|
|
|
|
sll $4, " STRINGXP (PTRLOG) "\n\
|
|
|
|
move $6, $sp\n\
|
|
|
|
addu $6, $4\n\
|
|
|
|
move $sp, $6\n\
|
|
|
|
# Save back the modified argument count.\n\
|
|
|
|
sw $5, 0($sp)\n\
|
|
|
|
1: # Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env) \n\
|
|
|
|
lw $4, %got(_rtld_local)($16)\n\
|
|
|
|
lw $4, 0($4)\n\
|
|
|
|
lw $5, 0($sp)\n\
|
|
|
|
addiu $6, $sp, " STRINGXP (PTRSIZE) "\n\
|
|
|
|
sll $7, $5, " STRINGXP (PTRLOG) "\n\
|
|
|
|
addu $7, $6\n\
|
|
|
|
addu $7, " STRINGXP (PTRSIZE) "\n\
|
2014-11-04 23:26:39 +00:00
|
|
|
# Make sure the stack pointer is aligned for _dl_init.\n\
|
2013-02-27 23:45:07 +00:00
|
|
|
li $2, 2 * " STRINGXP (SZREG) "\n\
|
|
|
|
neg $2, $2\n\
|
|
|
|
move $3, $sp\n\
|
|
|
|
and $2, $3\n\
|
|
|
|
sw $3, -" STRINGXP (SZREG) "($2)\n\
|
|
|
|
addiu $2, -32\n\
|
|
|
|
move $sp, $2\n\
|
|
|
|
sw $16, 16($sp)\n\
|
|
|
|
# Call the function to run the initializers.\n\
|
2014-11-04 23:26:39 +00:00
|
|
|
lw $2, %call16(_dl_init)($16)\n\
|
2013-02-27 23:45:07 +00:00
|
|
|
move $25, $2\n\
|
|
|
|
jalr $2\n\
|
|
|
|
# Restore the stack pointer for _start.\n\
|
|
|
|
lw $2, 32-" STRINGXP (SZREG) "($sp)\n\
|
|
|
|
move $sp, $2\n\
|
|
|
|
move $28, $16\n\
|
|
|
|
# Pass our finalizer function to the user in $2 as per ELF ABI.\n\
|
|
|
|
lw $2, %call16(_dl_fini)($16)\n\
|
|
|
|
# Jump to the user entry point.\n\
|
|
|
|
move $25, $17\n\
|
|
|
|
jr $17\n\t"\
|
|
|
|
_RTLD_EPILOGUE (_dl_start_user)\
|
|
|
|
".previous"\
|
|
|
|
);
|
|
|
|
|
|
|
|
#endif /* __mips16 */
|
|
|
|
|
2005-03-28 07:47:27 +00:00
|
|
|
/* Names of the architecture-specific auditing callback functions. */
|
|
|
|
# if _MIPS_SIM == _ABIO32
|
|
|
|
# define ARCH_LA_PLTENTER mips_o32_gnu_pltenter
|
|
|
|
# define ARCH_LA_PLTEXIT mips_o32_gnu_pltexit
|
|
|
|
# elif _MIPS_SIM == _ABIN32
|
|
|
|
# define ARCH_LA_PLTENTER mips_n32_gnu_pltenter
|
|
|
|
# define ARCH_LA_PLTEXIT mips_n32_gnu_pltexit
|
|
|
|
# else
|
|
|
|
# define ARCH_LA_PLTENTER mips_n64_gnu_pltenter
|
|
|
|
# define ARCH_LA_PLTEXIT mips_n64_gnu_pltexit
|
|
|
|
# endif
|
|
|
|
|
2012-02-15 22:20:07 +00:00
|
|
|
/* We define an initialization function. This is called very early in
|
|
|
|
_dl_sysdep_start. */
|
|
|
|
#define DL_PLATFORM_INIT dl_platform_init ()
|
|
|
|
|
|
|
|
static inline void __attribute__ ((unused))
|
|
|
|
dl_platform_init (void)
|
|
|
|
{
|
|
|
|
if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0')
|
|
|
|
/* Avoid an empty string which would disturb us. */
|
|
|
|
GLRO(dl_platform) = NULL;
|
|
|
|
}
|
|
|
|
|
2008-10-01 13:28:14 +00:00
|
|
|
/* For a non-writable PLT, rewrite the .got.plt entry at RELOC_ADDR to
|
|
|
|
point at the symbol with address VALUE. For a writable PLT, rewrite
|
|
|
|
the corresponding PLT entry instead. */
|
|
|
|
static inline ElfW(Addr)
|
|
|
|
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
|
2017-06-14 01:17:25 +00:00
|
|
|
const ElfW(Sym) *refsym, const ElfW(Sym) *sym,
|
2008-10-01 13:28:14 +00:00
|
|
|
const ElfW(Rel) *reloc,
|
|
|
|
ElfW(Addr) *reloc_addr, ElfW(Addr) value)
|
|
|
|
{
|
|
|
|
return *reloc_addr = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline ElfW(Addr)
|
|
|
|
