mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-04 08:40:15 +00:00
1528 lines
40 KiB
ArmAsm
1528 lines
40 KiB
ArmAsm
|
.file "libm_reduce.s"
|
||
|
|
||
|
// Copyright (c) 2000, 2001, Intel Corporation
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
|
||
|
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
|
||
|
//
|
||
|
// WARRANTY DISCLAIMER
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
||
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Intel Corporation is the author of this code, and requests that all
|
||
|
// problem reports or change requests be submitted to it directly at
|
||
|
// http://developer.intel.com/opensource.
|
||
|
//
|
||
|
// History: 02/02/00 Initial Version
|
||
|
//
|
||
|
// *********************************************************************
|
||
|
// *********************************************************************
|
||
|
//
|
||
|
// Function: __libm_pi_by_two_reduce(x) return r, c, and N where
|
||
|
// x = N * pi/4 + (r+c) , where |r+c| <= pi/4.
|
||
|
// This function is not designed to be used by the
|
||
|
// general user.
|
||
|
//
|
||
|
// *********************************************************************
|
||
|
//
|
||
|
// Accuracy: Returns double-precision values
|
||
|
//
|
||
|
// *********************************************************************
|
||
|
//
|
||
|
// Resources Used:
|
||
|
//
|
||
|
// Floating-Point Registers: f32-f70
|
||
|
//
|
||
|
// General Purpose Registers:
|
||
|
// r8 = return value N
|
||
|
// r32 = Address of x
|
||
|
// r33 = Address of where to place r and then c
|
||
|
// r34-r64
|
||
|
//
|
||
|
// Predicate Registers: p6-p14
|
||
|
//
|
||
|
// *********************************************************************
|
||
|
//
|
||
|
// IEEE Special Conditions:
|
||
|
//
|
||
|
// No condions should be raised.
|
||
|
//
|
||
|
// *********************************************************************
|
||
|
//
|
||
|
// I. Introduction
|
||
|
// ===============
|
||
|
//
|
||
|
// For the forward trigonometric functions sin, cos, sincos, and
|
||
|
// tan, the original algorithms for IA 64 handle arguments up to
|
||
|
// 1 ulp less than 2^63 in magnitude. For double-extended arguments x,
|
||
|
// |x| >= 2^63, this routine returns CASE, N and r_hi, r_lo where
|
||
|
//
|
||
|
// x is accurately approximated by
|
||
|
// 2*K*pi + N * pi/2 + r_hi + r_lo, |r_hi+r_lo| <= pi/4.
|
||
|
// CASE = 1 or 2.
|
||
|
// CASE is 1 unless |r_hi + r_lo| < 2^(-33).
|
||
|
//
|
||
|
// The exact value of K is not determined, but that information is
|
||
|
// not required in trigonometric function computations.
|
||
|
//
|
||
|
// We first assume the argument x in question satisfies x >= 2^(63).
|
||
|
// In particular, it is positive. Negative x can be handled by symmetry:
|
||
|
//
|
||
|
// -x is accurately approximated by
|
||
|
// -2*K*pi + (-N) * pi/2 - (r_hi + r_lo), |r_hi+r_lo| <= pi/4.
|
||
|
//
|
||
|
// The idea of the reduction is that
|
||
|
//
|
||
|
// x * 2/pi = N_big + N + f, |f| <= 1/2
|
||
|
//
|
||
|
// Moreover, for double extended x, |f| >= 2^(-75). (This is an
|
||
|
// non-obvious fact found by enumeration using a special algorithm
|
||
|
// involving continued fraction.) The algorithm described below
|
||
|
// calculates N and an accurate approximation of f.
|
||
|
//
|
||
|
// Roughly speaking, an appropriate 256-bit (4 X 64) portion of
|
||
|
// 2/pi is multiplied with x to give the desired information.
|
||
|
//
|
||
|
// II. Representation of 2/PI
|
||
|
// ==========================
|
||
|
//
|
||
|
// The value of 2/pi in binary fixed-point is
|
||
|
//
|
||
|
// .101000101111100110......
|
||
|
//
|
||
|
// We store 2/pi in a table, starting at the position corresponding
|
||
|
// to bit position 63
|
||
|
//
|
||
|
// bit position 63 62 ... 0 -1 -2 -3 -4 -5 -6 -7 .... -16576
|
||
|
//
|
||
|
// 0 0 ... 0 . 1 0 1 0 1 0 1 .... X
|
||
|
//
|
||
|
// ^
|
||
|
// |__ implied binary pt
|
||
|
//
|
||
|
// III. Algorithm
|
||
|
// ==============
|
||
|
//
|
||
|
// This describes the algorithm in the most natural way using
|
||
|
// unsigned interger multiplication. The implementation section
|
||
|
// describes how the integer arithmetic is simulated.
|
||
|
//
|
||
|
// STEP 0. Initialization
|
||
|
// ----------------------
|
||
|
//
|
||
|
// Let the input argument x be
|
||
|
//
|
||
|
// x = 2^m * ( 1. b_1 b_2 b_3 ... b_63 ), 63 <= m <= 16383.
|
||
|
//
|
||
|
// The first crucial step is to fetch four 64-bit portions of 2/pi.
|
||
|
// To fulfill this goal, we calculate the bit position L of the
|
||
|
// beginning of these 256-bit quantity by
|
||
|
//
|
||
|
// L := 62 - m.
|
||
|
//
|
||
|
// Note that -16321 <= L <= -1 because 63 <= m <= 16383; and that
|
||
|
// the storage of 2/pi is adequate.
|
||
|
//
|
||
|
// Fetch P_1, P_2, P_3, P_4 beginning at bit position L thus:
|
||
|
//
|
||
|
// bit position L L-1 L-2 ... L-63
|
||
|
//
|
||
|
// P_1 = b b b ... b
|
||
|
//
|
||
|
// each b can be 0 or 1. Also, let P_0 be the two bits correspoding to
|
||
|
// bit positions L+2 and L+1. So, when each of the P_j is interpreted
|
||
|
// with appropriate scaling, we have
|
||
|
//
|
||
|
// 2/pi = P_big + P_0 + (P_1 + P_2 + P_3 + P_4) + P_small
|
||
|
//
|
||
|
// Note that P_big and P_small can be ignored. The reasons are as follow.
|
||
|
// First, consider P_big. If P_big = 0, we can certainly ignore it.
|
||
|
// Otherwise, P_big >= 2^(L+3). Now,
|
||
|
//
|
||
|
// P_big * ulp(x) >= 2^(L+3) * 2^(m-63)
|
||
|
// >= 2^(65-m + m-63 )
|
||
|
// >= 2^2
|
||
|
//
|
||
|
// Thus, P_big * x is an integer of the form 4*K. So
|
||
|
//
|
||
|
// x = 4*K * (pi/2) + x*(P_0 + P_1 + P_2 + P_3 + P_4)*(pi/2)
|
||
|
// + x*P_small*(pi/2).
|
||
|
//
|
||
|
// Hence, P_big*x corresponds to information that can be ignored for
|
||
|
// trigonometic function evaluation.
|
||
|
//
|
||
|
// Next, we must estimate the effect of ignoring P_small. The absolute
|
||
|
// error made by ignoring P_small is bounded by
|
||
|
//
|
||
|
// |P_small * x| <= ulp(P_4) * x
|
||
|
// <= 2^(L-255) * 2^(m+1)
|
||
|
// <= 2^(62-m-255 + m + 1)
|
||
|
// <= 2^(-192)
|
||
|
//
|
||
|
// Since for double-extended precision, x * 2/pi = integer + f,
|
||
|
// 0.5 >= |f| >= 2^(-75), the relative error introduced by ignoring
|
||
|
// P_small is bounded by 2^(-192+75) <= 2^(-117), which is acceptable.
|
||
|
//
|
||
|
// Further note that if x is split into x_hi + x_lo where x_lo is the
|
||
|
// two bits corresponding to bit positions 2^(m-62) and 2^(m-63); then
|
||
|
//
|
||
|
// P_0 * x_hi
|
||
|
//
|
||
|
// is also an integer of the form 4*K; and thus can also be ignored.
