mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-14 23:30:06 +00:00
784 lines
24 KiB
ArmAsm
784 lines
24 KiB
ArmAsm
|
.file "libm_sincos.s"
|
||
|
|
||
|
|
||
|
// Copyright (c) 2002 - 2005, Intel Corporation
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Contributed 2002 by the Intel Numerics Group, Intel Corporation
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote
|
||
|
// products derived from this software without specific prior written
|
||
|
// permission.
|
||
|
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
||
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Intel Corporation is the author of this code, and requests that all
|
||
|
// problem reports or change requests be submitted to it directly at
|
||
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
||
|
//
|
||
|
// History
|
||
|
//==============================================================
|
||
|
// 02/01/02 Initial version
|
||
|
// 02/18/02 Large arguments processing routine is excluded.
|
||
|
// External interface entry points are added
|
||
|
// 03/13/02 Corrected restore of predicate registers
|
||
|
// 03/19/02 Added stack unwind around call to __libm_cis_large
|
||
|
// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
|
||
|
// 02/10/03 Reordered header: .section, .global, .proc, .align
|
||
|
// 08/08/03 Improved performance
|
||
|
// 02/11/04 cis is moved to the separate file.
|
||
|
// 03/31/05 Reformatted delimiters between data tables
|
||
|
//
|
||
|
// API
|
||
|
//==============================================================
|
||
|
// 1) void sincos(double, double*s, double*c)
|
||
|
// 2) __libm_sincos - internal LIBM function, that accepts
|
||
|
// argument in f8 and returns cosine through f8, sine through f9
|
||
|
//
|
||
|
// Overview of operation
|
||
|
//==============================================================
|
||
|
//
|
||
|
// Step 1
|
||
|
// ======
|
||
|
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
|
||
|
// divide x by pi/2^k.
|
||
|
// Multiply by 2^k/pi.
|
||
|
// nfloat = Round result to integer (round-to-nearest)
|
||
|
//
|
||
|
// r = x - nfloat * pi/2^k
|
||
|
// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
|
||
|
// nfloat * LOW(pi/2^k)) -
|
||
|
// nfloat * LOWEST(pi/2^k) for increased accuracy.
|
||
|
// pi/2^k is stored as two numbers that when added make pi/2^k.
|
||
|
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
|
||
|
// HIGH and LOW parts are rounded to zero values,
|
||
|
// and LOWEST is rounded to nearest one.
|
||
|
//
|
||
|
// x = (nfloat * pi/2^k) + r
|
||
|
// r is small enough that we can use a polynomial approximation
|
||
|
// and is referred to as the reduced argument.
|
||
|
//
|
||
|
// Step 3
|
||
|
// ======
|
||
|
// Take the unreduced part and remove the multiples of 2pi.
|
||
|
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
|
||
|
//
|
||
|
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
|
||
|
// N * 2^(k+1)
|
||
|
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
|
||
|
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
|
||
|
// nfloat * pi/2^k = N2pi + M * pi/2^k
|
||
|
//
|
||
|
//
|
||
|
// Sin(x) = Sin((nfloat * pi/2^k) + r)
|
||
|
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
|
||
|
//
|
||
|
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
|
||
|
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
|
||
|
// = Sin(Mpi/2^k)
|
||
|
//
|
||
|
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
|
||
|
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
|
||
|
// = Cos(Mpi/2^k)
|
||
|
//
|
||
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
||
|
//
|
||
|
//
|
||
|
// Step 4
|
||
|
// ======
|
||
|
// 0 <= M < 2^(k+1)
|
||
|
// There are 2^(k+1) Sin entries in a table.
|
||
|
// There are 2^(k+1) Cos entries in a table.
|
||
|
//
|
||
|
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
|
||
|
//
|
||
|
//
|
||
|
// Step 5
|
||
|
// ======
|
||
|
// Calculate Cos(r) and Sin(r) by polynomial approximation.
