glibc/math/auto-libm-test-in

1581 lines
33 KiB
Plaintext
Raw Normal View History

# libm test inputs for gen-auto-libm-tests.c.
# Copyright (C) 1997-2013 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
#
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# <http://www.gnu.org/licenses/>. */
acos 0
acos -0
acos 1
acos -1
acos 0.5
acos -0.5
acos 0.75
acos 2e-17
acos 0.0625
acos 0x0.ffffffp0
acos -0x0.ffffffp0
acos 0x0.ffffffff8p0
acos -0x0.ffffffff8p0
acos 0x0.ffffffffffffp0
acos -0x0.ffffffffffffp0
acos 0x0.ffffffffffffffffp0
acos -0x0.ffffffffffffffffp0
acosh 1
acosh 7
asin 0
asin -0
asin 0.5
asin -0.5
asin 1.0
asin -1.0
asin 0.75
asin 0x0.ffffffp0
asin -0x0.ffffffp0
asin 0x0.ffffffff8p0
asin -0x0.ffffffff8p0
asin 0x0.ffffffffffffp0
asin -0x0.ffffffffffffp0
asin 0x0.ffffffffffffffffp0
asin -0x0.ffffffffffffffffp0
asinh 0
asinh -0
asinh 0.75
atan 0
atan -0
atan max
atan -max
atan 1
atan -1
atan 0.75
# Bug 15319: underflow exception may be missing.
atan 0x1p-100 missing-underflow
atan 0x1p-600 missing-underflow
atan 0x1p-10000 missing-underflow
# atan2 (0,x) == 0 for x > 0.
atan2 0 1
# atan2 (-0,x) == -0 for x > 0.
atan2 -0 1
atan2 0 0
atan2 -0 0
# atan2 (+0,x) == +pi for x < 0.
atan2 0 -1
# atan2 (-0,x) == -pi for x < 0.
atan2 -0 -1
atan2 0 -0
atan2 -0 -0
# atan2 (y,+0) == pi/2 for y > 0.
atan2 1 0
# atan2 (y,-0) == pi/2 for y > 0.
atan2 1 -0
# atan2 (y,+0) == -pi/2 for y < 0.
atan2 -1 0
# atan2 (y,-0) == -pi/2 for y < 0.
atan2 -1 -0
atan2 max max
atan2 max min
atan2 -max -min
atan2 0.75 1
atan2 -0.75 1.0
atan2 0.75 -1.0
atan2 -0.75 -1.0
atan2 0.390625 .00029
atan2 1.390625 0.9296875
atan2 -0.00756827042671106339 -.001792735857538728036
atan2 0x1.00000000000001p0 0x1.00000000000001p0
atanh 0
atanh -0
atanh 0.75
# cabs (x,y) == cabs (y,x).
cabs 0.75 12.390625
# cabs (x,y) == cabs (-x,y).
cabs -12.390625 0.75
# cabs (x,y) == cabs (-y,x).
cabs -0.75 12.390625
# cabs (x,y) == cabs (-x,-y).
cabs -12.390625 -0.75
# cabs (x,y) == cabs (-y,-x).
cabs -0.75 -12.390625
# cabs (x,0) == fabs (x).
cabs -0.75 0
cabs 0.75 0
cabs -1.0 0
cabs 1.0 0
cabs -5.7e7 0
cabs 5.7e7 0
cabs 0.75 1.25
# carg (x + i 0) == 0 for x > 0.
carg 2.0 0
# carg (x - i 0) == -0 for x > 0.
carg 2.0 -0
carg 0 0
carg 0 -0
# carg (x + i 0) == +pi for x < 0.
carg -2.0 0
# carg (x - i 0) == -pi for x < 0.
carg -2.0 -0
carg -0 0
carg -0 -0
# carg (+0 + i y) == pi/2 for y > 0.
carg 0 2.0
# carg (-0 + i y) == pi/2 for y > 0.
carg -0 2.0
# carg (+0 + i y) == -pi/2 for y < 0.
carg 0 -2.0
# carg (-0 + i y) == -pi/2 for y < 0.
carg -0 -2.0
cbrt 0.0
cbrt -0
cbrt -0.001
cbrt 8
cbrt -27.0
cbrt 0.9921875
cbrt 0.75
cbrt 0x1p16383
cbrt 0x1p-16383
cos 0
cos -0
cos pi/3
cos 2pi/3
cos pi/2
cos 0.75
cos 0x1p65
cos -0x1p65
cos 0.80190127184058835
cos 0x1.442f74p+15
cos 1e22
cos 0x1p1023
cos 0x1p16383
cos 0x1p+120
cos 0x1p+127
cos 0x1.fffff8p+127
cos 0x1.fffffep+127
cos 0x1p+50
cos 0x1p+28
cos 0x1.000000cf4a2a2p0
cos 0x1.0000010b239a9p0
cos 0x1.00000162a932bp0
cos 0x1.000002d452a10p0
cos 0x1.000005bc7d86dp0
cos 1
cos 2
cos 3
cos 4
cos 5
cos 6
cos 7
cos 8
cos 9
cos 10
cosh 0
cosh -0
cosh 0.75
cosh 709.8893558127259666434838436543941497802734375
cosh -709.8893558127259666434838436543941497802734375
cosh 22
cosh 23
cosh 24
erf 0
erf -0
erf 0.125
erf 0.75
erf 1.25
erf 2.0
erf 4.125
erf 27.0
erf -27.0
erf -0x1.fffffffffffff8p-2
erfc 0.0
erfc -0
erfc 0.125
erfc 0.75
erfc 1.25
erfc 2.0
erfc 0x1.f7303cp+1
erfc 4.125
erfc 0x1.ffa002p+2
erfc 0x1.ffffc8p+2
erfc -0x1.fffffffffffff8p-2
erfc 26.0
erfc 27.0
erfc 28.0
erfc 0x1.ffff56789abcdef0123456789a8p+2
erfc 100
erfc 106
erfc 106.5
erfc 106.625
erfc 107
erfc 108
erfc 1000
erfc max
exp 0
exp -0
exp 1
exp 2
exp 3
exp 0.75
exp 50.0
exp 88.72269439697265625
exp 709.75
# Bug 16284: results on directed rounding may be incorrect.
exp 1000.0 xfail-rounding:dbl-64
exp 710 xfail-rounding:dbl-64
exp -1234
# Bug 16284: results on directed rounding may be incorrect.
exp 1e5 xfail-rounding:dbl-64
exp max xfail-rounding:dbl-64
exp -7.4444006192138124e+02
exp -0x1.75f113c30b1c8p+9
exp -max
exp10 0
exp10 -0
exp10 3
exp10 -1
exp10 36
exp10 -36
exp10 305
exp10 -305
exp10 4932
exp10 -4932
exp10 1e5
exp10 -1e5
exp10 1e6
exp10 -1e6
exp10 max
exp10 -max
exp10 0.75
exp2 0
exp2 -0
exp2 10
exp2 -1
exp2 1e6
exp2 -1e6
exp2 max
exp2 -max
exp2 0.75
exp2 100.5
exp2 127
exp2 -149
exp2 1000.25
exp2 1023
exp2 -1074
exp2 16383
exp2 -16400
expm1 0
expm1 -0
expm1 1
expm1 0.75
expm1 50.0
expm1 127.0
expm1 500.0
expm1 11356.25
expm1 -10.0
expm1 -16.0
expm1 -17.0
expm1 -18.0
expm1 -36.0
expm1 -37.0
expm1 -38.0
expm1 -44.0
expm1 -45.0
expm1 -46.0
expm1 -73.0
expm1 -74.0
expm1 -75.0
expm1 -78.0
expm1 -79.0
expm1 -80.0
expm1 -100.0
expm1 -1000.0
expm1 -10000.0
expm1 -100000.0
expm1 100000.0
expm1 max
expm1 -max
Fix x86/x86_64 expm1 inaccuracy near 0 in directed rounding modes (bug 16293). Bug 16293 is inaccuracy of x86/x86_64 versions of expm1, near 0 in directed rounding modes, that arises from frndint rounding the exponent to 1 or -1 instead of 0, resulting in large cancellation error. This inaccuracy in turn affects other functions such as sinh that use expm1. This patch fixes the problem by setting round-to-nearest mode temporarily around the affected calls to frndint. I don't think this is needed for other uses of frndint, such as in exp itself, as only for expm1 is the cancellation error significant. Tested x86_64 and x86 and ulps updated accordingly. * sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Set round-to-nearest mode when using frndint. * sysdeps/i386/fpu/s_expm1.S (__expm1): Likewise. * sysdeps/i386/fpu/s_expm1f.S (__expm1f): Likewise. * sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Likewise. * math/auto-libm-test-in: Add more tests of expm1. Do not expect sinh test to fail. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (TEST_COND_x86_64): Remove macro. (TEST_COND_x86): Likewise. (expm1_tonearest_test_data): New array. (expm1_test_tonearest): New function. (expm1_towardzero_test_data): New array. (expm1_test_towardzero): New function. (expm1_downward_test_data): New array. (expm1_test_downward): New function. (expm1_upward_test_data): New array. (expm1_test_upward): New function. (main): Run the new test functions. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-19 13:36:10 +00:00