elf_machine_plt_value (struct link_map *map, const ElfW(Rel) *reloc,
|
|
|
|
ElfW(Addr) value)
|
|
|
|
{
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
1997-06-21 02:00:23 +00:00
|
|
|
#endif /* !dl_machine_h */
|
1996-07-26 04:37:17 +00:00
|
|
|
|
2005-03-28 07:47:27 +00:00
|
|
|
#ifdef RESOLVE_MAP
|
1996-07-28 23:43:36 +00:00
|
|
|
|
2007-01-08 15:34:50 +00:00
|
|
|
/* Perform a relocation described by R_INFO at the location pointed to
|
|
|
|
by RELOC_ADDR. SYM is the relocation symbol specified by R_INFO and
|
1996-07-28 23:43:36 +00:00
|
|
|
MAP is the object containing the reloc. */
|
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline void
|
2005-03-28 07:47:27 +00:00
|
|
|
__attribute__ ((always_inline))
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_reloc (struct link_map *map, struct r_scope_elem *scope[],
|
|
|
|
ElfW(Addr) r_info, const ElfW(Sym) *sym,
|
|
|
|
const struct r_found_version *version, void *reloc_addr,
|
|
|
|
ElfW(Addr) r_addend, int inplace_p)
|
1996-07-28 23:43:36 +00:00
|
|
|
{
|
2007-01-08 15:34:50 +00:00
|
|
|
const unsigned long int r_type = ELFW(R_TYPE) (r_info);
|
|
|
|
ElfW(Addr) *addr_field = (ElfW(Addr) *) reloc_addr;
|
2001-08-24 08:43:21 +00:00
|
|
|
|
2002-02-01 01:32:06 +00:00
|
|
|
#if !defined RTLD_BOOTSTRAP && !defined SHARED
|
2000-04-18 18:31:00 +00:00
|
|
|
/* This is defined in rtld.c, but nowhere in the static libc.a;
|
|
|
|
make the reference weak so static programs can still link. This
|
|
|
|
declaration cannot be done when compiling rtld.c (i.e. #ifdef
|
|
|
|
RTLD_BOOTSTRAP) because rtld.c contains the common defn for
|
|
|
|
_dl_rtld_map, which is incompatible with a weak decl in the same
|
|
|
|
file. */
|
2002-02-01 01:32:06 +00:00
|
|
|
weak_extern (GL(dl_rtld_map));
|
2000-04-18 18:31:00 +00:00
|
|
|
#endif
|
1996-07-28 23:43:36 +00:00
|
|
|
|
2001-08-24 08:43:21 +00:00
|
|
|
switch (r_type)
|
1996-07-28 23:43:36 +00:00
|
|
|
{
|
2011-09-11 11:22:32 +00:00
|
|
|
#if !defined (RTLD_BOOTSTRAP)
|
2005-03-28 09:32:04 +00:00
|
|
|
# if _MIPS_SIM == _ABI64
|
|
|
|
case R_MIPS_TLS_DTPMOD64:
|
|
|
|
case R_MIPS_TLS_DTPREL64:
|
|
|
|
case R_MIPS_TLS_TPREL64:
|
|
|
|
# else
|
|
|
|
case R_MIPS_TLS_DTPMOD32:
|
|
|
|
case R_MIPS_TLS_DTPREL32:
|
|
|
|
case R_MIPS_TLS_TPREL32:
|
|
|
|
# endif
|
|
|
|
{
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
struct link_map *sym_map = RESOLVE_MAP (map, scope, &sym, version,
|
|
|
|
r_type);
|
2005-03-28 09:32:04 +00:00
|
|
|
|
|
|
|
switch (r_type)
|
|
|
|
{
|
|
|
|
case R_MIPS_TLS_DTPMOD64:
|
|
|
|
case R_MIPS_TLS_DTPMOD32:
|
|
|
|
if (sym_map)
|
2007-01-08 15:34:50 +00:00
|
|
|
*addr_field = sym_map->l_tls_modid;
|
2005-03-28 09:32:04 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case R_MIPS_TLS_DTPREL64:
|
|
|
|
case R_MIPS_TLS_DTPREL32:
|
2007-01-08 15:34:50 +00:00
|
|
|
if (sym)
|
|
|
|
{
|
|
|
|
if (inplace_p)
|
|
|
|
r_addend = *addr_field;
|
|
|
|
*addr_field = r_addend + TLS_DTPREL_VALUE (sym);
|
|
|
|
}
|
2005-03-28 09:32:04 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case R_MIPS_TLS_TPREL32:
|
|
|
|
case R_MIPS_TLS_TPREL64:
|
2007-01-08 15:34:50 +00:00
|
|
|
if (sym)
|
|
|
|
{
|
|
|
|