|
||
|
//
|
||
|
// Cos(r) = 1 + r^2 q1 + r^4 q2 + r^6 q3 + ... = Series for Cos
|
||
|
// Sin(r) = r + r^3 p1 + r^5 p2 + r^7 p3 + ... = Series for Sin
|
||
|
//
|
||
|
// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
|
||
|
//
|
||
|
//
|
||
|
// Calculate
|
||
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
||
|
//
|
||
|
// as follows
|
||
|
//
|
||
|
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
|
||
|
// rsq = r*r
|
||
|
//
|
||
|
//
|
||
|
// P = p1 + r^2p2 + r^4p3 + r^6p4
|
||
|
// Q = q1 + r^2q2 + r^4q3 + r^6q4
|
||
|
//
|
||
|
// rcub = r * rsq
|
||
|
// Sin(r) = r + rcub * P
|
||
|
// = r + r^3p1 + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
|
||
|
//
|
||
|
// The coefficients are not exactly these values, but almost.
|
||
|
//
|
||
|
// p1 = -1/6 = -1/3!
|
||
|
// p2 = 1/120 = 1/5!
|
||
|
// p3 = -1/5040 = -1/7!
|
||
|
// p4 = 1/362889 = 1/9!
|
||
|
//
|
||
|
// P = r + rcub * P
|
||
|
//
|
||
|
// Answer = S[m] Cos(r) + C[m] P
|
||
|
//
|
||
|
// Cos(r) = 1 + rsq Q
|
||
|
// Cos(r) = 1 + r^2 Q
|
||
|
// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
|
||
|
// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
|
||
|
//
|
||
|
// S[m] Cos(r) = S[m](1 + rsq Q)
|
||
|
// S[m] Cos(r) = S[m] + S[m] rsq Q
|
||
|
// S[m] Cos(r) = S[m] + s_rsq Q
|
||
|
// Q = S[m] + s_rsq Q
|
||
|
//
|
||
|
// Then,
|
||
|
//
|
||
|
// Answer = Q + C[m] P
|
||
|
|
||
|
// Registers used
|
||
|
//==============================================================
|
||
|
// general input registers:
|
||
|
// r14 -> r39
|
||
|
|
||
|
// predicate registers used:
|
||
|
// p6 -> p14
|
||
|
//
|
||
|
// floating-point registers used
|
||
|
// f9 -> f15
|
||
|
// f32 -> f67
|
||
|
|
||
|
// Assembly macros
|
||
|
//==============================================================
|
||
|
|
||
|
cis_Arg = f8
|
||
|
|
||
|
cis_Sin_res = f9
|
||
|
cis_Cos_res = f8
|
||
|
|
||
|
cis_NORM_f8 = f10
|
||
|
cis_W = f11
|
||
|
cis_int_Nfloat = f12
|
||
|
cis_Nfloat = f13
|
||
|
|
||
|
cis_r = f14
|
||
|
cis_rsq = f15
|
||
|
cis_rcub = f32
|
||
|
|
||
|
cis_Inv_Pi_by_16 = f33
|
||
|
cis_Pi_by_16_hi = f34
|
||
|
cis_Pi_by_16_lo = f35
|
||
|
|
||
|
cis_Inv_Pi_by_64 = f36
|
||
|
cis_Pi_by_16_lowest = f37
|
||
|
cis_r_exact = f38
|
||
|
|
||
|
|
||
|
cis_P1 = f39
|
||
|
cis_Q1 = f40
|
||
|
cis_P2 = f41
|
||
|
cis_Q2 = f42
|
||
|
cis_P3 = f43
|
||
|
cis_Q3 = f44
|
||
|
cis_P4 = f45
|
||
|
cis_Q4 = f46
|
||
|
|
||
|
cis_P_temp1 = f47
|
||
|
cis_P_temp2 = f48
|
||
|
|
||
|
cis_Q_temp1 = f49
|
||
|
cis_Q_temp2 = f50
|
||
|
|
||
|
cis_P = f51
|
||
|
|
||
|
cis_SIG_INV_PI_BY_16_2TO61 = f52
|
||
|
cis_RSHF_2TO61 = f53
|
||
|
cis_RSHF = f54
|
||
|
cis_2TOM61 = f55
|
||
|
cis_NFLOAT = f56
|
||
|
cis_W_2TO61_RSH = f57
|
||
|
|
||
|
cis_tmp = f58
|
||
|
|
||
|
cis_Sm_sin = f59
|
||
|
cis_Cm_sin = f60
|
||
|
|
||
|
cis_Sm_cos = f61
|
||
|
cis_Cm_cos = f62
|
||
|
|
||
|
cis_srsq_sin = f63
|
||
|
cis_srsq_cos = f64
|
||
|
|
||
|
cis_Q_sin = f65
|
||
|
cis_Q_cos = f66
|
||
|
cis_Q = f67
|
||
|
|
||
|
/////////////////////////////////////////////////////////////
|
||
|
|
||
|
cis_pResSin = r33
|
||
|
cis_pResCos = r34
|
||
|
|
||
|
cis_GR_sig_inv_pi_by_16 = r14
|
||
|
cis_GR_rshf_2to61 = r15
|
||
|
cis_GR_rshf = r16
|
||
|
cis_GR_exp_2tom61 = r17
|
||
|
cis_GR_n = r18
|
||
|
cis_GR_n_sin = r19
|
||
|
cis_exp_limit = r20
|
||
|
cis_r_signexp = r21
|
||
|
cis_AD_1 = r22
|
||
|
cis_r_sincos = r23
|
||
|
cis_r_exp = r24
|
||
|
cis_r_17_ones = r25
|
||
|
cis_GR_m_sin = r26
|
||
|
cis_GR_32m_sin = r26
|
||
|
cis_GR_n_cos = r27
|
||
|
cis_GR_m_cos = r28
|
||
|
cis_GR_32m_cos = r28
|
||
|
cis_AD_2_sin = r29
|
||
|
cis_AD_2_cos = r30
|
||
|
cis_gr_tmp = r31
|
||
|
|
||
|
GR_SAVE_B0 = r35
|
||
|
GR_SAVE_GP = r36
|
||
|
rB0_SAVED = r37