|
||
|
// Let M := P_0 * x_lo which is a small integer. The main part of the
|
||
|
// calculation is really the multiplication of x with the four pieces
|
||
|
// P_1, P_2, P_3, and P_4.
|
||
|
//
|
||
|
// Unless the reduced argument is extremely small in magnitude, it
|
||
|
// suffices to carry out the multiplication of x with P_1, P_2, and
|
||
|
// P_3. x*P_4 will be carried out and added on as a correction only
|
||
|
// when it is found to be needed. Note also that x*P_4 need not be
|
||
|
// computed exactly. A straightforward multiplication suffices since
|
||
|
// the rounding error thus produced would be bounded by 2^(-3*64),
|
||
|
// that is 2^(-192) which is small enough as the reduced argument
|
||
|
// is bounded from below by 2^(-75).
|
||
|
//
|
||
|
// Now that we have four 64-bit data representing 2/pi and a
|
||
|
// 64-bit x. We first need to calculate a highly accurate product
|
||
|
// of x and P_1, P_2, P_3. This is best understood as integer
|
||
|
// multiplication.
|
||
|
//
|
||
|
//
|
||
|
// STEP 1. Multiplication
|
||
|
// ----------------------
|
||
|
//
|
||
|
//
|
||
|
// --------- --------- ---------
|
||
|
// | P_1 | | P_2 | | P_3 |
|
||
|
// --------- --------- ---------
|
||
|
//
|
||
|
// ---------
|
||
|
// X | X |
|
||
|
// ---------
|
||
|
// ----------------------------------------------------
|
||
|
//
|
||
|
// --------- ---------
|
||
|
// | A_hi | | A_lo |
|
||
|
// --------- ---------
|
||
|
//
|
||
|
//
|
||
|
// --------- ---------
|
||
|
// | B_hi | | B_lo |
|
||
|
// --------- ---------
|
||
|
//
|
||
|
//
|
||
|
// --------- ---------
|
||
|
// | C_hi | | C_lo |
|
||
|
// --------- ---------
|
||
|
//
|
||
|
// ====================================================
|
||
|
// --------- --------- --------- ---------
|
||
|
// | S_0 | | S_1 | | S_2 | | S_3 |
|
||
|
// --------- --------- --------- ---------
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
// STEP 2. Get N and f
|
||
|
// -------------------
|
||
|
//
|
||
|
// Conceptually, after the individual pieces S_0, S_1, ..., are obtained,
|
||
|
// we have to sum them and obtain an integer part, N, and a fraction, f.
|
||
|
// Here, |f| <= 1/2, and N is an integer. Note also that N need only to
|
||
|
// be known to module 2^k, k >= 2. In the case when |f| is small enough,
|
||
|
// we would need to add in the value x*P_4.
|
||
|
//
|
||
|
//
|
||
|
// STEP 3. Get reduced argument
|
||
|
// ----------------------------
|
||
|
//
|
||
|
// The value f is not yet the reduced argument that we seek. The
|
||
|
// equation
|
||
|
//
|
||
|
// x * 2/pi = 4K + N + f
|
||
|
//
|
||
|
// says that
|
||
|
//
|
||
|
// x = 2*K*pi + N * pi/2 + f * (pi/2).
|
||
|
//
|
||
|
// Thus, the reduced argument is given by
|
||
|
//
|
||
|
// reduced argument = f * pi/2.
|
||
|
//
|
||
|
// This multiplication must be performed to extra precision.
|
||
|
//
|
||
|
// IV. Implementation
|
||
|
// ==================
|
||
|
//
|
||
|
// Step 0. Initialization
|
||
|
// ----------------------
|
||
|
//
|
||
|
// Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
|
||
|
//
|
||
|
// In memory, 2/pi is stored contigously as
|
||
|
//
|
||
|
// 0x00000000 0x00000000 0xA2F....
|
||
|
// ^
|
||
|
// |__ implied binary bit
|
||
|
//
|
||
|
// Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m. Thus
|
||
|
// -1 <= L <= -16321. We fetch from memory 5 integer pieces of data.
|
||
|
//
|
||
|
// P_0 is the two bits corresponding to bit positions L+2 and L+1
|
||
|
// P_1 is the 64-bit starting at bit position L
|
||
|
// P_2 is the 64-bit starting at bit position L-64
|
||
|
// P_3 is the 64-bit starting at bit position L-128
|
||
|
// P_4 is the 64-bit starting at bit position L-192
|
||
|
//
|
||
|
// For example, if m = 63, P_0 would be 0 and P_1 would look like
|
||
|
// 0xA2F...
|
||
|
//
|
||
|
// If m = 65, P_0 would be the two msb of 0xA, thus, P_0 is 10 in binary.
|
||
|
// P_1 in binary would be 1 0 0 0 1 0 1 1 1 1 ....
|
||
|
//
|
||
|
// Step 1. Multiplication
|
||
|
// ----------------------
|
||
|
//
|
||
|
// At this point, P_1, P_2, P_3, P_4 are integers. They are
|
||
|
// supposed to be interpreted as
|
||
|
//
|
||
|
// 2^(L-63) * P_1;
|
||
|
// 2^(L-63-64) * P_2;
|
||
|
// 2^(L-63-128) * P_3;
|
||
|
// 2^(L-63-192) * P_4;
|
||
|
//
|
||
|
// Since each of them need to be multiplied to x, we would scale
|
||
|
// both x and the P_j's by some convenient factors: scale each
|
||
|
// of P_j's up by 2^(63-L), and scale x down by 2^(L-63).
|
||
|
//
|
||
|
// p_1 := fcvt.xf ( P_1 )
|
||
|
// p_2 := fcvt.xf ( P_2 ) * 2^(-64)
|
||
|
// p_3 := fcvt.xf ( P_3 ) * 2^(-128)
|
||
|
// p_4 := fcvt.xf ( P_4 ) * 2^(-192)
|
||
|
// x := replace exponent of x by -1
|
||
|
// because 2^m * 1.xxxx...xxx * 2^(L-63)
|
||
|
// is 2^(-1) * 1.xxxx...xxx
|
||
|
//
|
||
|
// We are now faced with the task of computing the following
|
||
|
//
|
||
|
// --------- --------- ---------
|
||
|
// | P_1 | | P_2 | | P_3 |
|
||
|
// --------- --------- ---------
|
||
|
//
|
||
|
// ---------
|
||
|
// X | X |
|
||
|
// ---------
|
||
|
// ----------------------------------------------------
|
||
|
//
|
||
|
// --------- ---------
|
||
|
// | A_hi | | A_lo |
|
||
|
// --------- ---------
|
||
|
//
|
||
|
// --------- ---------
|
||
|
// | B_hi | | B_lo |
|
||
|
// --------- ---------
|
||
|
//
|
||
|
// --------- ---------
|
||
|
// | C_hi | | C_lo |
|
||
|
// --------- ---------
|
||
|
//
|
||
|
// ====================================================
|
||
|
// ----------- --------- --------- ---------
|
||
|
// | S_0 | | S_1 | | S_2 | | S_3 |
|
||
|
// ----------- --------- --------- ---------
|
||
|
// ^ ^
|
||
|
// | |___ binary point
|
||
|
// |
|
||
|
// |___ possibly one more bit
|
||
|
//
|
||
|
// Let FPSR3 be set to round towards zero with widest precision
|
||
|
// and exponent range. Unless an explicit FPSR is given,
|
||
|
// round-to-nearest with widest precision and exponent range is
|
||
|
// used.
|
||
|
//
|
||
|
// Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_C := 2^(-65).