CHECK_STATIC_TLS (map, sym_map);
|
|
|
|
if (inplace_p)
|
|
|
|
r_addend = *addr_field;
|
|
|
|
*addr_field = r_addend + TLS_TPREL_VALUE (sym_map, sym);
|
|
|
|
}
|
2005-03-28 09:32:04 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2004-11-24 04:36:11 +00:00
|
|
|
#if _MIPS_SIM == _ABI64
|
2003-03-14 08:43:13 +00:00
|
|
|
case (R_MIPS_64 << 8) | R_MIPS_REL32:
|
|
|
|
#else
|
1996-07-28 23:43:36 +00:00
|
|
|
case R_MIPS_REL32:
|
2003-03-14 08:43:13 +00:00
|
|
|
#endif
|
2000-11-02 09:32:30 +00:00
|
|
|
{
|
2007-01-08 15:34:50 +00:00
|
|
|
int symidx = ELFW(R_SYM) (r_info);
|
2003-03-14 08:43:13 +00:00
|
|
|
ElfW(Addr) reloc_value;
|
|
|
|
|
2007-01-08 15:34:50 +00:00
|
|
|
if (inplace_p)
|
|
|
|
/* Support relocations on mis-aligned offsets. */
|
|
|
|
__builtin_memcpy (&reloc_value, reloc_addr, sizeof (reloc_value));
|
|
|
|
else
|
|
|
|
reloc_value = r_addend;
|
2000-11-02 09:32:30 +00:00
|
|
|
|
|
|
|
if (symidx)
|
|
|
|
{
|
|
|
|
const ElfW(Word) gotsym
|
|
|
|
= (const ElfW(Word)) map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val;
|
|
|
|
|
2003-03-20 07:54:21 +00:00
|
|
|
if ((ElfW(Word))symidx < gotsym)
|
2000-11-02 09:32:30 +00:00
|
|
|
{
|
2003-03-14 08:43:13 +00:00
|
|
|
/* This wouldn't work for a symbol imported from other
|
|
|
|
libraries for which there's no GOT entry, but MIPS
|
|
|
|
requires every symbol referenced in a dynamic
|
|
|
|
relocation to have a GOT entry in the primary GOT,
|
|
|
|
so we only get here for locally-defined symbols.
|
|
|
|
For section symbols, we should *NOT* be adding
|
|
|
|
sym->st_value (per the definition of the meaning of
|
|
|
|
S in reloc expressions in the ELF64 MIPS ABI),
|
|
|
|
since it should have already been added to
|
|
|
|
reloc_value by the linker, but older versions of
|
|
|
|
GNU ld didn't add it, and newer versions don't emit
|
|
|
|
useless relocations to section symbols any more, so
|
|
|
|
it is safe to keep on adding sym->st_value, even
|
|
|
|
though it's not ABI compliant. Some day we should
|
|
|
|
bite the bullet and stop doing this. */
|
2000-11-02 09:32:30 +00:00
|
|
|
#ifndef RTLD_BOOTSTRAP
|
2002-02-01 01:32:06 +00:00
|
|
|
if (map != &GL(dl_rtld_map))
|
2000-11-02 09:32:30 +00:00
|
|
|
#endif
|
elf: Unify symbol address run-time calculation [BZ #19818]
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2018-04-04 22:09:37 +00:00
|
|
|
reloc_value += SYMBOL_ADDRESS (map, sym, true);
|
2000-11-02 09:32:30 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
#ifndef RTLD_BOOTSTRAP
|
|
|
|
const ElfW(Addr) *got
|
|
|
|
= (const ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]);
|
|
|
|
const ElfW(Word) local_gotno
|
|
|
|
= (const ElfW(Word))
|
|
|
|
map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val;
|
|
|
|
|
2003-03-14 08:43:13 +00:00
|
|
|
reloc_value += got[symidx + local_gotno - gotsym];
|
2000-11-02 09:32:30 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
1996-07-28 23:43:36 +00:00
|
|
|
#ifndef RTLD_BOOTSTRAP
|
2002-02-01 01:32:06 +00:00
|
|
|
if (map != &GL(dl_rtld_map))
|
1996-07-28 23:43:36 +00:00
|
|
|
#endif
|
2003-03-14 08:43:13 +00:00
|
|
|
reloc_value += map->l_addr;
|
|
|
|
|
|
|
|
