2010-10-14 02:27:03 +00:00
|
|
|
/* Compute x * y + z as ternary operation.
|
2012-06-01 19:01:17 +00:00
|
|
|
Copyright (C) 2010-2012 Free Software Foundation, Inc.
|
2010-10-14 02:27:03 +00:00
|
|
|
This file is part of the GNU C Library.
|
|
|
|
Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
|
|
|
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
2012-02-09 23:18:22 +00:00
|
|
|
License along with the GNU C Library; if not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
2010-10-14 02:27:03 +00:00
|
|
|
|
|
|
|
#include <float.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <fenv.h>
|
|
|
|
#include <ieee754.h>
|
2011-10-18 19:11:31 +00:00
|
|
|
#include <math_private.h>
|
2012-10-31 13:01:17 +00:00
|
|
|
#include <tininess.h>
|
2010-10-14 02:27:03 +00:00
|
|
|
|
|
|
|
/* This implementation uses rounding to odd to avoid problems with
|
|
|
|
double rounding. See a paper by Boldo and Melquiond:
|
|
|
|
http://www.lri.fr/~melquion/doc/08-tc.pdf */
|
|
|
|
|
|
|
|
double
|
|
|
|
__fma (double x, double y, double z)
|
|
|
|
{
|
|
|
|
union ieee754_double u, v, w;
|
|
|
|
int adjust = 0;
|
|
|
|
u.d = x;
|
|
|
|
v.d = y;
|
|
|
|
w.d = z;
|
|
|
|
if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
|
|
|
|
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
|
|
|
|
|| __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|
|
|
|
|| __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|
2010-10-15 19:25:14 +00:00
|
|
|
|| __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|
|
|
|
|| __builtin_expect (u.ieee.exponent + v.ieee.exponent
|
|
|
|
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0))
|
2010-10-14 02:27:03 +00:00
|
|
|
{
|
2010-10-15 19:26:06 +00:00
|
|
|
/* If z is Inf, but x and y are finite, the result should be
|
|
|
|
z rather than NaN. */
|
|
|
|
if (w.ieee.exponent == 0x7ff
|
|
|
|
&& u.ieee.exponent != 0x7ff
|
2011-10-18 19:11:31 +00:00
|
|
|
&& v.ieee.exponent != 0x7ff)
|
2010-10-15 19:26:06 +00:00
|
|
|
return (z + x) + y;
|
2012-10-01 08:30:06 +00:00
|
|
|
/* If z is zero and x are y are nonzero, compute the result
|
|
|
|
as x * y to avoid the wrong sign of a zero result if x * y
|
|
|
|
underflows to 0. */
|
|
|
|
if (z == 0 && x != 0 && y != 0)
|
|
|
|
return x * y;
|
2010-10-15 19:25:14 +00:00
|
|
|
/* If x or y or z is Inf/NaN, or if fma will certainly overflow,
|
|
|
|
or if x * y is less than half of DBL_DENORM_MIN,
|
2010-10-14 02:27:03 +00:00
|
|
|
compute as x * y + z. */
|
|
|
|
if (u.ieee.exponent == 0x7ff
|
|
|
|
|| v.ieee.exponent == 0x7ff
|
|
|
|
|| w.ieee.exponent == 0x7ff
|
|
|
|
|| u.ieee.exponent + v.ieee.exponent
|
2010-10-15 19:25:14 +00:00
|
|
|
> 0x7ff + IEEE754_DOUBLE_BIAS
|
|
|
|
|| u.ieee.exponent + v.ieee.exponent
|
|
|
|
< IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
|
2010-10-14 02:27:03 +00:00
|
|
|
return x * y + z;
|
|
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
|
|
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
|
|
|
|
{
|
|
|
|
/* Compute 1p-53 times smaller result and multiply
|
|
|
|
at the end. */
|
|
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
|
|
u.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
else
|
|
|
|
v.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
/* If x + y exponent is very large and z exponent is very small,
|
|
|
|
it doesn't matter if we don't adjust it. */
|
|
|
|
if (w.ieee.exponent > DBL_MANT_DIG)
|
|
|
|
w.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
adjust = 1;
|
|
|
|
}
|
|
|
|
else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
|
|
|
|
{
|
|
|
|
/* Similarly.
