glibc/sysdeps/arc/dl-machine.h

331 lines
11 KiB
C
Raw Normal View History

/* Machine-dependent ELF dynamic relocation inline functions. ARC version.
Copyright (C) 2020-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<https://www.gnu.org/licenses/>. */
#ifndef dl_machine_h
#define dl_machine_h
#define ELF_MACHINE_NAME "arc"
#include <entry.h>
#ifndef ENTRY_POINT
# error ENTRY_POINT needs to be defined for ARC
#endif
#include <string.h>
#include <link.h>
#include <dl-tls.h>
elf: Fix dynamic-link.h usage on rtld.c The 4af6982e4c fix does not fully handle RTLD_BOOTSTRAP usage on rtld.c due two issues: 1. RTLD_BOOTSTRAP is also used on dl-machine.h on various architectures and it changes the semantics of various machine relocation functions. 2. The elf_get_dynamic_info() change was done sideways, previously to 490e6c62aa get-dynamic-info.h was included by the first dynamic-link.h include *without* RTLD_BOOTSTRAP being defined. It means that the code within elf_get_dynamic_info() that uses RTLD_BOOTSTRAP is in fact unused. To fix 1. this patch now includes dynamic-link.h only once with RTLD_BOOTSTRAP defined. The ELF_DYNAMIC_RELOCATE call will now have the relocation fnctions with the expected semantics for the loader. And to fix 2. part of 4af6982e4c is reverted (the check argument elf_get_dynamic_info() is not required) and the RTLD_BOOTSTRAP pieces are removed. To reorganize the includes the static TLS definition is moved to its own header to avoid a circular dependency (it is defined on dynamic-link.h and dl-machine.h requires it at same time other dynamic-link.h definition requires dl-machine.h defitions). Also ELF_MACHINE_NO_REL, ELF_MACHINE_NO_RELA, and ELF_MACHINE_PLT_REL are moved to its own header. Only ancient ABIs need special values (arm, i386, and mips), so a generic one is used as default. The powerpc Elf64_FuncDesc is also moved to its own header, since csu code required its definition (which would require either include elf/ folder or add a full path with elf/). Checked on x86_64, i686, aarch64, armhf, powerpc64, powerpc32, and powerpc64le. Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
2021-10-13 12:49:34 +00:00
#include <dl-static-tls.h>
#include <dl-machine-rel.h>
/* Dynamic Linking ABI for ARCv2 ISA.
PLT
-------------------------------- <---- DT_PLTGOT
| ld r11, [pcl, off-to-GOT[1] | 0
| | 4
plt0 | ld r10, [pcl, off-to-GOT[2] | 8
| | 12
| j [r10] | 16
--------------------------------
| Base address of GOT | 20
--------------------------------
| ld r12, [pcl, off-to-GOT[3] | 24
plt1 | |
| j.d [r12] | 32
| mov r12, pcl | 36
--------------------------------
| | 40
~ ~
~ ~
| |
--------------------------------
.got
--------------
| [0] |
| ... | Runtime address for data symbols
| [n] |
--------------
.got.plt
--------------
| [0] | Build address of .dynamic
--------------
| [1] | Module info - setup by ld.so
--------------
| [2] | resolver entry point
--------------
| [3] |
| ... | Runtime address for function symbols
| [f] |
--------------
For ARCompact, the PLT is 12 bytes due to short instructions
--------------------------------
| ld r12, [pcl, off-to-GOT[3] | 24 (12 bytes each)
plt1 | |
| j_s.d [r12] | 32
| mov_s r12, pcl | 34
--------------------------------
| | 36 */
/* Return nonzero iff ELF header is compatible with the running host. */
static inline int
elf_machine_matches_host (const ElfW(Ehdr) *ehdr)
{
return (ehdr->e_machine == EM_ARCV2 /* ARC HS. */
|| ehdr->e_machine == EM_ARC_COMPACT); /* ARC 700. */
}
/* Get build time address of .dynamic as setup in GOT[0]
This is called very early in _dl_start so it has not been relocated to
runtime value. */
static inline ElfW(Addr)
elf_machine_dynamic (void)
{
extern const ElfW(Addr) _GLOBAL_OFFSET_TABLE_[] attribute_hidden;
return _GLOBAL_OFFSET_TABLE_[0];
}
/* Return the run-time load address of the shared object. */
static inline ElfW(Addr)
elf_machine_load_address (void)
{
ElfW(Addr) build_addr, run_addr;
/* For build address, below generates
ld r0, [pcl, _GLOBAL_OFFSET_TABLE_@pcl]. */
build_addr = elf_machine_dynamic ();
__asm__ ("add %0, pcl, _DYNAMIC@pcl \n" : "=r" (run_addr));
return run_addr - build_addr;
}
/* Set up the loaded object described by L so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c. */
static inline int
__attribute__ ((always_inline))
elf_machine_runtime_setup (struct link_map *l, struct r_scope_elem *scope[],