__builtin_memcpy (reloc_addr, &reloc_value, sizeof (reloc_value));
|
2000-11-02 09:32:30 +00:00
|
|
|
}
|
1996-07-28 23:43:36 +00:00
|
|
|
break;
|
2007-01-08 15:34:50 +00:00
|
|
|
#ifndef RTLD_BOOTSTRAP
|
|
|
|
#if _MIPS_SIM == _ABI64
|
|
|
|
case (R_MIPS_64 << 8) | R_MIPS_GLOB_DAT:
|
|
|
|
#else
|
|
|
|
case R_MIPS_GLOB_DAT:
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
int symidx = ELFW(R_SYM) (r_info);
|
|
|
|
const ElfW(Word) gotsym
|
|
|
|
= (const ElfW(Word)) map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val;
|
|
|
|
|
|
|
|
if (__builtin_expect ((ElfW(Word)) symidx >= gotsym, 1))
|
|
|
|
{
|
|
|
|
const ElfW(Addr) *got
|
|
|
|
= (const ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]);
|
|
|
|
const ElfW(Word) local_gotno
|
|
|
|
= ((const ElfW(Word))
|
|
|
|
map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val);
|
|
|
|
|
|
|
|
ElfW(Addr) reloc_value = got[symidx + local_gotno - gotsym];
|
|
|
|
__builtin_memcpy (reloc_addr, &reloc_value, sizeof (reloc_value));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif
|
1996-07-28 23:43:36 +00:00
|
|
|
case R_MIPS_NONE: /* Alright, Wilbur. */
|
|
|
|
break;
|
2008-10-01 13:28:14 +00:00
|
|
|
|
|
|
|
case R_MIPS_JUMP_SLOT:
|
|
|
|
{
|
|
|
|
struct link_map *sym_map;
|
|
|
|
ElfW(Addr) value;
|
|
|
|
|
|
|
|
/* The addend for a jump slot relocation must always be zero:
|
|
|
|
calls via the PLT always branch to the symbol's address and
|
|
|
|
not to the address plus a non-zero offset. */
|
|
|
|
if (r_addend != 0)
|
|
|
|
_dl_signal_error (0, map->l_name, NULL,
|
|
|
|
"found jump slot relocation with non-zero addend");
|
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
sym_map = RESOLVE_MAP (map, scope, &sym, version, r_type);
|
elf: Unify symbol address run-time calculation [BZ #19818]
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2018-04-04 22:09:37 +00:00
|
|
|
value = SYMBOL_ADDRESS (sym_map, sym, true);
|
2008-10-01 13:28:14 +00:00
|
|
|
*addr_field = value;
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case R_MIPS_COPY:
|
|
|
|
{
|
|
|
|
const ElfW(Sym) *const refsym = sym;
|
|
|
|
struct link_map *sym_map;
|
|
|
|
ElfW(Addr) value;
|
|
|
|
|
|
|
|
/* Calculate the address of the symbol. */
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
sym_map = RESOLVE_MAP (map, scope, &sym, version, r_type);
|
elf: Unify symbol address run-time calculation [BZ #19818]
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2018-04-04 22:09:37 +00:00
|
|
|
value = SYMBOL_ADDRESS (sym_map, sym, true);
|
2008-10-01 13:28:14 +00:00
|
|
|
|
|
|
|
if (__builtin_expect (sym == NULL, 0))
|
|
|
|
/* This can happen in trace mode if an object could not be
|
|
|
|
found. */
|
|
|
|
break;
|
|
|
|
if (__builtin_expect (sym->st_size > refsym->st_size, 0)
|
|
|
|
|| (__builtin_expect (sym->st_size < refsym->st_size, 0)
|
|
|
|
&& GLRO(dl_verbose)))
|
|
|
|
{
|
|
|
|
const char *strtab;
|
|
|
|
|
|
|
|
strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
|
|
|
|
_dl_error_printf ("\
|
|
|
|
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
|
2013-05-29 16:00:20 +00:00
|
|
|
RTLD_PROGNAME, strtab + refsym->st_name);
|
2008-10-01 13:28:14 +00:00
|