|
||
|
//
|
||
|
// Tmp_C := fmpy.fpsr3( x, p_1 );
|
||
|
// If Tmp_C >= sigma_C then
|
||
|
// C_hi := Tmp_C;
|
||
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
||
|
// Else
|
||
|
// C_hi := fadd.fpsr3(sigma_C, Tmp_C) - sigma_C
|
||
|
// ...subtraction is exact, regardless
|
||
|
// ...of rounding direction
|
||
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
||
|
// End If
|
||
|
//
|
||
|
// Tmp_B := fmpy.fpsr3( x, p_2 );
|
||
|
// If Tmp_B >= sigma_B then
|
||
|
// B_hi := Tmp_B;
|
||
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
||
|
// Else
|
||
|
// B_hi := fadd.fpsr3(sigma_B, Tmp_B) - sigma_B
|
||
|
// ...subtraction is exact, regardless
|
||
|
// ...of rounding direction
|
||
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
||
|
// End If
|
||
|
//
|
||
|
// Tmp_A := fmpy.fpsr3( x, p_3 );
|
||
|
// If Tmp_A >= sigma_A then
|
||
|
// A_hi := Tmp_A;
|
||
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
||
|
// Else
|
||
|
// A_hi := fadd.fpsr3(sigma_A, Tmp_A) - sigma_A
|
||
|
// ...subtraction is exact, regardless
|
||
|
// ...of rounding direction
|
||
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
||
|
// End If
|
||
|
//
|
||
|
// ...Note that C_hi is of integer value. We need only the
|
||
|
// ...last few bits. Thus we can ensure C_hi is never a big
|
||
|
// ...integer, freeing us from overflow worry.
|
||
|
//
|
||
|
// Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
|
||
|
// ...Tmp_C is the upper portion of C_hi
|
||
|
// C_hi := C_hi - Tmp_C
|
||
|
// ...0 <= C_hi < 2^7
|
||
|
//
|
||
|
// Step 2. Get N and f
|
||
|
// -------------------
|
||
|
//
|
||
|
// At this point, we have all the components to obtain
|
||
|
// S_0, S_1, S_2, S_3 and thus N and f. We start by adding
|
||
|
// C_lo and B_hi. This sum together with C_hi gives a good
|
||
|
// estimation of N and f.
|
||
|
//
|
||
|
// A := fadd.fpsr3( B_hi, C_lo )
|
||
|
// B := max( B_hi, C_lo )
|
||
|
// b := min( B_hi, C_lo )
|
||
|
//
|
||
|
// a := (B - A) + b ...exact. Note that a is either 0
|
||
|
// ...or 2^(-64).
|
||
|
//
|
||
|
// N := round_to_nearest_integer_value( A );
|
||
|
// f := A - N; ...exact because lsb(A) >= 2^(-64)
|
||
|
// ...and |f| <= 1/2.
|
||
|
//
|
||
|
// f := f + a ...exact because a is 0 or 2^(-64);
|
||
|
// ...the msb of the sum is <= 1/2
|
||
|
// ...lsb >= 2^(-64).
|
||
|
//
|
||
|
// N := convert to integer format( C_hi + N );
|
||
|
// M := P_0 * x_lo;
|
||
|
// N := N + M;
|
||
|
//
|
||
|
// If sgn_x == 1 (that is original x was negative)
|
||
|
// N := 2^10 - N
|
||
|
// ...this maintains N to be non-negative, but still
|
||
|
// ...equivalent to the (negated N) mod 4.
|
||
|
// End If
|
||
|
//
|
||
|
// If |f| >= 2^(-33)
|
||
|
//
|
||
|
// ...Case 1
|
||
|
// CASE := 1
|
||
|
// g := A_hi + B_lo;
|
||
|
// s_hi := f + g;
|
||
|
// s_lo := (f - s_hi) + g;
|
||
|
//
|
||
|
// Else
|
||
|
//
|
||
|
// ...Case 2
|
||
|
// CASE := 2
|
||
|
// A := fadd.fpsr3( A_hi, B_lo )
|
||
|
// B := max( A_hi, B_lo )
|
||
|
// b := min( A_hi, B_lo )
|
||
|
//
|
||
|
// a := (B - A) + b ...exact. Note that a is either 0
|
||
|
// ...or 2^(-128).
|
||
|
//
|
||
|
// f_hi := A + f;
|
||
|
// f_lo := (f - f_hi) + A;
|
||
|
// ...this is exact.
|
||
|
// ...f-f_hi is exact because either |f| >= |A|, in which
|
||
|
// ...case f-f_hi is clearly exact; or otherwise, 0<|f|<|A|
|
||
|
// ...means msb(f) <= msb(A) = 2^(-64) => |f| = 2^(-64).
|
||
|
// ...If f = 2^(-64), f-f_hi involves cancellation and is
|
||
|
// ...exact. If f = -2^(-64), then A + f is exact. Hence
|
||
|
// ...f-f_hi is -A exactly, giving f_lo = 0.
|
||
|
//
|
||
|
// f_lo := f_lo + a;
|
||
|
//
|
||
|
// If |f| >= 2^(-50) then
|
||
|
// s_hi := f_hi;
|
||
|
// s_lo := f_lo;
|
||
|
// Else
|
||
|
// f_lo := (f_lo + A_lo) + x*p_4
|
||
|
// s_hi := f_hi + f_lo
|
||
|
// s_lo := (f_hi - s_hi) + f_lo
|
||
|
// End If
|
||
|
//
|
||
|
// End If
|
||
|
//
|
||
|
// Step 3. Get reduced argument
|
||
|
// ----------------------------
|
||
|
//
|
||
|
// If sgn_x == 0 (that is original x is positive)
|
||
|
//
|
||
|
// D_hi := Pi_by_2_hi
|
||
|
// D_lo := Pi_by_2_lo
|
||
|
// ...load from table
|
||
|
//
|
||
|
// Else
|
||
|
//
|
||
|
// D_hi := neg_Pi_by_2_hi
|
||
|
// D_lo := neg_Pi_by_2_lo
|
||
|
// ...load from table
|
||
|
// End If
|
||
|
//
|
||
|
// r_hi := s_hi*D_hi
|
||
|
// r_lo := s_hi*D_hi - r_hi ...fma
|
||
|
// r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
|
||
|
//
|
||
|
// Return CASE, N, r_hi, r_lo
|
||
|
//
|
||
|
|
||
|
#include "libm_support.h"
|
||
|
|
||
|
FR_X = f32
|
||
|
FR_N = f33
|
||
|
FR_p_1 = f34
|
||
|
FR_TWOM33 = f35
|
||
|
FR_TWOM50 = f36
|
||
|
FR_g = f37
|
||
|
FR_p_2 = f38
|
||
|
FR_f = f39
|
||
|
FR_s_lo = f40
|
||
|
FR_p_3 = f41
|
||
|
FR_f_abs = f42
|
||
|
FR_D_lo = f43
|
||
|
FR_p_4 = f44
|
||
|
FR_D_hi = f45
|
||
|
FR_Tmp2_C = f46
|
||
|
FR_s_hi = f47
|
||
|
FR_sigma_A = f48
|
||
|
FR_A = f49
|
||
|
FR_sigma_B = f50
|
||
|
FR_B = f51