expm1 0x1p-2
expm1 -0x1p-2
expm1 0x1p-10
expm1 -0x1p-10
expm1 0x1p-20
expm1 -0x1p-20
expm1 0x1p-29
expm1 -0x1p-29
expm1 0x1p-32
expm1 -0x1p-32
expm1 0x1p-50
expm1 -0x1p-50
expm1 0x1p-64
expm1 -0x1p-64
expm1 0x1p-100
expm1 -0x1p-100
hypot 0 0
hypot 0 -0
hypot -0 0
hypot -0 -0
# hypot (x,y) == hypot (+-x, +-y).
hypot 0.7 12.4
hypot -0.7 12.4
hypot 0.7 -12.4
hypot -0.7 -12.4
hypot 12.4 0.7
hypot -12.4 0.7
hypot 12.4 -0.7
hypot -12.4 -0.7
# hypot (x,0) == fabs (x).
hypot 0.75 0
hypot -0.75 0
hypot -5.7e7 0
hypot 0.75 1.25
hypot 1.0 0x1p-61
hypot 0x1p+0 0x1.fp-129
hypot 0x1.23456789abcdef0123456789ab8p-500 0x1.23456789abcdef0123456789ab8p-500
hypot 0x3p125 0x4p125 no-test-inline:flt-32
hypot 0x1.234566p-126 0x1.234566p-126 no-test-inline:flt-32
hypot 0x3p1021 0x4p1021 no-test-inline:dbl-64
hypot 0x1p+0 0x0.3ep-1022 no-test-inline:dbl-64
hypot 0x3p16381 0x4p16381 no-test-inline
hypot 0x1p-149 0x1p-149
hypot 0x1p-1074 0x1p-1074
hypot 0x1p-16445 0x1p-16445 no-test-inline
hypot 0x1p-16494 0x1p-16494 no-test-inline
hypot 0x0.fffffep-126 0x0.fp-127
hypot 0x0.fffffep-126 0x0.fp-130
hypot 0x0.fffffffffffffp-1022 0x0.fp-1023
hypot 0x0.fffffffffffffp-1022 0x0.fp-1026
hypot 0x0.ffffffp-16382 0x0.fp-16383 no-test-inline
hypot 0x0.ffffffp-16382 0x0.fp-16386 no-test-inline
hypot 0 min_subnorm no-test-inline
j0 -1.0
j0 0.0
j0 0.125
j0 0.75
j0 1.0
j0 1.5
j0 2.0
j0 8.0
j0 10.0
j0 4.0
j0 -4.0
j0 0x1.d7ce3ap+107
j0 -0x1.001000001p+593
j0 0x1p1023
j0 0x1p16382
j0 0x1p16383
j1 -1.0
j1 0.0
j1 0.125
j1 0.75
j1 1.0
j1 1.5
j1 2.0
j1 8.0
j1 10.0
j1 0x1.3ffp+74
j1 0x1.ff00000000002p+840
j1 0x1p1023
j1 0x1p16382
j1 0x1p16383
# jn (0, x) == j0 (x).
jn 0 -1.0
jn 0 0.0
jn 0 0.125
jn 0 0.75
jn 0 1.0
jn 0 1.5
jn 0 2.0
jn 0 8.0
jn 0 10.0
jn 0 4.0
jn 0 -4.0
# jn (1, x) == j1 (x).
jn 1 -1.0
jn 1 0.0
jn 1 0.125
jn 1 0.75
jn 1 1.0
jn 1 1.5
jn 1 2.0
jn 1 8.0
jn 1 10.0
jn 3 -1.0
jn 3 0.0
jn 3 0.125
jn 3 0.75
jn 3 1.0
jn 3 2.0
jn 3 10.0
jn 10 -1.0
jn 10 0.0
jn 10 0.125
jn 10 0.75
jn 10 1.0
jn 10 2.0
jn 10 10.0
jn 2 2.4048255576957729
jn 3 2.4048255576957729
jn 4 2.4048255576957729
jn 5 2.4048255576957729
jn 6 2.4048255576957729
jn 7 2.4048255576957729
jn 8 2.4048255576957729
jn 9 2.4048255576957729
jn 2 0x1.ffff62p+99
jn 2 0x1p127
jn 2 0x1p1023
jn 2 0x1p16383
lgamma max
lgamma 1
lgamma 3
lgamma 0.5
lgamma -0.5
lgamma 0.7
lgamma 1.2
lgamma 0x1p-5
lgamma -0x1p-5
lgamma 0x1p-10
lgamma -0x1p-10
lgamma 0x1p-15
lgamma -0x1p-15
lgamma 0x1p-20
lgamma -0x1p-20
lgamma 0x1p-25
lgamma -0x1p-25
lgamma 0x1p-30
lgamma -0x1p-30
lgamma 0x1p-40
lgamma -0x1p-40
lgamma 0x1p-50
lgamma -0x1p-50
lgamma 0x1p-60
lgamma -0x1p-60
lgamma 0x1p-64
lgamma -0x1p-64
lgamma 0x1p-70
lgamma -0x1p-70
lgamma 0x1p-100
lgamma -0x1p-100
lgamma 0x1p-126
lgamma -0x1p-126
lgamma 0x1p-149
lgamma -0x1p-149
lgamma 0x1p-200
lgamma -0x1p-200
lgamma 0x1p-500
lgamma -0x1p-500
lgamma 0x1p-1000
lgamma -0x1p-1000
lgamma 0x1p-1022
lgamma -0x1p-1022
lgamma 0x1p-1074
lgamma -0x1p-1074
lgamma 0x1p-5000
lgamma -0x1p-5000
lgamma 0x1p-10000
lgamma -0x1p-10000
lgamma 0x1p-16382
lgamma -0x1p-16382
lgamma 0x1p-16445
lgamma -0x1p-16445
lgamma 0x1p-16494
lgamma -0x1p-16494
log 1
log e
log 1/e
log 2
log 10
log 0.75
log min
log min_subnorm
log10 1
log10 0.1
log10 10.0
log10 100.0
log10 10000.0
log10 e
log10 0.75
log10 min
log10 min_subnorm
log1p 0
log1p -0
log1p e-1
log1p -0.25
log1p -0.875
# Bug 16339: underflow exception may be missing.
log1p min missing-underflow
log1p min_subnorm missing-underflow
log1p -min missing-underflow
log1p -min_subnorm missing-underflow
log2 1
log2 e
log2 2.0
log2 16.0
log2 256.0
log2 0.75
log2 min
log2 min_subnorm
pow 0 0
pow 0 -0
pow -0 0
pow -0 -0
pow 10 0
pow 10 -0
pow -10 0
pow -10 -0
pow 1 1
pow 1 -1
pow 1 1.25
pow 1 -1.25
pow 1 0x1p62
pow 1 0x1p63
pow 1 0x1p64
pow 1 0x1p72
pow 1 min_subnorm
pow 1 -min_subnorm
# pow (x, +-0) == 1.
pow 32.75 0
pow 32.75 -0
pow -32.75 0
pow -32.75 -0
pow 0x1p72 0
pow 0x1p72 -0
pow 0x1p-72 0
pow 0x1p-72 -0
pow 0x1p72 0x1p72
pow 10 -0x1p72
pow max max
pow 10 -max
pow 0 1
pow 0 11
pow -0 1
pow -0 11
pow 0 2
pow 0 11.1
pow -0 2
pow -0 11.1
# pow (+0, y) == +0 for y an odd integer > 0.
pow 0.0 27
pow 0.0 0xffffff
pow 0.0 0x1.fffffffffffffp+52
pow 0.0 0x1.fffffffffffffffep+63
pow 0.0 0x1.ffffffffffffffffffffffffff8p+105
