glibc/sysdeps/aarch64/fpu/pow_advsimd.c

250 lines
9.9 KiB
C
Raw Normal View History

/* Double-precision vector (AdvSIMD) pow function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
/* Defines parameters of the approximation and scalar fallback. */
#include "finite_pow.h"
#define VecSmallExp v_u64 (SmallExp)
#define VecThresExp v_u64 (ThresExp)
#define VecSmallPowX v_u64 (SmallPowX)
#define VecThresPowX v_u64 (ThresPowX)
#define VecSmallPowY v_u64 (SmallPowY)
#define VecThresPowY v_u64 (ThresPowY)
static const struct data
{
float64x2_t log_poly[6];
float64x2_t exp_poly[3];
float64x2_t ln2_hi, ln2_lo;
float64x2_t shift, inv_ln2_n, ln2_hi_n, ln2_lo_n, small_powx;
uint64x2_t inf;
} data = {
/* Coefficients copied from v_pow_log_data.c
relative error: 0x1.11922ap-70 in [-0x1.6bp-8, 0x1.6bp-8]
Coefficients are scaled to match the scaling during evaluation. */
.log_poly
= { V2 (0x1.555555555556p-2 * -2), V2 (-0x1.0000000000006p-2 * -2),
V2 (0x1.999999959554ep-3 * 4), V2 (-0x1.555555529a47ap-3 * 4),
V2 (0x1.2495b9b4845e9p-3 * -8), V2 (-0x1.0002b8b263fc3p-3 * -8) },
.ln2_hi = V2 (0x1.62e42fefa3800p-1),
.ln2_lo = V2 (0x1.ef35793c76730p-45),
/* Polynomial coefficients: abs error: 1.43*2^-58, ulp error: 0.549
(0.550 without fma) if |x| < ln2/512. */
.exp_poly = { V2 (0x1.fffffffffffd4p-2), V2 (0x1.5555571d6ef9p-3),
V2 (0x1.5555576a5adcep-5) },
.shift = V2 (0x1.8p52), /* round to nearest int. without intrinsics. */
.inv_ln2_n = V2 (0x1.71547652b82fep8), /* N/ln2. */
.ln2_hi_n = V2 (0x1.62e42fefc0000p-9), /* ln2/N. */
.ln2_lo_n = V2 (-0x1.c610ca86c3899p-45),
.small_powx = V2 (0x1p-126),
.inf = V2 (0x7ff0000000000000)
};
#define A(i) data.log_poly[i]
#define C(i) data.exp_poly[i]
/* This version implements an algorithm close to scalar pow but
- does not implement the trick in the exp's specialcase subroutine to avoid
double-rounding,
- does not use a tail in the exponential core computation,
- and pow's exp polynomial order and table bits might differ.