|
||
|
FR_sigma_C = f52
|
||
|
FR_b = f53
|
||
|
FR_ScaleP2 = f54
|
||
|
FR_ScaleP3 = f55
|
||
|
FR_ScaleP4 = f56
|
||
|
FR_Tmp_A = f57
|
||
|
FR_Tmp_B = f58
|
||
|
FR_Tmp_C = f59
|
||
|
FR_A_hi = f60
|
||
|
FR_f_hi = f61
|
||
|
FR_r_hi = f62
|
||
|
FR_A_lo = f63
|
||
|
FR_B_hi = f64
|
||
|
FR_a = f65
|
||
|
FR_B_lo = f66
|
||
|
FR_f_lo = f67
|
||
|
FR_r_lo = f68
|
||
|
FR_C_hi = f69
|
||
|
FR_C_lo = f70
|
||
|
|
||
|
GR_N = r8
|
||
|
GR_Address_of_Input = r32
|
||
|
GR_Address_of_Outputs = r33
|
||
|
GR_Exp_x = r36
|
||
|
GR_Temp = r37
|
||
|
GR_BIASL63 = r38
|
||
|
GR_CASE = r39
|
||
|
GR_x_lo = r40
|
||
|
GR_sgn_x = r41
|
||
|
GR_M = r42
|
||
|
GR_BASE = r43
|
||
|
GR_LENGTH1 = r44
|
||
|
GR_LENGTH2 = r45
|
||
|
GR_ASUB = r46
|
||
|
GR_P_0 = r47
|
||
|
GR_P_1 = r48
|
||
|
GR_P_2 = r49
|
||
|
GR_P_3 = r50
|
||
|
GR_P_4 = r51
|
||
|
GR_START = r52
|
||
|
GR_SEGMENT = r53
|
||
|
GR_A = r54
|
||
|
GR_B = r55
|
||
|
GR_C = r56
|
||
|
GR_D = r57
|
||
|
GR_E = r58
|
||
|
GR_TEMP1 = r59
|
||
|
GR_TEMP2 = r60
|
||
|
GR_TEMP3 = r61
|
||
|
GR_TEMP4 = r62
|
||
|
GR_TEMP5 = r63
|
||
|
GR_TEMP6 = r64
|
||
|
|
||
|
.align 64
|
||
|
|
||
|
#ifdef _LIBC
|
||
|
.rodata
|
||
|
#else
|
||
|
.data
|
||
|
#endif
|
||
|
|
||
|
Constants_Bits_of_2_by_pi:
|
||
|
ASM_TYPE_DIRECTIVE(Constants_Bits_of_2_by_pi,@object)
|
||
|
data8 0x0000000000000000,0xA2F9836E4E441529
|
||
|
data8 0xFC2757D1F534DDC0,0xDB6295993C439041
|
||
|
data8 0xFE5163ABDEBBC561,0xB7246E3A424DD2E0
|
||
|
data8 0x06492EEA09D1921C,0xFE1DEB1CB129A73E
|
||
|
data8 0xE88235F52EBB4484,0xE99C7026B45F7E41
|
||
|
data8 0x3991D639835339F4,0x9C845F8BBDF9283B
|
||
|
data8 0x1FF897FFDE05980F,0xEF2F118B5A0A6D1F
|
||
|
data8 0x6D367ECF27CB09B7,0x4F463F669E5FEA2D
|
||
|
data8 0x7527BAC7EBE5F17B,0x3D0739F78A5292EA
|
||
|
data8 0x6BFB5FB11F8D5D08,0x56033046FC7B6BAB
|
||
|
data8 0xF0CFBC209AF4361D,0xA9E391615EE61B08
|
||
|
data8 0x6599855F14A06840,0x8DFFD8804D732731
|
||
|
data8 0x06061556CA73A8C9,0x60E27BC08C6B47C4
|
||
|
data8 0x19C367CDDCE8092A,0x8359C4768B961CA6
|
||
|
data8 0xDDAF44D15719053E,0xA5FF07053F7E33E8
|
||
|
data8 0x32C2DE4F98327DBB,0xC33D26EF6B1E5EF8
|
||
|
data8 0x9F3A1F35CAF27F1D,0x87F121907C7C246A
|
||
|
data8 0xFA6ED5772D30433B,0x15C614B59D19C3C2
|
||
|
data8 0xC4AD414D2C5D000C,0x467D862D71E39AC6
|
||
|
data8 0x9B0062337CD2B497,0xA7B4D55537F63ED7
|
||
|
data8 0x1810A3FC764D2A9D,0x64ABD770F87C6357
|
||
|
data8 0xB07AE715175649C0,0xD9D63B3884A7CB23
|
||
|
data8 0x24778AD623545AB9,0x1F001B0AF1DFCE19
|
||
|
data8 0xFF319F6A1E666157,0x9947FBACD87F7EB7
|
||
|
data8 0x652289E83260BFE6,0xCDC4EF09366CD43F
|
||
|
data8 0x5DD7DE16DE3B5892,0x9BDE2822D2E88628
|
||
|
data8 0x4D58E232CAC616E3,0x08CB7DE050C017A7
|
||
|
data8 0x1DF35BE01834132E,0x6212830148835B8E
|
||
|
data8 0xF57FB0ADF2E91E43,0x4A48D36710D8DDAA
|
||
|
data8 0x425FAECE616AA428,0x0AB499D3F2A6067F
|
||
|
data8 0x775C83C2A3883C61,0x78738A5A8CAFBDD7
|
||
|
data8 0x6F63A62DCBBFF4EF,0x818D67C12645CA55
|
||
|
data8 0x36D9CAD2A8288D61,0xC277C9121426049B
|
||
|
data8 0x4612C459C444C5C8,0x91B24DF31700AD43
|
||
|
data8 0xD4E5492910D5FDFC,0xBE00CC941EEECE70
|
||
|
data8 0xF53E1380F1ECC3E7,0xB328F8C79405933E
|
||
|
data8 0x71C1B3092EF3450B,0x9C12887B20AB9FB5
|
||
|
data8 0x2EC292472F327B6D,0x550C90A7721FE76B
|
||
|
data8 0x96CB314A1679E279,0x4189DFF49794E884
|
||
|
data8 0xE6E29731996BED88,0x365F5F0EFDBBB49A
|
||
|
data8 0x486CA46742727132,0x5D8DB8159F09E5BC
|
||
|
data8 0x25318D3974F71C05,0x30010C0D68084B58
|
||
|
data8 0xEE2C90AA4702E774,0x24D6BDA67DF77248
|
||
|
data8 0x6EEF169FA6948EF6,0x91B45153D1F20ACF
|
||
|
data8 0x3398207E4BF56863,0xB25F3EDD035D407F
|
||
|
data8 0x8985295255C06437,0x10D86D324832754C
|
||
|
data8 0x5BD4714E6E5445C1,0x090B69F52AD56614
|
||
|
data8 0x9D072750045DDB3B,0xB4C576EA17F9877D
|
||
|
data8 0x6B49BA271D296996,0xACCCC65414AD6AE2
|
||
|
data8 0x9089D98850722CBE,0xA4049407777030F3
|
||
|
data8 0x27FC00A871EA49C2,0x663DE06483DD9797
|
||
|
data8 0x3FA3FD94438C860D,0xDE41319D39928C70
|
||
|
data8 0xDDE7B7173BDF082B,0x3715A0805C93805A
|
||
|
data8 0x921110D8E80FAF80,0x6C4BFFDB0F903876
|
||
|
data8 0x185915A562BBCB61,0xB989C7BD401004F2
|
||
|
data8 0xD2277549F6B6EBBB,0x22DBAA140A2F2689
|
||
|
data8 0x768364333B091A94,0x0EAA3A51C2A31DAE
|
||
|
data8 0xEDAF12265C4DC26D,0x9C7A2D9756C0833F
|
||
|
data8 0x03F6F0098C402B99,0x316D07B43915200C
|
||
|
data8 0x5BC3D8C492F54BAD,0xC6A5CA4ECD37A736
|
||
|
data8 0xA9E69492AB6842DD,0xDE6319EF8C76528B
|
||
|
data8 0x6837DBFCABA1AE31,0x15DFA1AE00DAFB0C
|
||
|
data8 0x664D64B705ED3065,0x29BF56573AFF47B9
|
||
|
data8 0xF96AF3BE75DF9328,0x3080ABF68C6615CB
|
||
|
data8 0x040622FA1DE4D9A4,0xB33D8F1B5709CD36
|
||
|
data8 0xE9424EA4BE13B523,0x331AAAF0A8654FA5
|
||
|
data8 0xC1D20F3F0BCD785B,0x76F923048B7B7217
|
||
|
data8 0x8953A6C6E26E6F00,0xEBEF584A9BB7DAC4
|
||
|
data8 0xBA66AACFCF761D02,0xD12DF1B1C1998C77
|
||
|
data8 0xADC3DA4886A05DF7,0xF480C62FF0AC9AEC
|
||
|
data8 0xDDBC5C3F6DDED01F,0xC790B6DB2A3A25A3
|
||
|
data8 0x9AAF009353AD0457,0xB6B42D297E804BA7