pow 0.0 0x1.ffffffffffffffffffffffffffffp+112
# pow (-0, y) == -0 for y an odd integer > 0.
pow -0 27
pow -0 0xffffff
pow -0 0x1fffffe
pow -0 0x1.fffffffffffffp+52
pow -0 0x1.fffffffffffffp+53
pow -0 0x1.fffffffffffffffep+63
pow -0 0x1.fffffffffffffffep+64
pow -0 0x1.ffffffffffffffffffffffffff8p+105
pow -0 0x1.ffffffffffffffffffffffffff8p+106
pow -0 0x1.ffffffffffffffffffffffffffffp+112
pow -0 0x1.ffffffffffffffffffffffffffffp+113
# pow (+0, y) == +0 for y > 0 and not an odd integer.
pow 0.0 4
pow 0.0 0x1p24
pow 0.0 0x1p127
pow 0.0 max
pow 0.0 min_subnorm
# pow (-0, y) == +0 for y > 0 and not an odd integer.
pow -0 4
pow -0 0x1p24
pow -0 0x1p127
pow -0 max
pow -0 min_subnorm
pow 16 0.25
pow 0x1p64 0.125
pow 2 4
pow 256 8
pow 0.75 1.25
pow -7.49321e+133 -9.80818e+16
pow -1.0 -0xffffff
pow -1.0 -0x1fffffe
pow -1.0 -0x1.fffffffffffffp+52
pow -1.0 -0x1.fffffffffffffp+53
pow -1.0 -0x1.fffffffffffffffep+63
pow -1.0 -0x1.fffffffffffffffep+64
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+105
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+106
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+112
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+113
pow -1.0 -max
pow -1.0 0xffffff
pow -1.0 0x1fffffe
pow -1.0 0x1.fffffffffffffp+52
pow -1.0 0x1.fffffffffffffp+53
pow -1.0 0x1.fffffffffffffffep+63
pow -1.0 0x1.fffffffffffffffep+64
pow -1.0 0x1.ffffffffffffffffffffffffff8p+105
pow -1.0 0x1.ffffffffffffffffffffffffff8p+106
pow -1.0 0x1.ffffffffffffffffffffffffffffp+112
pow -1.0 0x1.ffffffffffffffffffffffffffffp+113
pow -1.0 max
pow -2.0 126
pow -2.0 127
pow -2.0 -126
pow -2.0 -127
pow -2.0 -0xffffff
pow -2.0 -0x1fffffe
pow -2.0 -0x1.fffffffffffffp+52
pow -2.0 -0x1.fffffffffffffp+53
pow -2.0 -0x1.fffffffffffffffep+63
pow -2.0 -0x1.fffffffffffffffep+64
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+105
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+106
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+112
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+113
pow -2.0 -max
pow -2.0 0xffffff
pow -2.0 0x1fffffe
pow -2.0 0x1.fffffffffffffp+52
pow -2.0 0x1.fffffffffffffp+53
pow -2.0 0x1.fffffffffffffffep+63
pow -2.0 0x1.fffffffffffffffep+64
pow -2.0 0x1.ffffffffffffffffffffffffff8p+105
pow -2.0 0x1.ffffffffffffffffffffffffff8p+106
pow -2.0 0x1.ffffffffffffffffffffffffffffp+112
pow -2.0 0x1.ffffffffffffffffffffffffffffp+113
pow -2.0 max
pow -max -2
pow -max -3
pow -max 2
pow -max 3
pow -max -0xffffff
pow -max -0x1fffffe
pow -max -0x1.fffffffffffffp+52
pow -max -0x1.fffffffffffffp+53
pow -max -0x1.fffffffffffffffep+63
pow -max -0x1.fffffffffffffffep+64
pow -max -0x1.ffffffffffffffffffffffffff8p+105
pow -max -0x1.ffffffffffffffffffffffffff8p+106
pow -max -0x1.ffffffffffffffffffffffffffffp+112
pow -max -0x1.ffffffffffffffffffffffffffffp+113
pow -max -max
pow -max 0xffffff
pow -max 0x1fffffe
pow -max 0x1.fffffffffffffp+52
pow -max 0x1.fffffffffffffp+53
pow -max 0x1.fffffffffffffffep+63
pow -max 0x1.fffffffffffffffep+64
pow -max 0x1.ffffffffffffffffffffffffff8p+105
pow -max 0x1.ffffffffffffffffffffffffff8p+106
pow -max 0x1.ffffffffffffffffffffffffffffp+112
pow -max 0x1.ffffffffffffffffffffffffffffp+113
pow -max max
pow -0.5 126
pow -0.5 127
pow -0.5 -126
pow -0.5 -127
pow -0.5 -0xffffff
pow -0.5 -0x1fffffe
pow -0.5 -0x1.fffffffffffffp+52
pow -0.5 -0x1.fffffffffffffp+53
pow -0.5 -0x1.fffffffffffffffep+63
pow -0.5 -0x1.fffffffffffffffep+64
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+105
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+106
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+112
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+113
pow -0.5 -max
pow -0.5 0xffffff
pow -0.5 0x1fffffe
pow -0.5 0x1.fffffffffffffp+52
pow -0.5 0x1.fffffffffffffp+53
pow -0.5 0x1.fffffffffffffffep+63
pow -0.5 0x1.fffffffffffffffep+64
pow -0.5 0x1.ffffffffffffffffffffffffff8p+105
pow -0.5 0x1.ffffffffffffffffffffffffff8p+106
pow -0.5 0x1.ffffffffffffffffffffffffffffp+112
pow -0.5 0x1.ffffffffffffffffffffffffffffp+113
pow -0.5 max
pow -min -2
pow -min -3
pow -min 1
pow -min 2
pow -min 3
pow -min -0xffffff
pow -min -0x1fffffe
pow -min -0x1.fffffffffffffp+52
pow -min -0x1.fffffffffffffp+53
pow -min -0x1.fffffffffffffffep+63
pow -min -0x1.fffffffffffffffep+64