int lazy, int profile)
{
extern void _dl_runtime_resolve (void);
if (l->l_info[DT_JMPREL] && lazy)
{
/* On ARC DT_PLTGOT point to .plt whose 5th word (after the PLT header)
contains the address of .got. */
ElfW(Addr) *plt_base = (ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]);
ElfW(Addr) *got = (ElfW(Addr) *) (plt_base[5] + l->l_addr);
got[1] = (ElfW(Addr)) l; /* Identify this shared object. */
/* This function will get called to fix up the GOT entry indicated by
the offset on the stack, and then jump to the resolved address. */
got[2] = (ElfW(Addr)) &_dl_runtime_resolve;
}
return lazy;
}
/* What this code does:
-ldso starts execution here when kernel returns from execve
-calls into generic ldso entry point _dl_start
-optionally adjusts argc for executable if exec passed as cmd
-calls into app main with address of finaliser. */
#define RTLD_START asm ("\
.text \n\
.globl __start \n\
.type __start, @function \n\
__start: \n\
/* (1). bootstrap ld.so. */ \n\
bl.d _dl_start \n\
mov_s r0, sp /* pass ptr to aux vector tbl. */ \n\
mov r13, r0 /* safekeep app elf entry point. */ \n\
ld_s r1, [sp] /* orig argc. */ \n\
\n\
/* (2). call preinit stuff. */ \n\
ld r0, [pcl, _rtld_local@pcl] \n\
add r2, sp, 4 ; argv \n\
add2 r3, r2, r1 \n\
add r3, r3, 4 ; env \n\
bl _dl_init@plt \n\
\n\
/* (3) call app elf entry point. */ \n\
add r0, pcl, _dl_fini@pcl \n\
j [r13] \n\
\n\
.size __start,.-__start \n\
.previous \n\
");
/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry, so
PLT entries should not be allowed to define the value.
ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one
of the main executable's symbols, as for a COPY reloc. */
#define elf_machine_type_class(type) \
((((type) == R_ARC_JUMP_SLOT \
|| (type) == R_ARC_TLS_DTPMOD \
|| (type) == R_ARC_TLS_DTPOFF \
|| (type) == R_ARC_TLS_TPOFF) * ELF_RTYPE_CLASS_PLT) \
| (((type) == R_ARC_COPY) * ELF_RTYPE_CLASS_COPY))
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
#define ELF_MACHINE_JMP_SLOT R_ARC_JUMP_SLOT
/* Fixup a PLT entry to bounce directly to the function at VALUE. */
static inline ElfW(Addr)
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
const ElfW(Sym) *refsym, const ElfW(Sym) *sym,
const ElfW(Rela) *reloc,
ElfW(Addr) *reloc_addr, ElfW(Addr) value)
{
return *reloc_addr = value;
}
/* Return the final value of a plt relocation. */
#define elf_machine_plt_value(map, reloc, value) (value)
/* Names of the architecture-specific auditing callback functions. */
#define ARCH_LA_PLTENTER arc_gnu_pltenter
#define ARCH_LA_PLTEXIT arc_gnu_pltexit
#endif /* dl_machine_h */
#ifdef RESOLVE_MAP
static inline void
__attribute__ ((always_inline))
elf_machine_rela (struct link_map *map, struct r_scope_elem *scope[],
const ElfW(Rela) *reloc, const ElfW(Sym) *sym,
const struct r_found_version *version,
void *const reloc_addr_arg, int skip_ifunc)
{
ElfW(Addr) r_info = reloc->r_info;
const unsigned long int r_type = ELFW (R_TYPE) (r_info);
ElfW(Addr) *const reloc_addr = reloc_addr_arg;
if (__glibc_unlikely (r_type == R_ARC_RELATIVE))
*reloc_addr += map->l_addr;
else if (__glibc_unlikely (r_type == R_ARC_NONE))
return;
else
{
const ElfW(Sym) *const refsym = sym;
struct link_map *sym_map = RESOLVE_MAP (map, scope, &sym, version,
r_type);
ElfW(Addr) value = SYMBOL_ADDRESS (sym_map, sym, true);
switch (r_type)
{
case R_ARC_COPY:
if (__glibc_unlikely (sym == NULL))
/* This can happen in trace mode if an object could not be
found. */
break;
size_t size = sym->st_size;
if (__glibc_unlikely (size != refsym->st_size))
{
const char *strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
if (sym->st_size > refsym->st_size)
size = refsym->st_size;
if (sym->st_size > refsym->st_size || GLRO(dl_verbose))
_dl_error_printf ("\
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
rtld_progname ?: "<program name unknown>",
strtab + refsym->st_name);
}
memcpy (reloc_addr_arg, (void *) value, size);
break;
case R_ARC_GLOB_DAT:
case R_ARC_JUMP_SLOT:
*reloc_addr = value;
break;
case R_ARC_TLS_DTPMOD:
if (sym_map != NULL)
/* Get the information from the link map returned by the
resolv function. */
*reloc_addr = sym_map->l_tls_modid;
break;
case R_ARC_TLS_DTPOFF:
if (sym != NULL)
/* Offset set by the linker in the GOT entry would be overwritten
by dynamic loader instead of added to the symbol location.