|
||
|
GR_SAVE_PFS = r38
|
||
|
GR_SAVE_PR = r39
|
||
|
|
||
|
RODATA
|
||
|
|
||
|
.align 16
|
||
|
// Pi/16 parts
|
||
|
LOCAL_OBJECT_START(double_cis_pi)
|
||
|
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
|
||
|
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
|
||
|
data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
|
||
|
LOCAL_OBJECT_END(double_cis_pi)
|
||
|
|
||
|
// Coefficients for polynomials
|
||
|
LOCAL_OBJECT_START(double_cis_pq_k4)
|
||
|
data8 0x3EC71C963717C63A // P4
|
||
|
data8 0x3EF9FFBA8F191AE6 // Q4
|
||
|
data8 0xBF2A01A00F4E11A8 // P3
|
||
|
data8 0xBF56C16C05AC77BF // Q3
|
||
|
data8 0x3F8111111110F167 // P2
|
||
|
data8 0x3FA555555554DD45 // Q2
|
||
|
data8 0xBFC5555555555555 // P1
|
||
|
data8 0xBFDFFFFFFFFFFFFC // Q1
|
||
|
LOCAL_OBJECT_END(double_cis_pq_k4)
|
||
|
|
||
|
// Sincos table (S[m], C[m])
|
||
|
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
|
||
|
data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
|
||
|
data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
|
||
|
//
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
|
||
|
data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
|
||
|
//
|
||
|
data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
|
||
|
data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
|
||
|
//
|
||
|
data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
|
||
|
data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
|
||
|
//
|
||
|
data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
|
||
|
data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
|
||
|
//
|
||
|
data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
|
||
|
data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
|
||
|
//
|
||
|
data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
|
||
|
data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
|
||
|
//
|
||
|
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
|
||
|
//
|
||
|
data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
|
||
|
data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
|
||
|
//
|
||
|
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
|
||
|
//
|
||
|
data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
|
||
|
data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
|
||
|
//
|
||
|
data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
|
||
|
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
|
||
|
//
|
||
|
data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
|
||
|
data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
|
||
|
//
|
||
|
data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
|
||
|
data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
|
||
|
//
|
||
|
data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
|
||
|
data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
|
||
|
//
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
|
||
|
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
|
||
|
//
|
||
|
data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
|
||
|
data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
|
||
|
//
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
|
||
|
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
|
||
|
//
|
||
|
data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
|
||
|
data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
|
||
|
//
|
||
|
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
|
||
|
data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
|
||
|
//
|
||
|
data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
|
||
|
data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
|
||
|
//
|
||
|
data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
|
||
|