pow -min -0x1.ffffffffffffffffffffffffff8p+105
pow -min -0x1.ffffffffffffffffffffffffff8p+106
pow -min -0x1.ffffffffffffffffffffffffffffp+112
pow -min -0x1.ffffffffffffffffffffffffffffp+113
pow -min -max
pow -min 0xffffff
pow -min 0x1fffffe
pow -min 0x1.fffffffffffffp+52
pow -min 0x1.fffffffffffffp+53
pow -min 0x1.fffffffffffffffep+63
pow -min 0x1.fffffffffffffffep+64
pow -min 0x1.ffffffffffffffffffffffffff8p+105
pow -min 0x1.ffffffffffffffffffffffffff8p+106
pow -min 0x1.ffffffffffffffffffffffffffffp+112
pow -min 0x1.ffffffffffffffffffffffffffffp+113
pow -min max
pow 0x0.ffffffp0 10
pow 0x0.ffffffp0 100
pow 0x0.ffffffp0 1000
pow 0x0.ffffffp0 0x1p24
pow 0x0.ffffffp0 0x1p30
pow 0x0.ffffffp0 0x1.234566p30
pow 0x0.ffffffp0 -10
pow 0x0.ffffffp0 -100
pow 0x0.ffffffp0 -1000
pow 0x0.ffffffp0 -0x1p24
pow 0x0.ffffffp0 -0x1p30
pow 0x0.ffffffp0 -0x1.234566p30
pow 0x1.000002p0 0x1p24
pow 0x1.000002p0 0x1.234566p29
pow 0x1.000002p0 -0x1.234566p29
pow 0x0.fffffffffffff8p0 0x1.23456789abcdfp62
pow 0x0.fffffffffffff8p0 -0x1.23456789abcdfp62
pow 0x1.0000000000001p0 0x1.23456789abcdfp61
pow 0x1.0000000000001p0 -0x1.23456789abcdfp61
pow 0x0.ffffffffffffffffp0 0x1.23456789abcdef0ep77
pow 0x0.ffffffffffffffffp0 -0x1.23456789abcdef0ep77
pow 0x1.0000000000000002p0 0x1.23456789abcdef0ep76
pow 0x1.0000000000000002p0 -0x1.23456789abcdef0ep76
pow 0x0.ffffffffffffffffffffffffffff8p0 0x1.23456789abcdef0123456789abcdp126
pow 0x0.ffffffffffffffffffffffffffff8p0 -0x1.23456789abcdef0123456789abcdp126
pow 0x1.0000000000000000000000000001p0 0x1.23456789abcdef0123456789abcdp125
pow 0x1.0000000000000000000000000001p0 -0x1.23456789abcdef0123456789abcdp125
pow 1e4932 0.75
pow 1e4928 0.75
pow 1e4924 0.75
pow 1e4920 0.75
pow 10.0 4932.0
pow 10.0 4931.0
pow 10.0 4930.0
pow 10.0 4929.0
pow 10.0 -4931.0
pow 10.0 -4930.0
pow 10.0 -4929.0
pow 1e27 182.0
pow 1e27 -182.0
pow min_subnorm min_subnorm
pow min_subnorm -min_subnorm
pow max min_subnorm
pow max -min_subnorm
pow 0.99 min_subnorm
pow 0.99 -min_subnorm
pow 1.01 min_subnorm
pow 1.01 -min_subnorm
pow 2.0 -100000.0
pow 1.0625 1.125
pow 1.5 1.03125
sin 0
sin -0
sin pi/6
sin -pi/6
sin pi/2
sin -pi/2
sin 0.75
sin 0x1p65
sin -0x1p65
sin 0x1.7f4134p+103
sin 0.80190127184058835
sin 2.522464e-1
sin 1e22
sin 0x1p1023
sin 0x1p16383
sin 0x1p+120
sin 0x1p+127
sin 0x1.fffff8p+127
sin 0x1.fffffep+127
sin 0x1p+50
sin 0x1p+28
sin 0.93340582292648832662962377071381
sin 2.3328432680770916363144351635128
sin 3.7439477503636453548097051680088
sin 3.9225160069792437411706487182528
sin 4.0711651639931289992091478779912
sin 4.7858438478542097982426639646292
sin 5.9840767662578002727968851104379
sin 1
sin 2
sin 3
sin 4
sin 5
sin 6
sin 7
sin 8
sin 9
sin 10
sincos 0
sincos -0
sincos pi/2
sincos pi/6
sincos pi/3
sincos 0.75
sincos 0x1p65
sincos -0x1p65
sincos 0.80190127184058835
sincos 1e22
sincos 0x1p1023
sincos 0x1p16383
sincos 0x1p+120
sincos 0x1p+127
sincos 0x1.fffff8p+127
sincos 0x1.fffffep+127
sincos 0x1p+50
sincos 0x1p+28
sinh 0
sinh -0
sinh 0.75
Fix x86/x86_64 expm1 inaccuracy near 0 in directed rounding modes (bug 16293). Bug 16293 is inaccuracy of x86/x86_64 versions of expm1, near 0 in directed rounding modes, that arises from frndint rounding the exponent to 1 or -1 instead of 0, resulting in large cancellation error. This inaccuracy in turn affects other functions such as sinh that use expm1. This patch fixes the problem by setting round-to-nearest mode temporarily around the affected calls to frndint. I don't think this is needed for other uses of frndint, such as in exp itself, as only for expm1 is the cancellation error significant. Tested x86_64 and x86 and ulps updated accordingly. * sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Set round-to-nearest mode when using frndint. * sysdeps/i386/fpu/s_expm1.S (__expm1): Likewise. * sysdeps/i386/fpu/s_expm1f.S (__expm1f): Likewise. * sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Likewise. * math/auto-libm-test-in: Add more tests of expm1. Do not expect sinh test to fail. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (TEST_COND_x86_64): Remove macro. (TEST_COND_x86): Likewise. (expm1_tonearest_test_data): New array. (expm1_test_tonearest): New function. (expm1_towardzero_test_data): New array. (expm1_test_towardzero): New function. (expm1_downward_test_data): New array. (expm1_test_downward): New function. (expm1_upward_test_data): New array. (expm1_test_upward): New function. (main): Run the new test functions. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-19 13:36:10 +00:00
