mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-11 05:40:06 +00:00
130 lines
4.9 KiB
C
130 lines
4.9 KiB
C
|
/* Single-precision vector (Advanced SIMD) tan function
|
||
|
|
||
|
Copyright (C) 2023 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, see
|
||
|
<https://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include "v_math.h"
|
||
|
#include "poly_advsimd_f32.h"
|
||
|
|
||
|
static const struct data
|
||
|
{
|
||
|
float32x4_t poly[6];
|
||
|
float32x4_t neg_half_pi_1, neg_half_pi_2, neg_half_pi_3, two_over_pi, shift;
|
||
|
#if !WANT_SIMD_EXCEPT
|
||
|
float32x4_t range_val;
|
||
|
#endif
|
||
|
} data = {
|
||
|
/* Coefficients generated using FPMinimax. */
|
||
|
.poly = { V4 (0x1.55555p-2f), V4 (0x1.11166p-3f), V4 (0x1.b88a78p-5f),
|
||
|
V4 (0x1.7b5756p-6f), V4 (0x1.4ef4cep-8f), V4 (0x1.0e1e74p-7f) },
|
||
|
.neg_half_pi_1 = V4 (-0x1.921fb6p+0f),
|
||
|
.neg_half_pi_2 = V4 (0x1.777a5cp-25f),
|
||
|
.neg_half_pi_3 = V4 (0x1.ee59dap-50f),
|
||
|
.two_over_pi = V4 (0x1.45f306p-1f),
|
||
|
.shift = V4 (0x1.8p+23f),
|
||
|
#if !WANT_SIMD_EXCEPT
|
||
|
.range_val = V4 (0x1p15f),
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
#define RangeVal v_u32 (0x47000000) /* asuint32(0x1p15f). */
|
||
|
#define TinyBound v_u32 (0x30000000) /* asuint32 (0x1p-31f). */
|
||
|
#define Thresh v_u32 (0x16000000) /* asuint32(RangeVal) - TinyBound. */
|
||
|
|
||
|
/* Special cases (fall back to scalar calls). */
|
||
|
static float32x4_t VPCS_ATTR NOINLINE
|
||
|
special_case (float32x4_t x, float32x4_t y, uint32x4_t cmp)
|
||
|
{
|
||
|
return v_call_f32 (tanf, x, y, cmp);
|
||
|
}
|
||
|
|
||
|
/* Use a full Estrin scheme to evaluate polynomial. */
|
||
|
static inline float32x4_t
|
||
|
eval_poly (float32x4_t z, const struct data *d)
|
||
|
{
|
||
|
float32x4_t z2 = vmulq_f32 (z, z);
|
||
|
#if WANT_SIMD_EXCEPT
|
||
|
/* Tiny z (<= 0x1p-31) will underflow when calculating z^4. If fp exceptions
|
||
|
are to be triggered correctly, sidestep this by fixing such lanes to 0. */
|
||
|
uint32x4_t will_uflow
|
||
|
= vcleq_u32 (vreinterpretq_u32_f32 (vabsq_f32 (z)), TinyBound);
|
||
|
if (__glibc_unlikely (v_any_u32 (will_uflow)))
|
||
|
z2 = vbslq_f32 (will_uflow, v_f32 (0), z2);
|
||
|
#endif
|
||
|
float32x4_t z4 = vmulq_f32 (z2, z2);
|
||
|
return v_estrin_5_f32 (z, z2, z4, d->poly);
|
||
|
}
|
||
|
|
||
|
/* Fast implementation of AdvSIMD tanf.
|
||
|
Maximum error is 3.45 ULP:
|
||
|
__v_tanf(-0x1.e5f0cap+13) got 0x1.ff9856p-1
|
||
|
want 0x1.ff9850p-1. */
|
||
|
float32x4_t VPCS_ATTR V_NAME_F1 (tan) (float32x4_t x)
|
||
|
{
|
||
|
const struct data *d = ptr_barrier (&data);
|
||
|
float32x4_t special_arg = x;
|
||
|
|
||
|
/* iax >= RangeVal means x, if not inf or NaN, is too large to perform fast
|
||
|
regression. */
|
||
|
#if WANT_SIMD_EXCEPT
|
||
|
uint32x4_t iax = vreinterpretq_u32_f32 (vabsq_f32 (x));
|
||
|
/* If fp exceptions are to be triggered correctly, also special-case tiny
|
||
|
input, as this will load to overflow later. Fix any special lanes to 1 to
|
||
|
prevent any exceptions being triggered. */
|
||
|
uint32x4_t special = vcgeq_u32 (vsubq_u32 (iax, TinyBound), Thresh);
|
||
|
if (__glibc_unlikely (v_any_u32 (special)))
|
||
|
x = vbslq_f32 (special, v_f32 (1.0f), x);
|
||
|
#else
|
||
|
/* Otherwise, special-case large and special values. */
|
||
|
uint32x4_t special = vcageq_f32 (x, d->range_val);
|
||
|
#endif
|
||
|
|
||
|
/* n = rint(x/(pi/2)). */
|
||
|
float32x4_t q = vfmaq_f32 (d->shift, d->two_over_pi, x);
|
||
|
float32x4_t n = vsubq_f32 (q, d->shift);
|
||
|
/* Determine if x lives in an interval, where |tan(x)| grows to infinity. */
|
||
|
uint32x4_t pred_alt = vtstq_u32 (vreinterpretq_u32_f32 (q), v_u32 (1));
|
||
|
|
||
|
/* r = x - n * (pi/2) (range reduction into -pi./4 .. pi/4). */
|
||
|
float32x4_t r;
|
||
|
r = vfmaq_f32 (x, d->neg_half_pi_1, n);
|
||
|
r = vfmaq_f32 (r, d->neg_half_pi_2, n);
|
||
|
r = vfmaq_f32 (r, d->neg_half_pi_3, n);
|
||
|
|
||
|
/* If x lives in an interval, where |tan(x)|
|
||
|
- is finite, then use a polynomial approximation of the form
|
||
|
tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2).
|
||
|
- grows to infinity then use symmetries of tangent and the identity
|
||
|
tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use
|
||
|
the same polynomial approximation of tan as above. */
|
||
|
|
||
|
/* Invert sign of r if odd quadrant. */
|
||
|
float32x4_t z = vmulq_f32 (r, vbslq_f32 (pred_alt, v_f32 (-1), v_f32 (1)));
|
||
|
|
||
|
/* Evaluate polynomial approximation of tangent on [-pi/4, pi/4]. */
|
||
|
float32x4_t z2 = vmulq_f32 (r, r);
|
||
|
float32x4_t p = eval_poly (z2, d);
|
||
|
float32x4_t y = vfmaq_f32 (z, vmulq_f32 (z, z2), p);
|
||
|
|
||
|
/* Compute reciprocal and apply if required. */
|
||
|
float32x4_t inv_y = vdivq_f32 (v_f32 (1.0f), y);
|
||
|
|
||
|
if (__glibc_unlikely (v_any_u32 (special)))
|
||
|
return special_case (special_arg, vbslq_f32 (pred_alt, inv_y, y), special);
|
||
|
return vbslq_f32 (pred_alt, inv_y, y);
|
||
|
}
|