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
|
||
|
//
|
||
|
data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
|
||
|
data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
|
||
|
//
|
||
|
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
|
||
|
//
|
||
|
data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
|
||
|
data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
|
||
|
//
|
||
|
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
|
||
|
//
|
||
|
data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
|
||
|
data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
|
||
|
//
|
||
|
data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
|
||
|
data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
|
||
|
//
|
||
|
data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
|
||
|
data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
|
||
|
//
|
||
|
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
|
||
|
data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
|
||
|
//
|
||
|
data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
|
||
|
data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
|
||
|
//
|
||
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
|
||
|
data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
|
||
|
//
|
||
|
data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
|
||
|
data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
|
||
|
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
|
||
|
|
||
|
.section .text
|
||
|
|
||
|
GLOBAL_IEEE754_ENTRY(sincos)
|
||
|
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
|
||
|
{ .mlx
|
||
|
getf.exp cis_r_signexp = cis_Arg
|
||
|
movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
|
||
|
|
||
|
}
|
||
|
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
||
|
{ .mlx
|
||
|
addl cis_AD_1 = @ltoff(double_cis_pi), gp
|
||
|
movl cis_GR_rshf_2to61 = 0x47b8000000000000
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
ld8 cis_AD_1 = [cis_AD_1]
|
||
|
fnorm.s1 cis_NORM_f8 = cis_Arg
|
||
|
cmp.eq p13, p14 = r0, r0 // p13 set for sincos
|
||
|
}
|
||
|
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
||
|
{ .mib
|
||
|
mov cis_GR_exp_2tom61 = 0xffff-61
|
||
|
nop.i 0
|
||
|
br.cond.sptk _CIS_COMMON
|
||
|
};;
|
||
|
GLOBAL_IEEE754_END(sincos)
|
||
|
|
||
|
GLOBAL_LIBM_ENTRY(__libm_sincos)
|
||
|
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
|
||
|
{ .mlx
|
||
|
getf.exp cis_r_signexp = cis_Arg
|
||
|
movl cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
|
||
|
}
|
||
|
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
||
|
{ .mlx
|
||
|
addl cis_AD_1 = @ltoff(double_cis_pi), gp
|
||
|
movl cis_GR_rshf_2to61 = 0x47b8000000000000
|
||
|
};;
|
||
|
|
||
|
// p14 set for __libm_sincos and cis
|
||
|
{ .mfi
|
||
|
ld8 cis_AD_1 = [cis_AD_1]
|
||
|
fnorm.s1 cis_NORM_f8 = cis_Arg
|
||
|
cmp.eq p14, p13 = r0, r0
|
||
|
}
|
||
|
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
||
|
{ .mib
|
||
|
mov cis_GR_exp_2tom61 = 0xffff-61
|
||
|
nop.i 0
|
||
|
nop.b 0
|
||
|
};;
|
||
|
|
||
|
_CIS_COMMON:
|
||
|
// Form two constants we need
|
||
|
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
|
||
|
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
|
||
|
// fcmp used to set denormal, and invalid on snans
|
||
|
{ .mfi
|
||
|
setf.sig cis_SIG_INV_PI_BY_16_2TO61 = cis_GR_sig_inv_pi_by_16
|
||
|
fclass.m p6,p0 = cis_Arg, 0xe7 // if x=0,inf,nan
|
||
|
addl cis_gr_tmp = -1, r0
|
||
|
}
|
||
|
// 1.1000 2^63 for right shift
|
||
|
{ .mlx
|
||
|
setf.d cis_RSHF_2TO61 = cis_GR_rshf_2to61
|
||
|
movl cis_GR_rshf = 0x43e8000000000000
|
||
|
};;
|
||
|
|
||
|
// Form another constant
|
||
|
// 2^-61 for scaling Nfloat
|
||
|
// 0x1001a is register_bias + 27.