sinh 0x8p-32
sinh 22
sinh 23
sinh 24
sqrt 0
sqrt -0
sqrt 2209
sqrt 4
sqrt 2
sqrt 0.25
sqrt 6642.25
sqrt 15190.5625
sqrt 0.75
2013-11-29 16:31:16 +00:00
sqrt 0x1.fffffffffffffp+1023
sqrt 0x1.ffffffffffffbp+1023
sqrt 0x1.ffffffffffff7p+1023
sqrt 0x1.ffffffffffff3p+1023
sqrt 0x1.fffffffffffefp+1023
sqrt 0x1.fffffffffffebp+1023
sqrt 0x1.fffffffffffe7p+1023
sqrt 0x1.fffffffffffe3p+1023
sqrt 0x1.fffffffffffdfp+1023
sqrt 0x1.fffffffffffdbp+1023
sqrt 0x1.fffffffffffd7p+1023
sqrt 0x1.0000000000003p-1022
sqrt 0x1.0000000000007p-1022
sqrt 0x1.000000000000bp-1022
sqrt 0x1.000000000000fp-1022
sqrt 0x1.0000000000013p-1022
sqrt 0x1.0000000000017p-1022
sqrt 0x1.000000000001bp-1022
sqrt 0x1.000000000001fp-1022
sqrt 0x1.0000000000023p-1022
sqrt 0x1.0000000000027p-1022
sqrt 0x1.000000000002bp-1022
sqrt 0x1.000000000002fp-1022
sqrt 0x1.0000000000033p-1022
sqrt 0x1.0000000000037p-1022
sqrt 0x1.7167bc36eaa3bp+6
sqrt 0x1.7570994273ad7p+6
sqrt 0x1.7dae969442fe6p+6
sqrt 0x1.7f8444fcf67e5p+6
sqrt 0x1.8364650e63a54p+6
sqrt 0x1.85bedd274edd8p+6
sqrt 0x1.8609cf496ab77p+6
sqrt 0x1.873849c70a375p+6
sqrt 0x1.8919c962cbaaep+6
sqrt 0x1.8de4493e22dc6p+6
sqrt 0x1.924829a17a288p+6
sqrt 0x1.92702cd992f12p+6
sqrt 0x1.92b763a8311fdp+6
sqrt 0x1.947da013c7293p+6
sqrt 0x1.9536091c494d2p+6
sqrt 0x1.61b04c6p-1019
sqrt 0x1.93789f1p-1018
sqrt 0x1.a1989b4p-1018
sqrt 0x1.f93bc9p-1018
sqrt 0x1.2f675e3p-1017
sqrt 0x1.a158508p-1017
sqrt 0x1.cd31f078p-1017
sqrt 0x1.33b43b08p-1016
sqrt 0x1.6e66a858p-1016
sqrt 0x1.8661cbf8p-1016
sqrt 0x1.bbb221b4p-1016
sqrt 0x1.c4942f3cp-1016
sqrt 0x1.dbb258c8p-1016
sqrt 0x1.57103ea4p-1015
sqrt 0x1.9b294f88p-1015
sqrt 0x1.0000000000001p+0
sqrt 0x1.fffffffffffffp-1
tan 0
tan -0
tan pi/4
tan 0.75
tan 0x1p65
tan -0x1p65
tan 0xc.9p-4
tan 0xc.908p-4
tan 0xc.90cp-4
tan 0xc.90ep-4
tan 0xc.90fp-4
tan 0xc.90f8p-4
tan 0xc.90fcp-4
tan 0xc.90fdp-4
tan 0xc.90fd8p-4
tan 0xc.90fdap-4
tan 0xc.ap-4
tan 0xc.98p-4
tan 0xc.94p-4
tan 0xc.92p-4
tan 0xc.91p-4
tan 0xc.90fep-4
tan 0xc.90fdcp-4
tan 0xc.90fdbp-4
tan -0xc.9p-4
tan -0xc.908p-4
tan -0xc.90cp-4
tan -0xc.90ep-4
tan -0xc.90fp-4
tan -0xc.90f8p-4
tan -0xc.90fcp-4
tan -0xc.90fdp-4
tan -0xc.90fd8p-4
tan -0xc.90fdap-4
tan -0xc.ap-4
tan -0xc.98p-4
tan -0xc.94p-4
tan -0xc.92p-4
tan -0xc.91p-4
tan -0xc.90fep-4
tan -0xc.90fdcp-4
tan -0xc.90fdbp-4
tan 1e22
tan 0x1p1023
tan 0x1p16383
tan 1
tan 2
tan 3
tan 4
tan 5
tan 6
tan 7
tan 8
tan 9
tan 10
tanh 0
tanh -0
tanh 0.75
tanh -0.75
tanh 1.0
tanh -1.0
tanh 0x1p-57
tgamma 0.5
tgamma -0.5
tgamma 1
tgamma 2
tgamma 3
tgamma 4
tgamma 5
tgamma 6
tgamma 7
tgamma 8
tgamma 9
tgamma 10
tgamma 0.7
tgamma 1.2
tgamma 1.5
tgamma 2.5
tgamma 3.5
tgamma 4.5
tgamma 5.5
tgamma 6.5
tgamma 7.5
tgamma 8.5
tgamma 9.5
tgamma -1.5
tgamma -2.5
tgamma -3.5
tgamma -4.5
tgamma -5.5
tgamma -6.5
tgamma -7.5
tgamma -8.5
tgamma -9.5
tgamma 0x1p-24
tgamma -0x1p-24
tgamma 0x1p-53
tgamma -0x1p-53
tgamma 0x1p-64
tgamma -0x1p-64
tgamma 0x1p-106
tgamma -0x1p-106
tgamma 0x1p-113
tgamma -0x1p-113
tgamma 0x1p-127
tgamma -0x1p-127
tgamma 0x1p-128
tgamma -0x1p-128
tgamma 0x1p-149
tgamma -0x1p-149
tgamma 0x1p-1023
tgamma -0x1p-1023
tgamma 0x1p-1024
tgamma -0x1p-1024
tgamma 0x1p-1074
tgamma -0x1p-1074
tgamma 0x1p-16383
tgamma -0x1p-16383
tgamma 0x1p-16384
tgamma -0x1p-16384
tgamma 0x1p-16445
tgamma -0x1p-16445
tgamma 0x1p-16494
tgamma -0x1p-16494
tgamma 0x8.00001p0
tgamma 0x7.fffff8p0
tgamma 0x7.000008p0
tgamma 0x6.fffff8p0
tgamma 0x6.000008p0
tgamma 0x5.fffff8p0
tgamma 0x5.000008p0
tgamma 0x4.fffff8p0
tgamma 0x4.000008p0
tgamma 0x3.fffffcp0
tgamma 0x3.000004p0
tgamma 0x2.fffffcp0
tgamma 0x2.000004p0
tgamma 0x1.fffffep0
tgamma 0x1.000002p0
tgamma 0x0.ffffffp0
tgamma -0x0.ffffffp0
tgamma -0x1.000002p0
tgamma -0x1.fffffep0
tgamma -0x2.000004p0
tgamma -0x2.fffffcp0
tgamma -0x3.000004p0
tgamma -0x3.fffffcp0
tgamma -0x4.000008p0
tgamma -0x4.fffff8p0
tgamma -0x5.000008p0
tgamma -0x5.fffff8p0
tgamma -0x6.000008p0
tgamma -0x6.fffff8p0
tgamma -0x7.000008p0
tgamma -0x7.fffff8p0
tgamma -0x8.00001p0
tgamma -0x9.fffffp0
tgamma -0xa.00001p0
tgamma -0x13.ffffep0