|
|
}
|
|
|
|
memcpy (reloc_addr, (void *) value,
|
2017-12-01 00:33:59 +00:00
|
|
|
sym->st_size < refsym->st_size
|
|
|
|
? sym->st_size : refsym->st_size);
|
2008-10-01 13:28:14 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2004-11-24 04:36:11 +00:00
|
|
|
#if _MIPS_SIM == _ABI64
|
2003-03-14 08:43:13 +00:00
|
|
|
case R_MIPS_64:
|
|
|
|
/* For full compliance with the ELF64 ABI, one must precede the
|
|
|
|
_REL32/_64 pair of relocations with a _64 relocation, such
|
|
|
|
that the in-place addend is read as a 64-bit value. IRIX
|
|
|
|
didn't pick up on this requirement, so we treat the
|
|
|
|
_REL32/_64 relocation as a 64-bit relocation even if it's by
|
|
|
|
itself. For ABI compliance, we ignore such _64 dummy
|
|
|
|
relocations. For RELA, this may be simply removed, since
|
|
|
|
it's totally unnecessary. */
|
2007-01-08 15:34:50 +00:00
|
|
|
if (ELFW(R_SYM) (r_info) == 0)
|
2003-03-14 08:43:13 +00:00
|
|
|
break;
|
|
|
|
#endif
|
2019-02-26 02:09:18 +00:00
|
|
|
/* Fall through. */
|
1996-07-28 23:43:36 +00:00
|
|
|
default:
|
2001-08-24 08:43:21 +00:00
|
|
|
_dl_reloc_bad_type (map, r_type, 0);
|
1996-07-28 23:43:36 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-01-08 15:34:50 +00:00
|
|
|
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
|
|
|
|
MAP is the object containing the reloc. */
|
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline void
|
2007-01-08 15:34:50 +00:00
|
|
|
__attribute__ ((always_inline))
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_rel (struct link_map *map, struct r_scope_elem *scope[],
|
|
|
|
const ElfW(Rel) *reloc, const ElfW(Sym) *sym,
|
|
|
|
const struct r_found_version *version, void *const reloc_addr,
|
|
|
|
int skip_ifunc)
|
2007-01-08 15:34:50 +00:00
|
|
|
{
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_reloc (map, scope, reloc->r_info, sym, version, reloc_addr, 0, 1);
|
2007-01-08 15:34:50 +00:00
|
|
|
}
|
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline void
|
2005-03-28 07:47:27 +00:00
|
|
|
__attribute__((always_inline))
|
2001-08-24 14:53:23 +00:00
|
|
|
elf_machine_rel_relative (ElfW(Addr) l_addr, const ElfW(Rel) *reloc,
|
* elf/dynamic-link.h (elf_machine_rel, elf_machine_rela,
elf_machine_rel_relative, elf_machine_rela_relative): Don't assume
reloc_addr is aligned.
* sysdeps/alpha/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/arm/dl-machine.h (elf_machine_rel, elf_machine_rela,
elf_machine_rel_relative, elf_machine_rela_relative): Adjust.
* sysdeps/cris/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/hppa/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/i386/dl-machine.h (elf_machine_rel, elf_machine_rela,
elf_machine_rel_relative, elf_machine_rela_relative): Adjust.
* sysdeps/ia64/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/m68k/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/mips/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/powerpc/powerpc64/dl-machine.h
(elf_machine_rela_relative, elf_machine_rela): Adjust.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative):
* sysdeps/sh/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela,
elf_machine_rela_relative): Adjust.