|
||
|
data8 0x07DA0EAA76A1597B,0x2A12162DB7DCFDE5
|
||
|
data8 0xFAFEDB89FDBE896C,0x76E4FCA90670803E
|
||
|
data8 0x156E85FF87FD073E,0x2833676186182AEA
|
||
|
data8 0xBD4DAFE7B36E6D8F,0x3967955BBF3148D7
|
||
|
data8 0x8416DF30432DC735,0x6125CE70C9B8CB30
|
||
|
data8 0xFD6CBFA200A4E46C,0x05A0DD5A476F21D2
|
||
|
data8 0x1262845CB9496170,0xE0566B0152993755
|
||
|
data8 0x50B7D51EC4F1335F,0x6E13E4305DA92E85
|
||
|
data8 0xC3B21D3632A1A4B7,0x08D4B1EA21F716E4
|
||
|
data8 0x698F77FF2780030C,0x2D408DA0CD4F99A5
|
||
|
data8 0x20D3A2B30A5D2F42,0xF9B4CBDA11D0BE7D
|
||
|
data8 0xC1DB9BBD17AB81A2,0xCA5C6A0817552E55
|
||
|
data8 0x0027F0147F8607E1,0x640B148D4196DEBE
|
||
|
data8 0x872AFDDAB6256B34,0x897BFEF3059EBFB9
|
||
|
data8 0x4F6A68A82A4A5AC4,0x4FBCF82D985AD795
|
||
|
data8 0xC7F48D4D0DA63A20,0x5F57A4B13F149538
|
||
|
data8 0x800120CC86DD71B6,0xDEC9F560BF11654D
|
||
|
data8 0x6B0701ACB08CD0C0,0xB24855510EFB1EC3
|
||
|
data8 0x72953B06A33540C0,0x7BDC06CC45E0FA29
|
||
|
data8 0x4EC8CAD641F3E8DE,0x647CD8649B31BED9
|
||
|
data8 0xC397A4D45877C5E3,0x6913DAF03C3ABA46
|
||
|
data8 0x18465F7555F5BDD2,0xC6926E5D2EACED44
|
||
|
data8 0x0E423E1C87C461E9,0xFD29F3D6E7CA7C22
|
||
|
data8 0x35916FC5E0088DD7,0xFFE26A6EC6FDB0C1
|
||
|
data8 0x0893745D7CB2AD6B,0x9D6ECD7B723E6A11
|
||
|
data8 0xC6A9CFF7DF7329BA,0xC9B55100B70DB2E2
|
||
|
data8 0x24BA74607DE58AD8,0x742C150D0C188194
|
||
|
data8 0x667E162901767A9F,0xBEFDFDEF4556367E
|
||
|
data8 0xD913D9ECB9BA8BFC,0x97C427A831C36EF1
|
||
|
data8 0x36C59456A8D8B5A8,0xB40ECCCF2D891234
|
||
|
data8 0x576F89562CE3CE99,0xB920D6AA5E6B9C2A
|
||
|
data8 0x3ECC5F114A0BFDFB,0xF4E16D3B8E2C86E2
|
||
|
data8 0x84D4E9A9B4FCD1EE,0xEFC9352E61392F44
|
||
|
data8 0x2138C8D91B0AFC81,0x6A4AFBD81C2F84B4
|
||
|
data8 0x538C994ECC2254DC,0x552AD6C6C096190B
|
||
|
data8 0xB8701A649569605A,0x26EE523F0F117F11
|
||
|
data8 0xB5F4F5CBFC2DBC34,0xEEBC34CC5DE8605E
|
||
|
data8 0xDD9B8E67EF3392B8,0x17C99B5861BC57E1
|
||
|
data8 0xC68351103ED84871,0xDDDD1C2DA118AF46
|
||
|
data8 0x2C21D7F359987AD9,0xC0549EFA864FFC06
|
||
|
data8 0x56AE79E536228922,0xAD38DC9367AAE855
|
||
|
data8 0x3826829BE7CAA40D,0x51B133990ED7A948
|
||
|
data8 0x0569F0B265A7887F,0x974C8836D1F9B392
|
||
|
data8 0x214A827B21CF98DC,0x9F405547DC3A74E1
|
||
|
data8 0x42EB67DF9DFE5FD4,0x5EA4677B7AACBAA2
|
||
|
data8 0xF65523882B55BA41,0x086E59862A218347
|
||
|
data8 0x39E6E389D49EE540,0xFB49E956FFCA0F1C
|
||
|
data8 0x8A59C52BFA94C5C1,0xD3CFC50FAE5ADB86
|
||
|
data8 0xC5476243853B8621,0x94792C8761107B4C
|
||
|
data8 0x2A1A2C8012BF4390,0x2688893C78E4C4A8
|
||
|
data8 0x7BDBE5C23AC4EAF4,0x268A67F7BF920D2B
|
||
|
data8 0xA365B1933D0B7CBD,0xDC51A463DD27DDE1
|
||
|
data8 0x6919949A9529A828,0xCE68B4ED09209F44
|
||
|
data8 0xCA984E638270237C,0x7E32B90F8EF5A7E7
|
||
|
data8 0x561408F1212A9DB5,0x4D7E6F5119A5ABF9
|
||
|
data8 0xB5D6DF8261DD9602,0x36169F3AC4A1A283
|
||
|
data8 0x6DED727A8D39A9B8,0x825C326B5B2746ED
|
||
|
data8 0x34007700D255F4FC,0x4D59018071E0E13F
|
||
|
data8 0x89B295F364A8F1AE,0xA74B38FC4CEAB2BB
|
||
|
ASM_SIZE_DIRECTIVE(Constants_Bits_of_2_by_pi)
|
||
|
|
||
|
Constants_Bits_of_pi_by_2:
|
||
|
ASM_TYPE_DIRECTIVE(Constants_Bits_of_pi_by_2,@object)
|
||
|
data4 0x2168C234,0xC90FDAA2,0x00003FFF,0x00000000
|
||
|
data4 0x80DC1CD1,0xC4C6628B,0x00003FBF,0x00000000
|
||
|
ASM_SIZE_DIRECTIVE(Constants_Bits_of_pi_by_2)
|
||
|
|
||
|
.section .text
|
||
|
.proc __libm_pi_by_2_reduce#
|
||
|
.global __libm_pi_by_2_reduce#
|
||
|
.align 64
|
||
|
|
||
|
__libm_pi_by_2_reduce:
|
||
|
|
||
|
// X is at the address in Address_of_Input
|
||
|
// Place the two-piece result at the address in Address_of_Outputs
|
||
|
// r followed by c
|
||
|
// N is returned
|
||
|
|
||
|
{ .mmf
|
||
|
alloc r34 = ar.pfs,2,34,0,0
|
||
|
(p0) ldfe FR_X = [GR_Address_of_Input]
|
||
|
(p0) fsetc.s3 0x00,0x7F ;;
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_BIASL63 = 0x1003E
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
|
||
|
// L -1-2-3-4
|
||
|
// 0 0 0 0 0. 1 0 1 0
|
||
|
// M 0 1 2 .... 63, 64 65 ... 127, 128
|
||
|
// ---------------------------------------------
|
||
|
// Segment 0. 1 , 2 , 3
|
||
|
// START = M - 63 M = 128 becomes 65
|
||
|
// LENGTH1 = START & 0x3F 65 become position 1
|
||
|
// SEGMENT = shr(START,6) + 1 0 maps to 1, 64 maps to 2,
|
||
|
// LENGTH2 = 64 - LENGTH1
|
||
|
// Address_BASE = shladd(SEGMENT,3) + BASE
|
||
|
|
||
|
|
||
|
|
||
|
{ .mmi
|
||
|
nop.m 999
|
||
|
(p0) addl GR_BASE = @ltoff(Constants_Bits_of_2_by_pi#), gp
|
||
|
nop.i 999
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mmi
|
||
|
ld8 GR_BASE = [GR_BASE]
|
||
|
nop.m 999
|
||
|
nop.i 999
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_TEMP5 = 0x000000000000FFFE
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
(p0) setf.exp FR_sigma_B = GR_TEMP5
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_TEMP6 = 0x000000000000FFBE ;;
|
||
|
}
|
||
|
// Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_A := 2^(-65).