tgamma -0x14.00002p0
tgamma -0x1d.ffffep0
tgamma -0x1e.00002p0
tgamma -0x27.ffffcp0
tgamma -0x28.00004p0
tgamma -0x28.ffffcp0
tgamma -0x29.00004p0
tgamma -0x29.ffffcp0
tgamma -0x2a.00004p0
tgamma 0x8.0000000000008p0
tgamma 0x7.ffffffffffffcp0
tgamma 0x7.0000000000004p0
tgamma 0x6.ffffffffffffcp0
tgamma 0x6.0000000000004p0
tgamma 0x5.ffffffffffffcp0
tgamma 0x5.0000000000004p0
tgamma 0x4.ffffffffffffcp0
tgamma 0x4.0000000000004p0
tgamma 0x3.ffffffffffffep0
tgamma 0x3.0000000000002p0
tgamma 0x2.ffffffffffffep0
tgamma 0x2.0000000000002p0
tgamma 0x1.fffffffffffffp0
tgamma 0x1.0000000000001p0
tgamma 0x0.fffffffffffff8p0
tgamma -0x0.fffffffffffff8p0
tgamma -0x1.0000000000001p0
tgamma -0x1.fffffffffffffp0
tgamma -0x2.0000000000002p0
tgamma -0x2.ffffffffffffep0
tgamma -0x3.0000000000002p0
tgamma -0x3.ffffffffffffep0
tgamma -0x4.0000000000004p0
tgamma -0x4.ffffffffffffcp0
tgamma -0x5.0000000000004p0
tgamma -0x5.ffffffffffffcp0
tgamma -0x6.0000000000004p0
tgamma -0x6.ffffffffffffcp0
tgamma -0x7.0000000000004p0
tgamma -0x7.ffffffffffffcp0
tgamma -0x8.0000000000008p0
tgamma -0x9.ffffffffffff8p0
tgamma -0xa.0000000000008p0
tgamma -0x13.ffffffffffffp0
tgamma -0x14.000000000001p0
tgamma -0x1d.ffffffffffffp0
tgamma -0x1e.000000000001p0
tgamma -0x27.fffffffffffep0
tgamma -0x28.000000000002p0
tgamma -0x28.fffffffffffep0
tgamma -0x29.000000000002p0
tgamma -0x29.fffffffffffep0
tgamma -0x2a.000000000002p0
tgamma -0x31.fffffffffffep0
tgamma -0x32.000000000002p0
tgamma -0x63.fffffffffffcp0
tgamma -0x64.000000000004p0
tgamma -0x95.fffffffffff8p0
tgamma -0x96.000000000008p0
tgamma -0xb4.fffffffffff8p0
tgamma -0xb5.000000000008p0
tgamma -0xb5.fffffffffff8p0
tgamma -0xb6.000000000008p0
tgamma -0xb6.fffffffffff8p0
tgamma -0xb7.000000000008p0
tgamma -0xb7.fffffffffff8p0
tgamma -0xb8.000000000008p0
tgamma 0x8.00000000000000000000000004p0
tgamma 0x7.fffffffffffffffffffffffffep0
tgamma 0x7.00000000000000000000000002p0
tgamma 0x6.fffffffffffffffffffffffffep0
tgamma 0x6.00000000000000000000000002p0
tgamma 0x5.fffffffffffffffffffffffffep0
tgamma 0x5.00000000000000000000000002p0
tgamma 0x4.fffffffffffffffffffffffffep0
tgamma 0x4.00000000000000000000000002p0
tgamma 0x3.ffffffffffffffffffffffffffp0
tgamma 0x3.00000000000000000000000001p0
tgamma 0x2.ffffffffffffffffffffffffffp0
tgamma 0x2.00000000000000000000000001p0
tgamma 0x1.ffffffffffffffffffffffffff8p0
tgamma 0x1.000000000000000000000000008p0
tgamma 0x0.ffffffffffffffffffffffffffcp0
tgamma -0x0.ffffffffffffffffffffffffffcp0
tgamma -0x1.000000000000000000000000008p0
tgamma -0x1.ffffffffffffffffffffffffff8p0
tgamma -0x2.00000000000000000000000001p0
tgamma -0x2.ffffffffffffffffffffffffffp0
tgamma -0x3.00000000000000000000000001p0
tgamma -0x3.ffffffffffffffffffffffffffp0
tgamma -0x4.00000000000000000000000002p0
tgamma -0x4.fffffffffffffffffffffffffep0
tgamma -0x5.00000000000000000000000002p0
tgamma -0x5.fffffffffffffffffffffffffep0
tgamma -0x6.00000000000000000000000002p0
tgamma -0x6.fffffffffffffffffffffffffep0
tgamma -0x7.00000000000000000000000002p0
tgamma -0x7.fffffffffffffffffffffffffep0
tgamma -0x8.00000000000000000000000004p0
tgamma -0x9.fffffffffffffffffffffffffcp0
tgamma -0xa.00000000000000000000000004p0
tgamma -0x13.fffffffffffffffffffffffff8p0
tgamma -0x14.00000000000000000000000008p0
tgamma -0x1d.fffffffffffffffffffffffff8p0
tgamma -0x1e.00000000000000000000000008p0
tgamma -0x27.fffffffffffffffffffffffffp0
tgamma -0x28.0000000000000000000000001p0
tgamma -0x28.fffffffffffffffffffffffffp0
tgamma -0x29.0000000000000000000000001p0
tgamma -0x29.fffffffffffffffffffffffffp0
tgamma -0x2a.0000000000000000000000001p0
tgamma -0x31.fffffffffffffffffffffffffp0
tgamma -0x32.0000000000000000000000001p0
tgamma -0x63.ffffffffffffffffffffffffep0
tgamma -0x64.0000000000000000000000002p0
tgamma -0x95.ffffffffffffffffffffffffcp0
tgamma -0x96.0000000000000000000000004p0
tgamma -0xb4.ffffffffffffffffffffffffcp0
tgamma -0xb5.0000000000000000000000004p0
tgamma -0xb5.ffffffffffffffffffffffffcp0
tgamma -0xb6.0000000000000000000000004p0
tgamma -0xb6.ffffffffffffffffffffffffcp0
tgamma -0xb7.0000000000000000000000004p0
tgamma -0xb7.ffffffffffffffffffffffffcp0
tgamma -0xb8.0000000000000000000000004p0
tgamma -0xbb.ffffffffffffffffffffffffcp0
tgamma -0xbc.0000000000000000000000004p0