|
|
|
|
If z exponent is very large and x and y exponents are
|
|
|
|
very small, it doesn't matter if we don't adjust it. */
|
|
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
|
|
{
|
|
|
|
if (u.ieee.exponent > DBL_MANT_DIG)
|
|
|
|
u.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
}
|
|
|
|
else if (v.ieee.exponent > DBL_MANT_DIG)
|
|
|
|
v.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
w.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
adjust = 1;
|
|
|
|
}
|
|
|
|
else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
|
|
|
|
{
|
|
|
|
u.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
if (v.ieee.exponent)
|
|
|
|
v.ieee.exponent += DBL_MANT_DIG;
|
|
|
|
else
|
|
|
|
v.d *= 0x1p53;
|
|
|
|
}
|
2010-10-15 19:25:14 +00:00
|
|
|
else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
|
2010-10-14 02:27:03 +00:00
|
|
|
{
|
|
|
|
v.ieee.exponent -= DBL_MANT_DIG;
|
|
|
|
if (u.ieee.exponent)
|
|
|
|
u.ieee.exponent += DBL_MANT_DIG;
|
|
|
|
else
|
|
|
|
u.d *= 0x1p53;
|
|
|
|
}
|
2010-10-15 19:25:14 +00:00
|
|
|
else /* if (u.ieee.exponent + v.ieee.exponent
|
|
|
|
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
|
|
|
|
{
|
|
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
|
|
u.ieee.exponent += 2 * DBL_MANT_DIG;
|
|
|
|
else
|
|
|
|
v.ieee.exponent += 2 * DBL_MANT_DIG;
|
|
|
|
if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 4)
|
|
|
|
{
|
|
|
|
if (w.ieee.exponent)
|
|
|
|
w.ieee.exponent += 2 * DBL_MANT_DIG;
|
|
|
|
else
|
|
|
|
w.d *= 0x1p106;
|
|
|
|
adjust = -1;
|
|
|
|
}
|
|
|
|
/* Otherwise x * y should just affect inexact
|
|
|
|
and nothing else. */
|
|
|
|
}
|
2010-10-14 02:27:03 +00:00
|
|
|
x = u.d;
|
|
|
|
y = v.d;
|
|
|
|
z = w.d;
|
|
|
|
}
|
2012-09-29 18:31:54 +00:00
|
|
|
|
|
|
|
/* Ensure correct sign of exact 0 + 0. */
|
|
|
|
if (__builtin_expect ((x == 0 || y == 0) && z == 0, 0))
|
|
|
|
return x * y + z;
|
|
|
|
|
2010-10-14 02:27:03 +00:00
|
|
|
/* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
|
|
|
|
#define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
|
|
|
|
double x1 = x * C;
|
|
|
|
double y1 = y * C;
|
|
|
|
double m1 = x * y;
|
|
|
|
x1 = (x - x1) + x1;
|
|
|
|
y1 = (y - y1) + y1;
|
|
|
|
double x2 = x - x1;
|
|
|
|
double y2 = y - y1;
|
|
|
|
double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
|
|
|
|
|
|
|
|
/* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
|
|
|
|
double a1 = z + m1;
|
|
|
|
double t1 = a1 - z;
|
|
|
|
double t2 = a1 - t1;
|
|
|
|
t1 = m1 - t1;
|
|
|
|
t2 = z - t2;
|
|
|
|
double a2 = t1 + t2;
|
|
|
|
|
|
|
|
fenv_t env;
|
2011-10-18 19:11:31 +00:00
|
|
|
libc_feholdexcept_setround (&env, FE_TOWARDZERO);
|
2012-03-10 16:53:05 +00:00
|
|
|
|
2010-10-14 02:27:03 +00:00
|
|
|
/* Perform m2 + a2 addition with round to odd. */
|
|
|
|
u.d = a2 + m2;
|
|
|
|
|
2012-03-10 16:53:05 +00:00
|
|
|
if (__builtin_expect (adjust < 0, 0))
|
|
|
|
{
|
|
|
|
if ((u.ieee.mantissa1 & 1) == 0)
|
|
|
|
u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