2003-07-31 06:33:52 +00:00
|
|
|
void *const reloc_addr)
|
2001-08-24 08:43:21 +00:00
|
|
|
{
|
|
|
|
/* XXX Nothing to do. There is no relative relocation, right? */
|
|
|
|
}
|
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline void
|
2005-03-28 07:47:27 +00:00
|
|
|
__attribute__((always_inline))
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_lazy_rel (struct link_map *map, struct r_scope_elem *scope[],
|
2011-10-05 09:53:16 +00:00
|
|
|
ElfW(Addr) l_addr, const ElfW(Rel) *reloc,
|
|
|
|
int skip_ifunc)
|
1996-07-28 23:43:36 +00:00
|
|
|
{
|
2008-10-01 13:28:14 +00:00
|
|
|
ElfW(Addr) *const reloc_addr = (void *) (l_addr + reloc->r_offset);
|
|
|
|
const unsigned int r_type = ELFW(R_TYPE) (reloc->r_info);
|
|
|
|
/* Check for unexpected PLT reloc type. */
|
|
|
|
if (__builtin_expect (r_type == R_MIPS_JUMP_SLOT, 1))
|
|
|
|
{
|
|
|
|
if (__builtin_expect (map->l_mach.plt, 0) == 0)
|
|
|
|
{
|
|
|
|
/* Nothing is required here since we only support lazy
|
|
|
|
relocation in executables. */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*reloc_addr = map->l_mach.plt;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
_dl_reloc_bad_type (map, r_type, 1);
|
1996-07-28 23:43:36 +00:00
|
|
|
}
|
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline void
|
2005-03-28 07:47:27 +00:00
|
|
|
__attribute__ ((always_inline))
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_rela (struct link_map *map, struct r_scope_elem *scope[], const ElfW(Rela) *reloc,
|
2005-03-28 07:47:27 +00:00
|
|
|
const ElfW(Sym) *sym, const struct r_found_version *version,
|
2011-10-05 09:53:16 +00:00
|
|
|
void *const reloc_addr, int skip_ifunc)
|
2005-03-28 07:47:27 +00:00
|
|
|
{
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_reloc (map, scope, reloc->r_info, sym, version, reloc_addr,
|
2007-01-08 15:34:50 +00:00
|
|
|
reloc->r_addend, 0);
|
2005-03-28 07:47:27 +00:00
|
|
|
}
|
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline void
|
2005-03-28 07:47:27 +00:00
|
|
|
__attribute__((always_inline))
|
|
|
|
elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
|
|
|
|
void *const reloc_addr)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2001-07-16 22:26:12 +00:00
|
|
|
#ifndef RTLD_BOOTSTRAP
|
2000-02-12 11:27:47 +00:00
|
|
|
/* Relocate GOT. */
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline void
|
2005-03-28 07:47:27 +00:00
|
|
|
__attribute__((always_inline))
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_got_rel (struct link_map *map, struct r_scope_elem *scope[], int lazy)
|
2000-02-12 11:27:47 +00:00
|
|
|
{
|
|
|
|
ElfW(Addr) *got;
|
|
|
|
ElfW(Sym) *sym;
|
2001-07-16 22:26:12 +00:00
|
|
|
const ElfW(Half) *vernum;
|
2000-04-14 00:35:39 +00:00
|
|
|
int i, n, symidx;
|
2001-07-16 22:26:12 +00:00
|
|
|
|
2008-10-01 13:28:14 +00:00
|
|
|
#define RESOLVE_GOTSYM(sym,vernum,sym_index,reloc) \
|
2000-04-15 03:45:10 +00:00
|
|
|
({ \
|
|
|
|
const ElfW(Sym) *ref = sym; \
|
2012-11-20 00:00:35 +00:00
|
|
|
const struct r_found_version *version __attribute__ ((unused)) \
|
2011-10-05 09:53:16 +00:00
|
|
|
= vernum ? &map->l_versions[vernum[sym_index] & 0x7fff] : NULL; \
|
2005-03-28 07:47:27 +00:00
|
|
|
struct link_map *sym_map; \
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
sym_map = RESOLVE_MAP (map, scope, &ref, version, reloc); \
|
elf: Unify symbol address run-time calculation [BZ #19818]
