glibc/stdlib/mod_1.c

190 lines
5.2 KiB
C
Raw Normal View History

/* mpn_mod_1(dividend_ptr, dividend_size, divisor_limb) --
1995-02-18 01:27:10 +00:00
Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
Return the single-limb remainder.
There are no constraints on the value of the divisor.
Copyright (C) 1991-2019 Free Software Foundation, Inc.
1995-02-18 01:27:10 +00:00
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
2001-07-07 10:13:33 +00:00
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
1995-02-18 01:27:10 +00:00
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
2001-07-07 10:13:33 +00:00
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
1995-02-18 01:27:10 +00:00
License for more details.
2001-07-07 10:13:33 +00:00
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, see
<http://www.gnu.org/licenses/>. */
1995-02-18 01:27:10 +00:00
2005-12-14 15:06:39 +00:00
#include <gmp.h>
1995-02-18 01:27:10 +00:00
#include "gmp-impl.h"
#include "longlong.h"
#ifndef UMUL_TIME
#define UMUL_TIME 1
#endif
#ifndef UDIV_TIME
#define UDIV_TIME UMUL_TIME
#endif
/* FIXME: We should be using invert_limb (or invert_normalized_limb)
here (not udiv_qrnnd). */
1996-05-07 21:04:52 +00:00
mp_limb_t
mpn_mod_1 (mp_srcptr dividend_ptr, mp_size_t dividend_size,
1996-05-07 21:04:52 +00:00
mp_limb_t divisor_limb)
1995-02-18 01:27:10 +00:00
{
mp_size_t i;
1996-05-07 21:04:52 +00:00
mp_limb_t n1, n0, r;
mp_limb_t dummy __attribute__ ((unused));
1995-02-18 01:27:10 +00:00
/* Botch: Should this be handled at all? Rely on callers? */
if (dividend_size == 0)
return 0;
/* If multiplication is much faster than division, and the
dividend is large, pre-invert the divisor, and use
only multiplications in the inner loop. */
/* This test should be read:
Does it ever help to use udiv_qrnnd_preinv?
&& Does what we save compensate for the inversion overhead? */
if (UDIV_TIME > (2 * UMUL_TIME + 6)
&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
{
int normalization_steps;
count_leading_zeros (normalization_steps, divisor_limb);
if (normalization_steps != 0)
{
1996-05-07 21:04:52 +00:00
mp_limb_t divisor_limb_inverted;
1995-02-18 01:27:10 +00:00
divisor_limb <<= normalization_steps;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
most significant bit (with weight 2**N) implicit. */
/* Special case for DIVISOR_LIMB == 100...000. */
if (divisor_limb << 1 == 0)
1996-05-07 21:04:52 +00:00
divisor_limb_inverted = ~(mp_limb_t) 0;
1995-02-18 01:27:10 +00:00
else
udiv_qrnnd (divisor_limb_inverted, dummy,
-divisor_limb, 0, divisor_limb);
n1 = dividend_ptr[dividend_size - 1];
r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
/* Possible optimization:
if (r == 0
&& divisor_limb > ((n1 << normalization_steps)
| (dividend_ptr[dividend_size - 2] >> ...)))
...one division less... */
for (i = dividend_size - 2; i >= 0; i--)
{
n0 = dividend_ptr[i];
udiv_qrnnd_preinv (dummy, r, r,
((n1 << normalization_steps)
| (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
divisor_limb, divisor_limb_inverted);
n1 = n0;
}
udiv_qrnnd_preinv (dummy, r, r,
n1 << normalization_steps,
divisor_limb, divisor_limb_inverted);
return r >> normalization_steps;
}
else
{
1996-05-07 21:04:52 +00:00
mp_limb_t divisor_limb_inverted;
1995-02-18 01:27:10 +00:00
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
most significant bit (with weight 2**N) implicit. */
/* Special case for DIVISOR_LIMB == 100...000. */
if (divisor_limb << 1 == 0)
1996-05-07 21:04:52 +00:00
divisor_limb_inverted = ~(mp_limb_t) 0;
1995-02-18 01:27:10 +00:00
else
udiv_qrnnd (divisor_limb_inverted, dummy,
-divisor_limb, 0, divisor_limb);
i = dividend_size - 1;
r = dividend_ptr[i];
if (r >= divisor_limb)
r = 0;
else
i--;
for (; i >= 0; i--)
{
n0 = dividend_ptr[i];
udiv_qrnnd_preinv (dummy, r, r,
n0, divisor_limb, divisor_limb_inverted);
}
return r;
}
}
else
{
if (UDIV_NEEDS_NORMALIZATION)
{
int normalization_steps;
count_leading_zeros (normalization_steps, divisor_limb);
if (normalization_steps != 0)
{
divisor_limb <<= normalization_steps;
n1 = dividend_ptr[dividend_size - 1];
r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
/* Possible optimization:
if (r == 0
&& divisor_limb > ((n1 << normalization_steps)
| (dividend_ptr[dividend_size - 2] >> ...)))
...one division less... */
for (i = dividend_size - 2; i >= 0; i--)
{
n0 = dividend_ptr[i];
udiv_qrnnd (dummy, r, r,
((n1 << normalization_steps)
| (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
divisor_limb);
n1 = n0;
}
udiv_qrnnd (dummy, r, r,
n1 << normalization_steps,
divisor_limb);
return r >> normalization_steps;
}
}
/* No normalization needed, either because udiv_qrnnd doesn't require
it, or because DIVISOR_LIMB is already normalized. */
i = dividend_size - 1;
r = dividend_ptr[i];
if (r >= divisor_limb)
r = 0;
else
i--;
for (; i >= 0; i--)
{
n0 = dividend_ptr[i];
udiv_qrnnd (dummy, r, r, n0, divisor_limb);
}
return r;
}
}