|
|
|
|
v.d = a1 + u.d;
|
2012-06-01 19:01:17 +00:00
|
|
|
/* Ensure the addition is not scheduled after fetestexcept call. */
|
|
|
|
math_force_eval (v.d);
|
2012-03-10 16:53:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Reset rounding mode and test for inexact simultaneously. */
|
|
|
|
int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0;
|
|
|
|
|
2010-10-15 19:25:14 +00:00
|
|
|
if (__builtin_expect (adjust == 0, 1))
|
|
|
|
{
|
|
|
|
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
|
2012-03-10 16:53:05 +00:00
|
|
|
u.ieee.mantissa1 |= j;
|
2010-10-15 19:25:14 +00:00
|
|
|
/* Result is a1 + u.d. */
|
|
|
|
return a1 + u.d;
|
|
|
|
}
|
|
|
|
else if (__builtin_expect (adjust > 0, 1))
|
|
|
|
{
|
|
|
|
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
|
2012-03-10 16:53:05 +00:00
|
|
|
u.ieee.mantissa1 |= j;
|
2010-10-15 19:25:14 +00:00
|
|
|
/* Result is a1 + u.d, scaled up. */
|
|
|
|
return (a1 + u.d) * 0x1p53;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* If a1 + u.d is exact, the only rounding happens during
|
|
|
|
scaling down. */
|
|
|
|
if (j == 0)
|
|
|
|
return v.d * 0x1p-106;
|
|
|
|
/* If result rounded to zero is not subnormal, no double
|
|
|
|
rounding will occur. */
|
|
|
|
if (v.ieee.exponent > 106)
|
|
|
|
return (a1 + u.d) * 0x1p-106;
|
|
|
|
/* If v.d * 0x1p-106 with round to zero is a subnormal above
|
|
|
|
or equal to DBL_MIN / 2, then v.d * 0x1p-106 shifts mantissa
|
|
|
|
down just by 1 bit, which means v.ieee.mantissa1 |= j would
|
|
|
|
change the round bit, not sticky or guard bit.
|
|
|
|
v.d * 0x1p-106 never normalizes by shifting up,
|
|
|
|
so round bit plus sticky bit should be already enough
|
|
|
|
for proper rounding. */
|
|
|
|
if (v.ieee.exponent == 106)
|
|
|
|
{
|
2012-10-31 13:01:17 +00:00
|
|
|
/* If the exponent would be in the normal range when
|
|
|
|
rounding to normal precision with unbounded exponent
|
|
|
|
range, the exact result is known and spurious underflows
|
|
|
|
must be avoided on systems detecting tininess after
|
|
|
|
rounding. */
|
|
|
|
if (TININESS_AFTER_ROUNDING)
|
|
|
|
{
|
|
|
|
w.d = a1 + u.d;
|
|
|
|
if (w.ieee.exponent == 107)
|
|
|
|
return w.d * 0x1p-106;
|
|
|
|
}
|
2010-10-15 19:25:14 +00:00
|
|
|
/* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
|
|
|
|
v.ieee.mantissa1 & 1 is the round bit and j is our sticky
|
2012-10-30 13:54:50 +00:00
|
|
|
bit. */
|
|
|
|
w.d = 0.0;
|
|
|
|
w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
|
|
|
|
w.ieee.negative = v.ieee.negative;
|
|
|
|
v.ieee.mantissa1 &= ~3U;
|
|
|
|
v.d *= 0x1p-106;
|
|
|
|
w.d *= 0x1p-2;
|
|
|
|
return v.d + w.d;
|
2010-10-15 19:25:14 +00:00
|
|
|
}
|
|
|
|
v.ieee.mantissa1 |= j;
|
|
|
|
return v.d * 0x1p-106;
|
|
|
|
}
|
2010-10-14 02:27:03 +00:00
|
|
|
}
|
|
|
|
#ifndef __fma
|
|
|
|
weak_alias (__fma, fma)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef NO_LONG_DOUBLE
|
|
|
|
strong_alias (__fma, __fmal)
|
|
|
|
weak_alias (__fmal, fmal)
|
|
|
|
#endif
|