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2018-04-04 22:09:37 +00:00
|
|
|
SYMBOL_ADDRESS (sym_map, ref, true); \
|
2000-02-12 11:27:47 +00:00
|
|
|
})
|
2001-07-16 22:26:12 +00:00
|
|
|
|
|
|
|
if (map->l_info[VERSYMIDX (DT_VERSYM)] != NULL)
|
|
|
|
vernum = (const void *) D_PTR (map, l_info[VERSYMIDX (DT_VERSYM)]);
|
|
|
|
else
|
|
|
|
vernum = NULL;
|
2000-02-12 11:27:47 +00:00
|
|
|
|
2000-03-24 15:27:37 +00:00
|
|
|
got = (ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]);
|
2000-02-12 11:27:47 +00:00
|
|
|
|
|
|
|
n = map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val;
|
2000-10-18 10:21:16 +00:00
|
|
|
/* The dynamic linker's local got entries have already been relocated. */
|
2002-02-01 01:32:06 +00:00
|
|
|
if (map != &GL(dl_rtld_map))
|
2000-04-14 00:15:38 +00:00
|
|
|
{
|
2000-10-18 10:21:16 +00:00
|
|
|
/* got[0] is reserved. got[1] is also reserved for the dynamic object
|
|
|
|
generated by gnu ld. Skip these reserved entries from relocation. */
|
|
|
|
i = (got[1] & ELF_MIPS_GNU_GOT1_MASK)? 2 : 1;
|
|
|
|
|
2000-11-02 09:32:30 +00:00
|
|
|
/* Add the run-time displacement to all local got entries if
|
2011-10-05 09:53:16 +00:00
|
|
|
needed. */
|
2000-10-18 10:21:16 +00:00
|
|
|
if (__builtin_expect (map->l_addr != 0, 0))
|
|
|
|
{
|
|
|
|
while (i < n)
|
|
|
|
got[i++] += map->l_addr;
|
|
|
|
}
|
2000-04-14 00:15:38 +00:00
|
|
|
}
|
2000-04-17 21:22:59 +00:00
|
|
|
|
2000-02-12 11:27:47 +00:00
|
|
|
/* Handle global got entries. */
|
|
|
|
got += n;
|
2000-04-15 03:45:10 +00:00
|
|
|
/* Keep track of the symbol index. */
|
|
|
|
symidx = map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val;
|
2000-04-15 04:33:57 +00:00
|
|
|
sym = (ElfW(Sym) *) D_PTR (map, l_info[DT_SYMTAB]) + symidx;
|
2000-02-12 11:27:47 +00:00
|
|
|
i = (map->l_info[DT_MIPS (SYMTABNO)]->d_un.d_val
|
|
|
|
- map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val);
|
2000-04-17 21:22:59 +00:00
|
|
|
|
|
|
|
/* This loop doesn't handle Quickstart. */
|
2000-02-12 11:27:47 +00:00
|
|
|
while (i--)
|
|
|
|
{
|
|
|
|
if (sym->st_shndx == SHN_UNDEF)
|
|
|
|
{
|
2008-10-01 13:28:14 +00:00
|
|
|
if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC && sym->st_value
|
|
|
|
&& !(sym->st_other & STO_MIPS_PLT))
|
|
|
|
{
|
|
|
|
if (lazy)
|
elf: Unify symbol address run-time calculation [BZ #19818]
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2018-04-04 22:09:37 +00:00
|
|
|
*got = SYMBOL_ADDRESS (map, sym, true);
|
2008-10-01 13:28:14 +00:00
|
|
|
else
|
|
|
|
/* This is a lazy-binding stub, so we don't need the
|
|
|
|
canonical address. */
|
|
|
|
*got = RESOLVE_GOTSYM (sym, vernum, symidx, R_MIPS_JUMP_SLOT);
|
|
|
|
}
|
2000-04-17 21:22:59 +00:00
|
|
|
else
|
2008-10-01 13:28:14 +00:00
|
|
|
*got = RESOLVE_GOTSYM (sym, vernum, symidx, R_MIPS_32);
|
2000-02-12 11:27:47 +00:00
|
|
|
}
|
|
|
|
else if (sym->st_shndx == SHN_COMMON)
|
2008-10-01 13:28:14 +00:00
|
|
|
*got = RESOLVE_GOTSYM (sym, vernum, symidx, R_MIPS_32);
|
2000-02-12 11:27:47 +00:00
|
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC
|
2008-10-01 13:28:14 +00:00
|
|
|
&& *got != sym->st_value)
|
|
|
|
{
|
|
|
|
if (lazy)
|
|
|
|
*got += map->l_addr;
|
|
|
|
else
|
|
|
|
/* This is a lazy-binding stub, so we don't need the
|
|
|
|
canonical address. */
|
|
|
|
*got = RESOLVE_GOTSYM (sym, vernum, symidx, R_MIPS_JUMP_SLOT);
|
|
|
|
}
|
2000-02-12 11:27:47 +00:00
|
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_SECTION)