tgamma -0xbc.ffffffffffffffffffffffffcp0
tgamma -0xbd.0000000000000000000000004p0
tgamma -0xbd.ffffffffffffffffffffffffcp0
tgamma -0xbe.0000000000000000000000004p0
tgamma -0xbe.ffffffffffffffffffffffffcp0
tgamma -0xbf.0000000000000000000000004p0
tgamma 0x8.000000000000001p0
tgamma 0x7.fffffffffffffff8p0
tgamma 0x7.0000000000000008p0
tgamma 0x6.fffffffffffffff8p0
tgamma 0x6.0000000000000008p0
tgamma 0x5.fffffffffffffff8p0
tgamma 0x5.0000000000000008p0
tgamma 0x4.fffffffffffffff8p0
tgamma 0x4.0000000000000008p0
tgamma 0x3.fffffffffffffffcp0
tgamma 0x3.0000000000000004p0
tgamma 0x2.fffffffffffffffcp0
tgamma 0x2.0000000000000004p0
tgamma 0x1.fffffffffffffffep0
tgamma 0x1.0000000000000002p0
tgamma 0x0.ffffffffffffffffp0
tgamma -0x0.ffffffffffffffffp0
tgamma -0x1.0000000000000002p0
tgamma -0x1.fffffffffffffffep0
tgamma -0x2.0000000000000004p0
tgamma -0x2.fffffffffffffffcp0
tgamma -0x3.0000000000000004p0
tgamma -0x3.fffffffffffffffcp0
tgamma -0x4.0000000000000008p0
tgamma -0x4.fffffffffffffff8p0
tgamma -0x5.0000000000000008p0
tgamma -0x5.fffffffffffffff8p0
tgamma -0x6.0000000000000008p0
tgamma -0x6.fffffffffffffff8p0
tgamma -0x7.0000000000000008p0
tgamma -0x7.fffffffffffffff8p0
tgamma -0x8.000000000000001p0
tgamma -0x9.fffffffffffffffp0
tgamma -0xa.000000000000001p0
tgamma -0x13.ffffffffffffffep0
tgamma -0x14.000000000000002p0
tgamma -0x1d.ffffffffffffffep0
tgamma -0x1e.000000000000002p0
tgamma -0x27.ffffffffffffffcp0
tgamma -0x28.000000000000004p0
tgamma -0x28.ffffffffffffffcp0
tgamma -0x29.000000000000004p0
tgamma -0x29.ffffffffffffffcp0
tgamma -0x2a.000000000000004p0
tgamma -0x31.ffffffffffffffcp0
tgamma -0x32.000000000000004p0
tgamma -0x63.ffffffffffffff8p0
tgamma -0x64.000000000000008p0
tgamma -0x95.ffffffffffffffp0
tgamma -0x96.00000000000001p0
tgamma -0xb4.ffffffffffffffp0
tgamma -0xb5.00000000000001p0
tgamma -0xb5.ffffffffffffffp0
tgamma -0xb6.00000000000001p0
tgamma -0xb6.ffffffffffffffp0
tgamma -0xb7.00000000000001p0
tgamma -0xb7.ffffffffffffffp0
tgamma -0xb8.00000000000001p0
tgamma -0xbb.ffffffffffffffp0
tgamma -0xbc.00000000000001p0
tgamma -0xbc.ffffffffffffffp0
tgamma -0xbd.00000000000001p0
tgamma -0xbd.ffffffffffffffp0
tgamma -0xbe.00000000000001p0
tgamma -0xbe.ffffffffffffffp0
tgamma -0xbf.00000000000001p0
tgamma -0xf9.ffffffffffffffp0
tgamma -0xfa.00000000000001p0
tgamma -0x1f3.fffffffffffffep0
tgamma -0x1f4.00000000000002p0
tgamma -0x2ed.fffffffffffffcp0
tgamma -0x2ee.00000000000004p0
tgamma -0x3e7.fffffffffffffcp0
tgamma -0x3e8.00000000000004p0
tgamma -0x4e1.fffffffffffff8p0
tgamma -0x4e2.00000000000008p0
tgamma -0x5db.fffffffffffff8p0
tgamma -0x5dc.00000000000008p0
tgamma -0x6d5.fffffffffffff8p0
tgamma -0x6d6.00000000000008p0
tgamma -0x6e2.fffffffffffff8p0
tgamma -0x6e3.00000000000008p0
tgamma -0x6e3.fffffffffffff8p0
tgamma -0x6e4.00000000000008p0
tgamma -0x6e4.fffffffffffff8p0
tgamma -0x6e5.00000000000008p0
tgamma -0x6e5.fffffffffffff8p0
tgamma -0x6e6.00000000000008p0
tgamma 0x8.0000000000000000000000000008p0
tgamma 0x7.fffffffffffffffffffffffffffcp0
tgamma 0x7.0000000000000000000000000004p0
tgamma 0x6.fffffffffffffffffffffffffffcp0
tgamma 0x6.0000000000000000000000000004p0
tgamma 0x5.fffffffffffffffffffffffffffcp0
tgamma 0x5.0000000000000000000000000004p0
tgamma 0x4.fffffffffffffffffffffffffffcp0
tgamma 0x4.0000000000000000000000000004p0
tgamma 0x3.fffffffffffffffffffffffffffep0
tgamma 0x3.0000000000000000000000000002p0
tgamma 0x2.fffffffffffffffffffffffffffep0
tgamma 0x2.0000000000000000000000000002p0
tgamma 0x1.ffffffffffffffffffffffffffffp0
tgamma 0x1.0000000000000000000000000001p0
tgamma 0x0.ffffffffffffffffffffffffffff8p0
tgamma -0x0.ffffffffffffffffffffffffffff8p0
tgamma -0x1.0000000000000000000000000001p0
tgamma -0x1.ffffffffffffffffffffffffffffp0
tgamma -0x2.0000000000000000000000000002p0
tgamma -0x2.fffffffffffffffffffffffffffep0
tgamma -0x3.0000000000000000000000000002p0
tgamma -0x3.fffffffffffffffffffffffffffep0
tgamma -0x4.0000000000000000000000000004p0
tgamma -0x4.fffffffffffffffffffffffffffcp0
tgamma -0x5.0000000000000000000000000004p0
tgamma -0x5.fffffffffffffffffffffffffffcp0
tgamma -0x6.0000000000000000000000000004p0
tgamma -0x6.fffffffffffffffffffffffffffcp0
tgamma -0x7.0000000000000000000000000004p0
tgamma -0x7.fffffffffffffffffffffffffffcp0