Maximum measured error is 1.04 ULPs:
_ZGVnN2vv_pow(0x1.024a3e56b3c3p-136, 0x1.87910248b58acp-13)
got 0x1.f71162f473251p-1
want 0x1.f71162f473252p-1. */
static inline float64x2_t
v_masked_lookup_f64 (const double *table, uint64x2_t i)
{
return (float64x2_t){
table[(i[0] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)],
table[(i[1] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)]
};
}
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
static inline float64x2_t
v_log_inline (uint64x2_t ix, float64x2_t *tail, const struct data *d)
{
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
uint64x2_t tmp = vsubq_u64 (ix, v_u64 (Off));
int64x2_t k
= vshrq_n_s64 (vreinterpretq_s64_u64 (tmp), 52); /* arithmetic shift. */
uint64x2_t iz = vsubq_u64 (ix, vandq_u64 (tmp, v_u64 (0xfffULL << 52)));
float64x2_t z = vreinterpretq_f64_u64 (iz);
float64x2_t kd = vcvtq_f64_s64 (k);
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
float64x2_t invc = v_masked_lookup_f64 (__v_pow_log_data.invc, tmp);
float64x2_t logc = v_masked_lookup_f64 (__v_pow_log_data.logc, tmp);
float64x2_t logctail = v_masked_lookup_f64 (__v_pow_log_data.logctail, tmp);
/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
|z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, invc);
/* k*Ln2 + log(c) + r. */
float64x2_t t1 = vfmaq_f64 (logc, kd, d->ln2_hi);
float64x2_t t2 = vaddq_f64 (t1, r);
float64x2_t lo1 = vfmaq_f64 (logctail, kd, d->ln2_lo);
float64x2_t lo2 = vaddq_f64 (vsubq_f64 (t1, t2), r);
/* Evaluation is optimized assuming superscalar pipelined execution. */
float64x2_t ar = vmulq_f64 (v_f64 (-0.5), r);
float64x2_t ar2 = vmulq_f64 (r, ar);
float64x2_t ar3 = vmulq_f64 (r, ar2);
/* k*Ln2 + log(c) + r + A[0]*r*r. */
float64x2_t hi = vaddq_f64 (t2, ar2);
float64x2_t lo3 = vfmaq_f64 (vnegq_f64 (ar2), ar, r);
float64x2_t lo4 = vaddq_f64 (vsubq_f64 (t2, hi), ar2);
/* p = log1p(r) - r - A[0]*r*r. */
float64x2_t a56 = vfmaq_f64 (A (4), r, A (5));
float64x2_t a34 = vfmaq_f64 (A (2), r, A (3));
float64x2_t a12 = vfmaq_f64 (A (0), r, A (1));
float64x2_t p = vfmaq_f64 (a34, ar2, a56);
p = vfmaq_f64 (a12, ar2, p);
p = vmulq_f64 (ar3, p);
float64x2_t lo
= vaddq_f64 (vaddq_f64 (vaddq_f64 (vaddq_f64 (lo1, lo2), lo3), lo4), p);
float64x2_t y = vaddq_f64 (hi, lo);
*tail = vaddq_f64 (vsubq_f64 (hi, y), lo);
return y;
}
static float64x2_t VPCS_ATTR NOINLINE
exp_special_case (float64x2_t x, float64x2_t xtail)
{
return (float64x2_t){ exp_nosignbias (x[0], xtail[0]),
exp_nosignbias (x[1], xtail[1]) };
}
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. */
static inline float64x2_t
v_exp_inline (float64x2_t x, float64x2_t xtail, const struct data *d)
{
/* Fallback to scalar exp_inline for all lanes if any lane
contains value of x s.t. |x| <= 2^-54 or >= 512. */
uint64x2_t abstop
= vshrq_n_u64 (vandq_u64 (vreinterpretq_u64_f64 (x), d->inf), 52);
uint64x2_t uoflowx
= vcgeq_u64 (vsubq_u64 (abstop, VecSmallExp), VecThresExp);
if (__glibc_unlikely (v_any_u64 (uoflowx)))
return exp_special_case (x, xtail);
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */
float64x2_t z = vmulq_f64 (d->inv_ln2_n, x);
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
float64x2_t kd = vaddq_f64 (z, d->shift);
uint64x2_t ki = vreinterpretq_u64_f64 (kd);