|
||
|
{ .mfi
|
||
|
(p0) setf.exp FR_sigma_A = GR_TEMP6
|
||
|
nop.f 999
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
// Special Code for testing DE arguments
|
||
|
// (p0) movl GR_BIASL63 = 0x0000000000013FFE
|
||
|
// (p0) movl GR_x_lo = 0xFFFFFFFFFFFFFFFF
|
||
|
// (p0) setf.exp FR_X = GR_BIASL63
|
||
|
// (p0) setf.sig FR_ScaleP3 = GR_x_lo
|
||
|
// (p0) fmerge.se FR_X = FR_X,FR_ScaleP3
|
||
|
// Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
|
||
|
// 2/pi is stored contigously as
|
||
|
// 0x00000000 0x00000000.0xA2F....
|
||
|
// M = EXP - BIAS ( M >= 63)
|
||
|
// Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m.
|
||
|
// Thus -1 <= L <= -16321.
|
||
|
{ .mmf
|
||
|
(p0) getf.exp GR_Exp_x = FR_X
|
||
|
(p0) getf.sig GR_x_lo = FR_X
|
||
|
(p0) fabs FR_X = FR_X ;;
|
||
|
}
|
||
|
{ .mii
|
||
|
(p0) and GR_x_lo = 0x03,GR_x_lo
|
||
|
(p0) extr.u GR_M = GR_Exp_x,0,17 ;;
|
||
|
(p0) sub GR_START = GR_M,GR_BIASL63
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
(p0) and GR_LENGTH1 = 0x3F,GR_START
|
||
|
(p0) shr.u GR_SEGMENT = GR_START,6
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
(p0) add GR_SEGMENT = 0x1,GR_SEGMENT
|
||
|
(p0) sub GR_LENGTH2 = 0x40,GR_LENGTH1
|
||
|
}
|
||
|
// P_0 is the two bits corresponding to bit positions L+2 and L+1
|
||
|
// P_1 is the 64-bit starting at bit position L
|
||
|
// P_2 is the 64-bit starting at bit position L-64
|
||
|
// P_3 is the 64-bit starting at bit position L-128
|
||
|
// P_4 is the 64-bit starting at bit position L-192
|
||
|
// P_1 is made up of Alo and Bhi
|
||
|
// P_1 = deposit Alo, position 0, length2 into P_1,position length1
|
||
|
// deposit Bhi, position length2, length1 into P_1, position 0
|
||
|
// P_2 is made up of Blo and Chi
|
||
|
// P_2 = deposit Blo, position 0, length2 into P_2, position length1
|
||
|
// deposit Chi, position length2, length1 into P_2, position 0
|
||
|
// P_3 is made up of Clo and Dhi
|
||
|
// P_3 = deposit Clo, position 0, length2 into P_3, position length1
|
||
|
// deposit Dhi, position length2, length1 into P_3, position 0
|
||
|
// P_4 is made up of Clo and Dhi
|
||
|
// P_4 = deposit Dlo, position 0, length2 into P_4, position length1
|
||
|
// deposit Ehi, position length2, length1 into P_4, position 0
|
||
|
{ .mmi
|
||
|
(p0) cmp.le.unc p6,p7 = 0x2,GR_LENGTH1 ;;
|
||
|
(p0) shladd GR_BASE = GR_SEGMENT,3,GR_BASE
|
||
|
(p7) cmp.eq.unc p8,p9 = 0x1,GR_LENGTH1 ;;
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999
|
||
|
// ld_64 A at Base and increment Base by 8
|
||
|
// ld_64 B at Base and increment Base by 8
|
||
|
// ld_64 C at Base and increment Base by 8
|
||
|
// ld_64 D at Base and increment Base by 8
|
||
|
// ld_64 E at Base and increment Base by 8
|
||
|
// A/B/C/D
|
||
|
// ---------------------
|
||
|
// A, B, C, D, and E look like | length1 | length2 |
|
||
|
// ---------------------
|
||
|
// hi lo
|
||
|
(p0) ld8 GR_A = [GR_BASE],8
|
||
|
(p0) extr.u GR_sgn_x = GR_Exp_x,17,1 ;;
|
||
|
}
|
||
|
{ .mmf
|
||
|
nop.m 999
|
||
|
(p0) ld8 GR_B = [GR_BASE],8
|
||
|
(p0) fmerge.se FR_X = FR_sigma_B,FR_X ;;
|
||
|
}
|
||
|
{ .mii
|
||
|
(p0) ld8 GR_C = [GR_BASE],8
|
||
|
(p8) extr.u GR_Temp = GR_A,63,1 ;;
|
||
|
(p0) shl GR_TEMP1 = GR_A,GR_LENGTH1
|
||
|
}
|
||
|
{ .mii
|
||
|
(p0) ld8 GR_D = [GR_BASE],8
|
||
|
// If length1 >= 2,
|
||
|
// P_0 = deposit Ahi, position length2, 2 bit into P_0 at position 0.
|
||
|
(p6) shr.u GR_P_0 = GR_A,GR_LENGTH2 ;;
|
||
|
(p0) shl GR_TEMP2 = GR_B,GR_LENGTH1
|
||
|
}
|
||
|
{ .mii
|
||
|
(p0) ld8 GR_E = [GR_BASE],-40
|
||
|
(p0) shr.u GR_P_1 = GR_B,GR_LENGTH2 ;;
|
||
|
(p0) shr.u GR_P_2 = GR_C,GR_LENGTH2
|
||
|
}
|
||
|
// Else
|
||
|
// Load 16 bit of ASUB from (Base_Address_of_A - 2)
|
||
|
// P_0 = ASUB & 0x3
|
||
|
// If length1 == 0,
|
||
|
// P_0 complete
|
||
|
// Else
|
||
|
// Deposit element 63 from Ahi and place in element 0 of P_0.
|
||
|
// Endif
|
||
|
// Endif
|
||
|
{ .mii
|
||
|
(p7) ld2 GR_ASUB = [GR_BASE],8
|
||
|
(p0) shl GR_TEMP3 = GR_C,GR_LENGTH1 ;;
|
||
|
(p0) shl GR_TEMP4 = GR_D,GR_LENGTH1
|
||
|
}
|
||
|
{ .mii
|
||
|
nop.m 999
|
||
|
(p0) shr.u GR_P_3 = GR_D,GR_LENGTH2 ;;
|
||
|
(p0) shr.u GR_P_4 = GR_E,GR_LENGTH2
|
||
|
}
|
||
|
{ .mii
|
||
|
(p7) and GR_P_0 = 0x03,GR_ASUB
|
||
|
(p6) and GR_P_0 = 0x03,GR_P_0 ;;
|
||
|
(p0) or GR_P_1 = GR_P_1,GR_TEMP1
|
||
|
}
|
||
|
{ .mmi
|
||
|
(p8) and GR_P_0 = 0x1,GR_P_0 ;;
|
||
|
(p0) or GR_P_2 = GR_P_2,GR_TEMP2
|
||
|
(p8) shl GR_P_0 = GR_P_0,0x1 ;;
|
||
|
}
|
||
|
{ .mii
|
||
|
nop.m 999
|
||
|
(p0) or GR_P_3 = GR_P_3,GR_TEMP3
|
||
|
(p8) or GR_P_0 = GR_P_0,GR_Temp
|
||
|
}
|
||
|
{ .mmi
|
||
|
(p0) setf.sig FR_p_1 = GR_P_1 ;;
|
||
|
(p0) setf.sig FR_p_2 = GR_P_2
|
||
|
(p0) or GR_P_4 = GR_P_4,GR_TEMP4 ;;
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
(p0) setf.sig FR_p_3 = GR_P_3
|
||
|
(p0) pmpy2.r GR_M = GR_P_0,GR_x_lo
|
||
|
}
|
||
|
{ .mlx
|
||
|
(p0) setf.sig FR_p_4 = GR_P_4
|
||
|
// P_1, P_2, P_3, P_4 are integers. They should be
|
||
|
// 2^(L-63) * P_1;
|
||
|
// 2^(L-63-64) * P_2;
|
||
|
// 2^(L-63-128) * P_3;
|
||
|
// 2^(L-63-192) * P_4;
|
||
|
// Since each of them need to be multiplied to x, we would scale
|
||
|
// both x and the P_j's by some convenient factors: scale each
|
||
|
// of P_j's up by 2^(63-L), and scale x down by 2^(L-63).