tgamma -0x8.0000000000000000000000000008p0
tgamma -0x9.fffffffffffffffffffffffffff8p0
tgamma -0xa.0000000000000000000000000008p0
tgamma -0x13.fffffffffffffffffffffffffffp0
tgamma -0x14.000000000000000000000000001p0
tgamma -0x1d.fffffffffffffffffffffffffffp0
tgamma -0x1e.000000000000000000000000001p0
tgamma -0x27.ffffffffffffffffffffffffffep0
tgamma -0x28.000000000000000000000000002p0
tgamma -0x28.ffffffffffffffffffffffffffep0
tgamma -0x29.000000000000000000000000002p0
tgamma -0x29.ffffffffffffffffffffffffffep0
tgamma -0x2a.000000000000000000000000002p0
tgamma -0x31.ffffffffffffffffffffffffffep0
tgamma -0x32.000000000000000000000000002p0
tgamma -0x63.ffffffffffffffffffffffffffcp0
tgamma -0x64.000000000000000000000000004p0
tgamma -0x95.ffffffffffffffffffffffffff8p0
tgamma -0x96.000000000000000000000000008p0
tgamma -0xb4.ffffffffffffffffffffffffff8p0
tgamma -0xb5.000000000000000000000000008p0
tgamma -0xb5.ffffffffffffffffffffffffff8p0
tgamma -0xb6.000000000000000000000000008p0
tgamma -0xb6.ffffffffffffffffffffffffff8p0
tgamma -0xb7.000000000000000000000000008p0
tgamma -0xb7.ffffffffffffffffffffffffff8p0
tgamma -0xb8.000000000000000000000000008p0
tgamma -0xbb.ffffffffffffffffffffffffff8p0
tgamma -0xbc.000000000000000000000000008p0
tgamma -0xbc.ffffffffffffffffffffffffff8p0
tgamma -0xbd.000000000000000000000000008p0
tgamma -0xbd.ffffffffffffffffffffffffff8p0
tgamma -0xbe.000000000000000000000000008p0
tgamma -0xbe.ffffffffffffffffffffffffff8p0
tgamma -0xbf.000000000000000000000000008p0
tgamma -0xf9.ffffffffffffffffffffffffff8p0
tgamma -0xfa.000000000000000000000000008p0
tgamma -0x1f3.ffffffffffffffffffffffffffp0
tgamma -0x1f4.00000000000000000000000001p0
tgamma -0x2ed.fffffffffffffffffffffffffep0
tgamma -0x2ee.00000000000000000000000002p0
tgamma -0x3e7.fffffffffffffffffffffffffep0
tgamma -0x3e8.00000000000000000000000002p0
tgamma -0x4e1.fffffffffffffffffffffffffcp0
tgamma -0x4e2.00000000000000000000000004p0
tgamma -0x5db.fffffffffffffffffffffffffcp0
tgamma -0x5dc.00000000000000000000000004p0
tgamma -0x6d5.fffffffffffffffffffffffffcp0
tgamma -0x6d6.00000000000000000000000004p0
tgamma -0x6e2.fffffffffffffffffffffffffcp0
tgamma -0x6e3.00000000000000000000000004p0
tgamma -0x6e3.fffffffffffffffffffffffffcp0
tgamma -0x6e4.00000000000000000000000004p0
tgamma -0x6e4.fffffffffffffffffffffffffcp0
tgamma -0x6e5.00000000000000000000000004p0
tgamma -0x6e5.fffffffffffffffffffffffffcp0
tgamma -0x6e6.00000000000000000000000004p0
tgamma -0x6eb.fffffffffffffffffffffffffcp0
tgamma -0x6ec.00000000000000000000000004p0
tgamma -0x6ec.fffffffffffffffffffffffffcp0
tgamma -0x6ed.00000000000000000000000004p0
tgamma -0x6ed.fffffffffffffffffffffffffcp0
tgamma -0x6ee.00000000000000000000000004p0
tgamma -0x6ee.fffffffffffffffffffffffffcp0
tgamma -0x6ef.00000000000000000000000004p0
tgamma -0x1.0a32a2p+5
tgamma -0x1.5800000080001p+7
tgamma 18.5
tgamma 19.5
tgamma 23.5
tgamma 29.5
tgamma 30.5
tgamma 31.5
tgamma 32.5
tgamma 33.5
tgamma 34.5
tgamma 0x2.30a43cp+4
tgamma 0x2.30a44p+4
tgamma 0xa.b9fd72b0fb238p+4
tgamma 0xa.b9fd72b0fb24p+4
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f4p+4
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f8p+4
tgamma 0x6.db8c603359a97108p+8
tgamma 0x6.db8c603359a9711p+8
tgamma 0x6.db8c603359a971081bc4a2e9dfdp+8
tgamma 0x6.db8c603359a971081bc4a2e9dfd4p+8
tgamma 1e3
tgamma -100000.5
y0 0.125
y0 0.75
y0 1.0
y0 1.5
y0 2.0
y0 8.0
y0 10.0
y0 0x1.3ffp+74
y0 0x1.ff00000000002p+840
y0 0x1p1023
y0 0x1p16382
y0 0x1p16383
y0 0x1p-10
y0 0x1p-20
y0 0x1p-30
y0 0x1p-40
y0 0x1p-50
y0 0x1p-60
y0 0x1p-70
y0 0x1p-80
y0 0x1p-90
y0 0x1p-100
y0 0x1p-110
y1 0.125
y1 0.75
y1 1.0
y1 1.5
y1 2.0
y1 8.0
y1 10.0
y1 0x1.27e204p+99
y1 0x1.001000001p+593
y1 0x1p1023
y1 0x1p16382
y1 0x1p16383
y1 0x1p-10
y1 0x1p-20
y1 0x1p-30
y1 0x1p-40
y1 0x1p-50
y1 0x1p-60
y1 0x1p-70
y1 0x1p-80
y1 0x1p-90
y1 0x1p-100
y1 0x1p-110
# yn (0, x) == y0 (x).
yn 0 0.125
yn 0 0.75
yn 0 1.0
yn 0 1.5
yn 0 2.0
yn 0 8.0
yn 0 10.0
# yn (1, x) == y1 (x).
yn 1 0.125
yn 1 0.75
yn 1 1.0
yn 1 1.5
yn 1 2.0
yn 1 8.0
yn 1 10.0
# yn (-1, x) == -y1 (x).
yn -1 1.0
# yn (3, x).
yn 3 0.125
yn 3 0.75
yn 3 1.0
yn 3 2.0
yn 3 10.0
# yn (10, x).
yn 10 0.125
yn 10 0.75
yn 10 1.0
yn 10 2.0
yn 10 10.0
yn -10 1.0
yn 10 min
yn 2 0x1.ffff62p+99
yn 2 0x1p127
yn 2 0x1p1023
yn 2 0x1p16383