kd = vsubq_f64 (kd, d->shift);
float64x2_t r = vfmsq_f64 (x, kd, d->ln2_hi_n);
r = vfmsq_f64 (r, kd, d->ln2_lo_n);
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
r = vaddq_f64 (r, xtail);
/* 2^(k/N) ~= scale. */
uint64x2_t idx = vandq_u64 (ki, v_u64 (N_EXP - 1));
uint64x2_t top = vshlq_n_u64 (ki, 52 - V_POW_EXP_TABLE_BITS);
/* This is only a valid scale when -1023*N < k < 1024*N. */
uint64x2_t sbits = v_lookup_u64 (SBits, idx);
sbits = vaddq_u64 (sbits, top);
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */
float64x2_t r2 = vmulq_f64 (r, r);
float64x2_t tmp = vfmaq_f64 (C (1), r, C (2));
tmp = vfmaq_f64 (C (0), r, tmp);
tmp = vfmaq_f64 (r, r2, tmp);
float64x2_t scale = vreinterpretq_f64_u64 (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return vfmaq_f64 (scale, scale, tmp);
}
static float64x2_t NOINLINE VPCS_ATTR
scalar_fallback (float64x2_t x, float64x2_t y)
{
return (float64x2_t){ pow_scalar_special_case (x[0], y[0]),
pow_scalar_special_case (x[1], y[1]) };
}
float64x2_t VPCS_ATTR V_NAME_D2 (pow) (float64x2_t x, float64x2_t y)
{
const struct data *d = ptr_barrier (&data);
/* Case of x <= 0 is too complicated to be vectorised efficiently here,
fallback to scalar pow for all lanes if any x < 0 detected. */
if (v_any_u64 (vclezq_s64 (vreinterpretq_s64_f64 (x))))
return scalar_fallback (x, y);
uint64x2_t vix = vreinterpretq_u64_f64 (x);
uint64x2_t viy = vreinterpretq_u64_f64 (y);
uint64x2_t iay = vandq_u64 (viy, d->inf);
/* Special cases of x or y. */
#if WANT_SIMD_EXCEPT
/* Small or large. */
uint64x2_t vtopx = vshrq_n_u64 (vix, 52);
uint64x2_t vabstopy = vshrq_n_u64 (iay, 52);
uint64x2_t specialx
= vcgeq_u64 (vsubq_u64 (vtopx, VecSmallPowX), VecThresPowX);
uint64x2_t specialy
= vcgeq_u64 (vsubq_u64 (vabstopy, VecSmallPowY), VecThresPowY);
#else
/* The case y==0 does not trigger a special case, since in this case it is
necessary to fix the result only if x is a signalling nan, which already
triggers a special case. We test y==0 directly in the scalar fallback. */
uint64x2_t iax = vandq_u64 (vix, d->inf);
uint64x2_t specialx = vcgeq_u64 (iax, d->inf);
uint64x2_t specialy = vcgeq_u64 (iay, d->inf);
#endif
uint64x2_t special = vorrq_u64 (specialx, specialy);
/* Fallback to scalar on all lanes if any lane is inf or nan. */
if (__glibc_unlikely (v_any_u64 (special)))
return scalar_fallback (x, y);
/* Small cases of x: |x| < 0x1p-126. */
uint64x2_t smallx = vcaltq_f64 (x, d->small_powx);
if (__glibc_unlikely (v_any_u64 (smallx)))
{
/* Update ix if top 12 bits of x are 0. */
uint64x2_t sub_x = vceqzq_u64 (vshrq_n_u64 (vix, 52));
if (__glibc_unlikely (v_any_u64 (sub_x)))
{
/* Normalize subnormal x so exponent becomes negative. */
uint64x2_t vix_norm = vreinterpretq_u64_f64 (
vabsq_f64 (vmulq_f64 (x, vcvtq_f64_u64 (v_u64 (1ULL << 52)))));
vix_norm = vsubq_u64 (vix_norm, v_u64 (52ULL << 52));
vix = vbslq_u64 (sub_x, vix_norm, vix);
}
}
/* Vector Log(ix, &lo). */
float64x2_t vlo;
float64x2_t vhi = v_log_inline (vix, &vlo, d);
/* Vector Exp(y_loghi, y_loglo). */
float64x2_t vehi = vmulq_f64 (y, vhi);
float64x2_t velo = vmulq_f64 (y, vlo);
float64x2_t vemi = vfmsq_f64 (vehi, y, vhi);
velo = vsubq_f64 (velo, vemi);
return v_exp_inline (vehi, velo, d);
}