|
||
|
// p_1 := fcvt.xf ( P_1 )
|
||
|
// p_2 := fcvt.xf ( P_2 ) * 2^(-64)
|
||
|
// p_3 := fcvt.xf ( P_3 ) * 2^(-128)
|
||
|
// p_4 := fcvt.xf ( P_4 ) * 2^(-192)
|
||
|
// x= Set x's exp to -1 because 2^m*1.x...x *2^(L-63)=2^(-1)*1.x...xxx
|
||
|
// --------- --------- ---------
|
||
|
// | P_1 | | P_2 | | P_3 |
|
||
|
// --------- --------- ---------
|
||
|
// ---------
|
||
|
// X | X |
|
||
|
// ---------
|
||
|
// ----------------------------------------------------
|
||
|
// --------- ---------
|
||
|
// | A_hi | | A_lo |
|
||
|
// --------- ---------
|
||
|
// --------- ---------
|
||
|
// | B_hi | | B_lo |
|
||
|
// --------- ---------
|
||
|
// --------- ---------
|
||
|
// | C_hi | | C_lo |
|
||
|
// --------- ---------
|
||
|
// ====================================================
|
||
|
// ----------- --------- --------- ---------
|
||
|
// | S_0 | | S_1 | | S_2 | | S_3 |
|
||
|
// ----------- --------- --------- ---------
|
||
|
// | |___ binary point
|
||
|
// |___ possibly one more bit
|
||
|
//
|
||
|
// Let FPSR3 be set to round towards zero with widest precision
|
||
|
// and exponent range. Unless an explicit FPSR is given,
|
||
|
// round-to-nearest with widest precision and exponent range is
|
||
|
// used.
|
||
|
(p0) movl GR_TEMP1 = 0x000000000000FFBF
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
(p0) setf.exp FR_ScaleP2 = GR_TEMP1
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_TEMP4 = 0x000000000001003E
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
(p0) setf.exp FR_sigma_C = GR_TEMP4
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_TEMP2 = 0x000000000000FF7F ;;
|
||
|
}
|
||
|
{ .mmf
|
||
|
nop.m 999
|
||
|
(p0) setf.exp FR_ScaleP3 = GR_TEMP2
|
||
|
(p0) fcvt.xuf.s1 FR_p_1 = FR_p_1 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fcvt.xuf.s1 FR_p_2 = FR_p_2
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_Temp = 0x000000000000FFDE ;;
|
||
|
}
|
||
|
{ .mmf
|
||
|
nop.m 999
|
||
|
(p0) setf.exp FR_TWOM33 = GR_Temp
|
||
|
(p0) fcvt.xuf.s1 FR_p_3 = FR_p_3 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fcvt.xuf.s1 FR_p_4 = FR_p_4
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// Tmp_C := fmpy.fpsr3( x, p_1 );
|
||
|
// Tmp_B := fmpy.fpsr3( x, p_2 );
|
||
|
// Tmp_A := fmpy.fpsr3( x, p_3 );
|
||
|
// If Tmp_C >= sigma_C then
|
||
|
// C_hi := Tmp_C;
|
||
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
||
|
// Else
|
||
|
// C_hi := fadd.fpsr3(sigma_C, Tmp_C) - sigma_C
|
||
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
||
|
// End If
|
||
|
// If Tmp_B >= sigma_B then
|
||
|
// B_hi := Tmp_B;
|
||
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
||
|
// Else
|
||
|
// B_hi := fadd.fpsr3(sigma_B, Tmp_B) - sigma_B
|
||
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
||
|
// End If
|
||
|
// If Tmp_A >= sigma_A then
|
||
|
// A_hi := Tmp_A;
|
||
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
||
|
// Else
|
||
|
// A_hi := fadd.fpsr3(sigma_A, Tmp_A) - sigma_A
|
||
|
// Exact, regardless ...of rounding direction
|
||
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
||
|
// Endif
|
||
|
(p0) fmpy.s3 FR_Tmp_C = FR_X,FR_p_1
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fmpy.s1 FR_p_2 = FR_p_2,FR_ScaleP2
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_Temp = 0x0000000000000400
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_TEMP3 = 0x000000000000FF3F ;;
|
||
|
}
|
||
|
{ .mmf
|
||
|
nop.m 999
|
||
|
(p0) setf.exp FR_ScaleP4 = GR_TEMP3
|
||
|
(p0) fmpy.s1 FR_p_3 = FR_p_3,FR_ScaleP3 ;;
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p0) movl GR_TEMP4 = 0x0000000000010045 ;;
|
||
|
}
|
||
|
{ .mmf
|
||
|
nop.m 999
|
||
|
(p0) setf.exp FR_Tmp2_C = GR_TEMP4
|
||
|
(p0) fmpy.s3 FR_Tmp_B = FR_X,FR_p_2 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fcmp.ge.unc.s1 p12, p9 = FR_Tmp_C,FR_sigma_C
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fmpy.s3 FR_Tmp_A = FR_X,FR_p_3
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p12) mov FR_C_hi = FR_Tmp_C
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
(p0) addl GR_BASE = @ltoff(Constants_Bits_of_pi_by_2#), gp
|
||
|
(p9) fadd.s3 FR_C_hi = FR_sigma_C,FR_Tmp_C
|
||
|
nop.i 999
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
|
||
|
|
||
|
// End If
|
||
|
// Step 3. Get reduced argument
|
||
|
// If sgn_x == 0 (that is original x is positive)
|
||
|
// D_hi := Pi_by_2_hi
|
||
|
// D_lo := Pi_by_2_lo
|
||
|
// Load from table
|
||
|
// Else
|
||
|
// D_hi := neg_Pi_by_2_hi
|
||
|
// D_lo := neg_Pi_by_2_lo
|
||
|
// Load from table
|
||
|
// End If
|
||
|
|
||
|
|
||
|
{ .mmi
|
||
|
ld8 GR_BASE = [GR_BASE]
|
||
|
nop.m 999
|
||
|
nop.i 999
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
|
||
|
{ .mfi
|
||
|
(p0) ldfe FR_D_hi = [GR_BASE],16
|
||
|
(p0) fmpy.s1 FR_p_4 = FR_p_4,FR_ScaleP4
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
(p0) ldfe FR_D_lo = [GR_BASE],0
|
||
|
(p0) fcmp.ge.unc.s1 p13, p10 = FR_Tmp_B,FR_sigma_B
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p13) mov FR_B_hi = FR_Tmp_B
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p12) fms.s1 FR_C_lo = FR_X,FR_p_1,FR_C_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fadd.s3 FR_B_hi = FR_sigma_B,FR_Tmp_B
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p9) fsub.s1 FR_C_hi = FR_C_hi,FR_sigma_C
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fcmp.ge.unc.s1 p14, p11 = FR_Tmp_A,FR_sigma_A
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p14) mov FR_A_hi = FR_Tmp_A
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fadd.s3 FR_A_hi = FR_sigma_A,FR_Tmp_A
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p9) fms.s1 FR_C_lo = FR_X,FR_p_1,FR_C_hi
|
||
|
(p0) cmp.eq.unc p12,p9 = 0x1,GR_sgn_x
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p13) fms.s1 FR_B_lo = FR_X,FR_p_2,FR_B_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fsub.s1 FR_B_hi = FR_B_hi,FR_sigma_B
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// Note that C_hi is of integer value. We need only the
|
||
|
// last few bits. Thus we can ensure C_hi is never a big
|
||
|
// integer, freeing us from overflow worry.
|
||
|
// Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
|
||
|
// Tmp_C is the upper portion of C_hi
|
||
|
(p0) fadd.s3 FR_Tmp_C = FR_C_hi,FR_Tmp2_C
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p14) fms.s1 FR_A_lo = FR_X,FR_p_3,FR_A_hi
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fsub.s1 FR_A_hi = FR_A_hi,FR_sigma_A
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// *******************
|
||
|
// Step 2. Get N and f
|
||
|
// *******************
|
||
|
// We have all the components to obtain
|
||
|
// S_0, S_1, S_2, S_3 and thus N and f. We start by adding
|
||
|
// C_lo and B_hi. This sum together with C_hi estimates
|
||
|
// N and f well.