|
|
|
|
{
|
|
|
|
if (sym->st_other == 0)
|
|
|
|
*got += map->l_addr;
|
|
|
|
}
|
|
|
|
else
|
2008-10-01 13:28:14 +00:00
|
|
|
*got = RESOLVE_GOTSYM (sym, vernum, symidx, R_MIPS_32);
|
2000-02-12 11:27:47 +00:00
|
|
|
|
2000-04-14 00:35:39 +00:00
|
|
|
++got;
|
|
|
|
++sym;
|
|
|
|
++symidx;
|
2000-02-12 11:27:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#undef RESOLVE_GOTSYM
|
|
|
|
}
|
2001-07-16 22:26:12 +00:00
|
|
|
#endif
|
2000-02-12 11:27:47 +00:00
|
|
|
|
|
|
|
/* Set up the loaded object described by L so its stub function
|
2000-04-12 17:59:20 +00:00
|
|
|
will jump to the on-demand fixup code __dl_runtime_resolve. */
|
2000-02-12 11:27:47 +00:00
|
|
|
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
static inline int
|
2005-03-28 07:47:27 +00:00
|
|
|
__attribute__((always_inline))
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_runtime_setup (struct link_map *l, struct r_scope_elem *scope[],
|
|
|
|
int lazy, int profile)
|
2000-02-12 11:27:47 +00:00
|
|
|
{
|
|
|
|
# ifndef RTLD_BOOTSTRAP
|
|
|
|
ElfW(Addr) *got;
|
|
|
|
extern void _dl_runtime_resolve (ElfW(Word));
|
2008-10-01 13:28:14 +00:00
|
|
|
extern void _dl_runtime_pltresolve (void);
|
2000-02-12 11:27:47 +00:00
|
|
|
extern int _dl_mips_gnu_objects;
|
|
|
|
|
|
|
|
if (lazy)
|
|
|
|
{
|
|
|
|
/* The GOT entries for functions have not yet been filled in.
|
|
|
|
Their initial contents will arrange when called to put an
|
|
|
|
offset into the .dynsym section in t8, the return address
|
|
|
|
in t7 and then jump to _GLOBAL_OFFSET_TABLE[0]. */
|
2000-03-24 15:27:37 +00:00
|
|
|
got = (ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]);
|
2000-02-12 11:27:47 +00:00
|
|
|
|
|
|
|
/* This function will get called to fix up the GOT entry indicated by
|
|
|
|
the register t8, and then jump to the resolved address. */
|
|
|
|
got[0] = (ElfW(Addr)) &_dl_runtime_resolve;
|
|
|
|
|
|
|
|
/* Store l to _GLOBAL_OFFSET_TABLE[1] for gnu object. The MSB
|
|
|
|
of got[1] of a gnu object is set to identify gnu objects.
|
|
|
|
Where we can store l for non gnu objects? XXX */
|
|
|
|
if ((got[1] & ELF_MIPS_GNU_GOT1_MASK) != 0)
|
2003-03-20 07:54:21 +00:00
|
|
|
got[1] = ((ElfW(Addr)) l | ELF_MIPS_GNU_GOT1_MASK);
|
2000-02-12 11:27:47 +00:00
|
|
|
else
|
|
|
|
_dl_mips_gnu_objects = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Relocate global offset table. */
|
elf: Avoid nested functions in the loader [BZ #27220]
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 490e6c62aa31a8aa5c4a059f6e646ede121edf0a)
2021-10-07 18:55:02 +00:00
|
|
|
elf_machine_got_rel (l, scope, lazy);
|
2000-02-12 11:27:47 +00:00
|
|
|
|
2008-10-01 13:28:14 +00:00
|
|
|
/* If using PLTs, fill in the first two entries of .got.plt. */
|
|
|
|
if (l->l_info[DT_JMPREL] && lazy)
|
|
|
|
{
|
|
|
|
ElfW(Addr) *gotplt;
|
|
|
|
gotplt = (ElfW(Addr) *) D_PTR (l, l_info[DT_MIPS (PLTGOT)]);
|
|
|
|
/* If a library is prelinked but we have to relocate anyway,
|
|
|
|
we have to be able to undo the prelinking of .got.plt.
|
|
|
|
The prelinker saved the address of .plt for us here. */
|
|
|
|
if (gotplt[1])
|
|
|
|
l->l_mach.plt = gotplt[1] + l->l_addr;
|
|
|
|
gotplt[0] = (ElfW(Addr)) &_dl_runtime_pltresolve;
|
|
|
|
gotplt[1] = (ElfW(Addr)) l;
|
|
|
|
}
|
|
|
|
|
2000-02-12 11:27:47 +00:00
|
|
|
# endif
|
|
|
|
return lazy;
|
|
|
|
}
|
|
|
|
|
2005-03-28 07:47:27 +00:00
|
|
|
#endif /* RESOLVE_MAP */
|