|
||
|
// So if f8 >= 2^27, go to large arguments routine
|
||
|
{ .mfi
|
||
|
alloc GR_SAVE_PFS = ar.pfs, 3, 5, 0, 0
|
||
|
fclass.m p11,p0 = cis_Arg, 0x0b // Test for x=unorm
|
||
|
mov cis_exp_limit = 0x1001a
|
||
|
}
|
||
|
{ .mib
|
||
|
setf.exp cis_2TOM61 = cis_GR_exp_2tom61
|
||
|
nop.i 0
|
||
|
(p6) br.cond.spnt _CIS_SPECIAL_ARGS
|
||
|
};;
|
||
|
|
||
|
// Load the two pieces of pi/16
|
||
|
// Form another constant
|
||
|
// 1.1000...000 * 2^63, the right shift constant
|
||
|
{ .mmb
|
||
|
ldfe cis_Pi_by_16_hi = [cis_AD_1],16
|
||
|
setf.d cis_RSHF = cis_GR_rshf
|
||
|
(p11) br.cond.spnt _CIS_UNORM // Branch if x=unorm
|
||
|
};;
|
||
|
|
||
|
_CIS_COMMON2:
|
||
|
// Return here if x=unorm
|
||
|
// Create constant inexact set
|
||
|
{ .mmi
|
||
|
ldfe cis_Pi_by_16_lo = [cis_AD_1],16
|
||
|
setf.sig cis_tmp = cis_gr_tmp
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
// Select exponent (17 lsb)
|
||
|
{ .mfi
|
||
|
ldfe cis_Pi_by_16_lowest = [cis_AD_1],16
|
||
|
nop.f 0
|
||
|
dep.z cis_r_exp = cis_r_signexp, 0, 17
|
||
|
};;
|
||
|
|
||
|
// Start loading P, Q coefficients
|
||
|
// p10 is true if we must call routines to handle larger arguments
|
||
|
// p10 is true if f8 exp is > 0x1001a
|
||
|
{ .mmb
|
||
|
ldfpd cis_P4,cis_Q4 = [cis_AD_1],16
|
||
|
cmp.ge p10, p0 = cis_r_exp, cis_exp_limit
|
||
|
(p10) br.cond.spnt _CIS_LARGE_ARGS // go to |x| >= 2^27 path
|
||
|
};;
|
||
|
|
||
|
// cis_W = x * cis_Inv_Pi_by_16
|
||
|
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
|
||
|
// rightmost bits of significand
|
||
|
{ .mfi
|
||
|
ldfpd cis_P3,cis_Q3 = [cis_AD_1],16
|
||
|
fma.s1 cis_W_2TO61_RSH = cis_NORM_f8,cis_SIG_INV_PI_BY_16_2TO61,cis_RSHF_2TO61
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
// get N = (int)cis_int_Nfloat
|
||
|
// cis_NFLOAT = Round_Int_Nearest(cis_W)
|
||
|
{ .mmf
|
||
|
getf.sig cis_GR_n = cis_W_2TO61_RSH
|
||
|
ldfpd cis_P2,cis_Q2 = [cis_AD_1],16
|
||
|
fms.s1 cis_NFLOAT = cis_W_2TO61_RSH,cis_2TOM61,cis_RSHF
|
||
|
};;
|
||
|
|
||
|
// cis_r = -cis_Nfloat * cis_Pi_by_16_hi + x
|
||
|
{ .mfi
|
||
|
ldfpd cis_P1,cis_Q1 = [cis_AD_1], 16
|
||
|
fnma.s1 cis_r = cis_NFLOAT,cis_Pi_by_16_hi,cis_NORM_f8
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
// Add 2^(k-1) (which is in cis_r_sincos) to N
|
||
|
{ .mmi
|
||
|
add cis_GR_n_cos = 0x8, cis_GR_n
|
||
|
;;
|
||
|
//Get M (least k+1 bits of N)
|
||
|
and cis_GR_m_sin = 0x1f,cis_GR_n
|
||
|
and cis_GR_m_cos = 0x1f,cis_GR_n_cos
|
||
|
};;
|
||
|
|
||
|
{ .mmi
|
||
|
nop.m 0
|
||
|
nop.m 0
|
||
|
shl cis_GR_32m_sin = cis_GR_m_sin,5
|
||
|
};;
|
||
|
|
||
|
// Add 32*M to address of sin_cos_beta table