|
||
|
// A := fadd.fpsr3( B_hi, C_lo )
|
||
|
// B := max( B_hi, C_lo )
|
||
|
// b := min( B_hi, C_lo )
|
||
|
(p0) fadd.s3 FR_A = FR_B_hi,FR_C_lo
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fms.s1 FR_B_lo = FR_X,FR_p_2,FR_B_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fsub.s1 FR_Tmp_C = FR_Tmp_C,FR_Tmp2_C
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fmax.s1 FR_B = FR_B_hi,FR_C_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fmin.s1 FR_b = FR_B_hi,FR_C_lo
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fms.s1 FR_A_lo = FR_X,FR_p_3,FR_A_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// N := round_to_nearest_integer_value( A );
|
||
|
(p0) fcvt.fx.s1 FR_N = FR_A
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// C_hi := C_hi - Tmp_C ...0 <= C_hi < 2^7
|
||
|
(p0) fsub.s1 FR_C_hi = FR_C_hi,FR_Tmp_C
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// a := (B - A) + b: Exact - note that a is either 0 or 2^(-64).
|
||
|
(p0) fsub.s1 FR_a = FR_B,FR_A
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// f := A - N; Exact because lsb(A) >= 2^(-64) and |f| <= 1/2.
|
||
|
(p0) fnorm.s1 FR_N = FR_N
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fadd.s1 FR_a = FR_a,FR_b
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fsub.s1 FR_f = FR_A,FR_N
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// N := convert to integer format( C_hi + N );
|
||
|
// M := P_0 * x_lo;
|
||
|
// N := N + M;
|
||
|
(p0) fadd.s1 FR_N = FR_N,FR_C_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// f = f + a Exact because a is 0 or 2^(-64);
|
||
|
// the msb of the sum is <= 1/2 and lsb >= 2^(-64).
|
||
|
(p0) fadd.s1 FR_f = FR_f,FR_a
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
//
|
||
|
// Create 2**(-33)
|
||
|
//
|
||
|
(p0) fcvt.fx.s1 FR_N = FR_N
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fabs FR_f_abs = FR_f
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
(p0) getf.sig GR_N = FR_N
|
||
|
nop.f 999
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mii
|
||
|
nop.m 999
|
||
|
nop.i 999 ;;
|
||
|
(p0) add GR_N = GR_N,GR_M ;;
|
||
|
}
|
||
|
// If sgn_x == 1 (that is original x was negative)
|
||
|
// N := 2^10 - N
|
||
|
// this maintains N to be non-negative, but still
|
||
|
// equivalent to the (negated N) mod 4.
|
||
|
// End If
|
||
|
{ .mii
|
||
|
(p12) sub GR_N = GR_Temp,GR_N
|
||
|
(p0) cmp.eq.unc p12,p9 = 0x0,GR_sgn_x ;;
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fcmp.ge.unc.s1 p13, p10 = FR_f_abs,FR_TWOM33
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p9) fsub.s1 FR_D_hi = f0, FR_D_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fadd.s3 FR_A = FR_A_hi,FR_B_lo
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p13) fadd.s1 FR_g = FR_A_hi,FR_B_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fmax.s1 FR_B = FR_A_hi,FR_B_lo
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p9) fsub.s1 FR_D_lo = f0, FR_D_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fmin.s1 FR_b = FR_A_hi,FR_B_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fsetc.s3 0x7F,0x40
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
(p10) movl GR_Temp = 0x000000000000FFCD ;;
|
||
|
}
|
||
|
{ .mmf
|
||
|
nop.m 999
|
||
|
(p10) setf.exp FR_TWOM50 = GR_Temp
|
||
|
(p10) fadd.s1 FR_f_hi = FR_A,FR_f ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// a := (B - A) + b Exact.
|
||
|
// Note that a is either 0 or 2^(-128).
|
||
|
// f_hi := A + f;
|
||
|
// f_lo := (f - f_hi) + A
|
||
|
// f_lo=f-f_hi is exact because either |f| >= |A|, in which
|
||
|
// case f-f_hi is clearly exact; or otherwise, 0<|f|<|A|
|
||
|
// means msb(f) <= msb(A) = 2^(-64) => |f| = 2^(-64).
|
||
|
// If f = 2^(-64), f-f_hi involves cancellation and is
|
||
|
// exact. If f = -2^(-64), then A + f is exact. Hence
|
||
|
// f-f_hi is -A exactly, giving f_lo = 0.
|
||
|
// f_lo := f_lo + a;
|
||
|
(p10) fsub.s1 FR_a = FR_B,FR_A
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p13) fadd.s1 FR_s_hi = FR_f,FR_g
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
// If |f| >= 2^(-33)
|
||
|
// Case 1
|
||
|
// CASE := 1
|
||
|
// g := A_hi + B_lo;
|
||
|
// s_hi := f + g;
|
||
|
// s_lo := (f - s_hi) + g;
|
||
|
(p13) movl GR_CASE = 0x1 ;;
|
||
|
}
|
||
|
{ .mlx
|
||
|
nop.m 999
|
||
|
// Else
|
||
|
// Case 2
|
||
|
// CASE := 2
|
||
|
// A := fadd.fpsr3( A_hi, B_lo )
|
||
|
// B := max( A_hi, B_lo )
|
||
|
// b := min( A_hi, B_lo )
|
||
|
(p10) movl GR_CASE = 0x2
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fsub.s1 FR_f_lo = FR_f,FR_f_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fadd.s1 FR_a = FR_a,FR_b
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p13) fsub.s1 FR_s_lo = FR_f,FR_s_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p13) fadd.s1 FR_s_lo = FR_s_lo,FR_g
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fcmp.ge.unc.s1 p14, p11 = FR_f_abs,FR_TWOM50
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
//
|
||
|
// Create 2**(-50)
|
||
|
(p10) fadd.s1 FR_f_lo = FR_f_lo,FR_A
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// If |f| >= 2^(-50) then
|
||
|
// s_hi := f_hi;
|
||
|
// s_lo := f_lo;
|
||
|
// Else
|
||
|
// f_lo := (f_lo + A_lo) + x*p_4
|
||
|
// s_hi := f_hi + f_lo
|
||
|
// s_lo := (f_hi - s_hi) + f_lo
|
||
|
// End If
|
||
|
(p14) mov FR_s_hi = FR_f_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fadd.s1 FR_f_lo = FR_f_lo,FR_a
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p14) mov FR_s_lo = FR_f_lo
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fadd.s1 FR_f_lo = FR_f_lo,FR_A_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fma.s1 FR_f_lo = FR_X,FR_p_4,FR_f_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fadd.s1 FR_s_hi = FR_f_hi,FR_f_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
// r_hi := s_hi*D_hi
|
||
|
// r_lo := s_hi*D_hi - r_hi with fma
|
||
|
// r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
|
||
|
(p0) fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fsub.s1 FR_s_lo = FR_f_hi,FR_s_hi
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fadd.s1 FR_s_lo = FR_s_lo,FR_f_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
// Return N, r_hi, r_lo
|
||
|
// We do not return CASE
|
||
|
(p0) stfe [GR_Address_of_Outputs] = FR_r_hi,16
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p0) fma.s1 FR_r_lo = FR_s_lo,FR_D_hi,FR_r_lo
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mmi
|
||
|
nop.m 999 ;;
|
||
|
(p0) stfe [GR_Address_of_Outputs] = FR_r_lo,-16
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mib
|
||
|
nop.m 999
|
||
|
nop.i 999
|
||
|
(p0) br.ret.sptk b0 ;;
|
||
|
}
|
||
|
|
||
|
.endp __libm_pi_by_2_reduce
|
||
|
ASM_SIZE_DIRECTIVE(__libm_pi_by_2_reduce)
|