Other target have the same approach on DTPOFF relocs. */
*reloc_addr += sym->st_value;
break;
case R_ARC_TLS_TPOFF:
if (sym != NULL)
{
CHECK_STATIC_TLS (map, sym_map);
*reloc_addr = sym_map->l_tls_offset + sym->st_value + reloc->r_addend;
}
break;
case R_ARC_32:
*reloc_addr += value + reloc->r_addend;
break;
case R_ARC_PC32:
*reloc_addr += value + reloc->r_addend - (unsigned long int) reloc_addr;
break;
default:
_dl_reloc_bad_type (map, r_type, 0);
break;
}
}
}
elf: Fix dynamic-link.h usage on rtld.c The 4af6982e4c fix does not fully handle RTLD_BOOTSTRAP usage on rtld.c due two issues: 1. RTLD_BOOTSTRAP is also used on dl-machine.h on various architectures and it changes the semantics of various machine relocation functions. 2. The elf_get_dynamic_info() change was done sideways, previously to 490e6c62aa get-dynamic-info.h was included by the first dynamic-link.h include *without* RTLD_BOOTSTRAP being defined. It means that the code within elf_get_dynamic_info() that uses RTLD_BOOTSTRAP is in fact unused. To fix 1. this patch now includes dynamic-link.h only once with RTLD_BOOTSTRAP defined. The ELF_DYNAMIC_RELOCATE call will now have the relocation fnctions with the expected semantics for the loader. And to fix 2. part of 4af6982e4c is reverted (the check argument elf_get_dynamic_info() is not required) and the RTLD_BOOTSTRAP pieces are removed. To reorganize the includes the static TLS definition is moved to its own header to avoid a circular dependency (it is defined on dynamic-link.h and dl-machine.h requires it at same time other dynamic-link.h definition requires dl-machine.h defitions). Also ELF_MACHINE_NO_REL, ELF_MACHINE_NO_RELA, and ELF_MACHINE_PLT_REL are moved to its own header. Only ancient ABIs need special values (arm, i386, and mips), so a generic one is used as default. The powerpc Elf64_FuncDesc is also moved to its own header, since csu code required its definition (which would require either include elf/ folder or add a full path with elf/). Checked on x86_64, i686, aarch64, armhf, powerpc64, powerpc32, and powerpc64le. Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
2021-10-13 12:49:34 +00:00
static inline void
__attribute__ ((always_inline))
elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
void *const reloc_addr_arg)
{
ElfW(Addr) *const reloc_addr = reloc_addr_arg;
*reloc_addr += l_addr;
}
elf: Fix dynamic-link.h usage on rtld.c The 4af6982e4c fix does not fully handle RTLD_BOOTSTRAP usage on rtld.c due two issues: 1. RTLD_BOOTSTRAP is also used on dl-machine.h on various architectures and it changes the semantics of various machine relocation functions. 2. The elf_get_dynamic_info() change was done sideways, previously to 490e6c62aa get-dynamic-info.h was included by the first dynamic-link.h include *without* RTLD_BOOTSTRAP being defined. It means that the code within elf_get_dynamic_info() that uses RTLD_BOOTSTRAP is in fact unused. To fix 1. this patch now includes dynamic-link.h only once with RTLD_BOOTSTRAP defined. The ELF_DYNAMIC_RELOCATE call will now have the relocation fnctions with the expected semantics for the loader. And to fix 2. part of 4af6982e4c is reverted (the check argument elf_get_dynamic_info() is not required) and the RTLD_BOOTSTRAP pieces are removed. To reorganize the includes the static TLS definition is moved to its own header to avoid a circular dependency (it is defined on dynamic-link.h and dl-machine.h requires it at same time other dynamic-link.h definition requires dl-machine.h defitions). Also ELF_MACHINE_NO_REL, ELF_MACHINE_NO_RELA, and ELF_MACHINE_PLT_REL are moved to its own header. Only ancient ABIs need special values (arm, i386, and mips), so a generic one is used as default. The powerpc Elf64_FuncDesc is also moved to its own header, since csu code required its definition (which would require either include elf/ folder or add a full path with elf/). Checked on x86_64, i686, aarch64, armhf, powerpc64, powerpc32, and powerpc64le. Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
2021-10-13 12:49:34 +00:00
static inline void
__attribute__ ((always_inline))
elf_machine_lazy_rel (struct link_map *map, struct r_scope_elem *scope[],
ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
int skip_ifunc)
{
ElfW(Addr) *const reloc_addr = (void *) (l_addr + reloc->r_offset);
const unsigned int r_type = ELFW (R_TYPE) (reloc->r_info);
if (r_type == R_ARC_JUMP_SLOT)
*reloc_addr += l_addr;
else
_dl_reloc_bad_type (map, r_type, 1);
}
#endif /* RESOLVE_MAP */