|
||
|
// cis_r = cis_r -cis_Nfloat * cis_Pi_by_16_lo
|
||
|
{ .mfi
|
||
|
add cis_AD_2_sin = cis_GR_32m_sin, cis_AD_1
|
||
|
fnma.s1 cis_r = cis_NFLOAT, cis_Pi_by_16_lo, cis_r
|
||
|
shl cis_GR_32m_cos = cis_GR_m_cos,5
|
||
|
};;
|
||
|
|
||
|
// Add 32*M to address of sin_cos_beta table
|
||
|
{ .mmf
|
||
|
ldfe cis_Sm_sin = [cis_AD_2_sin],16
|
||
|
add cis_AD_2_cos = cis_GR_32m_cos, cis_AD_1
|
||
|
fclass.m.unc p10,p0 = cis_Arg,0x0b // den. input - uflow
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
ldfe cis_Sm_cos = [cis_AD_2_cos], 16
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
ldfe cis_Cm_sin = [cis_AD_2_sin]
|
||
|
fma.s1 cis_rsq = cis_r, cis_r, f0 // get r^2
|
||
|
nop.i 0
|
||
|
}
|
||
|
// fmpy forces inexact flag
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fmpy.s0 cis_tmp = cis_tmp,cis_tmp
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fnma.s1 cis_r_exact = cis_NFLOAT, cis_Pi_by_16_lowest, cis_r
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
ldfe cis_Cm_cos = [cis_AD_2_cos]
|
||
|
fma.s1 cis_P_temp1 = cis_rsq, cis_P4, cis_P3
|
||
|
nop.i 0
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_Q_temp1 = cis_rsq, cis_Q4, cis_Q3
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fmpy.s1 cis_srsq_sin = cis_Sm_sin, cis_rsq
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fmpy.s1 cis_srsq_cos = cis_Sm_cos,cis_rsq
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_Q_temp2 = cis_rsq, cis_Q_temp1, cis_Q2
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_P_temp2 = cis_rsq, cis_P_temp1, cis_P2
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fmpy.s1 cis_rcub = cis_r_exact, cis_rsq // get r^3
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_Q = cis_rsq, cis_Q_temp2, cis_Q1
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_P = cis_rsq, cis_P_temp2, cis_P1
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_Q_sin = cis_srsq_sin,cis_Q, cis_Sm_sin
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_Q_cos = cis_srsq_cos,cis_Q, cis_Sm_cos
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.s1 cis_P = cis_rcub,cis_P, cis_r_exact // final P
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
// If den. arg, force underflow to be set
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
(p10) fmpy.d.s0 cis_tmp = cis_Arg,cis_Arg
|
||
|
nop.i 0
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.d.s0 cis_Sin_res = cis_Cm_sin,cis_P,cis_Q_sin//Final sin
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfb
|
||
|
nop.m 0
|
||
|
fma.d.s0 cis_Cos_res = cis_Cm_cos,cis_P,cis_Q_cos//Final cos
|
||
|
(p14) br.ret.sptk b0 // common exit for __libm_sincos and cis main path
|
||
|
};;
|
||
|
|
||
|
{ .mmb
|
||
|
stfd [cis_pResSin] = cis_Sin_res
|
||
|
stfd [cis_pResCos] = cis_Cos_res
|
||
|
br.ret.sptk b0 // common exit for sincos main path
|
||
|
};;
|
||
|
|
||
|
_CIS_SPECIAL_ARGS:
|
||
|
// sin(+/-0) = +/-0
|
||
|
// sin(Inf) = NaN
|
||
|
// sin(NaN) = NaN
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fma.d.s0 cis_Sin_res = cis_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
|
||
|
nop.i 999
|
||
|
};;
|
||
|
// cos(+/-0) = 1.0
|
||
|
// cos(Inf) = NaN
|
||
|
// cos(NaN) = NaN
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
fma.d.s0 cis_Cos_res = cis_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
|
||
|
(p14) br.ret.sptk b0 //spec exit for __libm_sincos and cis main path
|
||
|
};;
|
||
|
|
||
|
{ .mmb
|
||
|
stfd [cis_pResSin] = cis_Sin_res
|
||
|
stfd [cis_pResCos] = cis_Cos_res
|
||
|
br.ret.sptk b0 // common exit for sincos main path
|
||
|
};;
|
||
|
|
||
|
_CIS_UNORM:
|
||
|
// Here if x=unorm
|
||
|
{ .mfb
|
||
|
getf.exp cis_r_signexp = cis_NORM_f8 // Get signexp of x
|
||
|
fcmp.eq.s0 p11,p0 = cis_Arg, f0 // Dummy op to set denorm
|
||
|
br.cond.sptk _CIS_COMMON2 // Return to main path
|
||
|
};;
|
||
|
|
||
|
GLOBAL_LIBM_END(__libm_sincos)
|
||
|
|
||
|
//// |x| > 2^27 path ///////
|
||
|
.proc _CIS_LARGE_ARGS
|
||
|
_CIS_LARGE_ARGS:
|
||
|
.prologue
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
nop.f 0
|
||
|
.save ar.pfs, GR_SAVE_PFS
|
||
|
mov GR_SAVE_PFS = ar.pfs
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mfi
|
||
|
mov GR_SAVE_GP = gp
|
||
|
nop.f 0
|
||
|
.save b0, GR_SAVE_B0
|
||
|
mov GR_SAVE_B0 = b0
|
||
|
};;
|
||
|
|
||
|
.body
|
||
|
// Call of huge arguments sincos
|
||
|
{ .mib
|
||
|
nop.m 0
|
||
|
mov GR_SAVE_PR = pr
|
||
|
br.call.sptk b0 = __libm_sincos_large
|
||
|
};;
|
||
|
|
||
|
{ .mfi
|
||
|
mov gp = GR_SAVE_GP
|
||
|
nop.f 0
|
||
|
mov pr = GR_SAVE_PR, 0x1fffe
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
nop.f 0
|
||
|
mov b0 = GR_SAVE_B0
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fma.d.s0 cis_Cos_res = cis_Cos_res, f1, f0
|
||
|
mov ar.pfs = GR_SAVE_PFS
|
||
|
}
|
||
|
{ .mfb
|
||
|
nop.m 0
|
||
|
fma.d.s0 cis_Sin_res = cis_Sin_res, f1, f0
|
||
|
(p14) br.ret.sptk b0 // exit for |x| > 2^27 path (__libm_sincos and cis)
|
||
|
};;
|
||
|
|
||
|
{ .mmb
|
||
|
stfd [cis_pResSin] = cis_Sin_res
|
||
|
stfd [cis_pResCos] = cis_Cos_res
|
||
|
br.ret.sptk b0 // exit for sincos |x| > 2^27 path
|
||
|
};;
|
||
|
.endp _CIS_LARGE_ARGS
|
||
|
|
||
|
.type __libm_sincos_large#,@function
|
||
|
.global __libm_sincos_large#
|
||
|
|