mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-19 19:40:06 +00:00
250 lines
6.2 KiB
ArmAsm
250 lines
6.2 KiB
ArmAsm
|
.file "ceilf.s"
|
||
|
|
||
|
// Copyright (c) 2000, 2001, Intel Corporation
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
|
||
|
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
|
||
|
//
|
||
|
// WARRANTY DISCLAIMER
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
||
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Intel Corporation is the author of this code, and requests that all
|
||
|
// problem reports or change requests be submitted to it directly at
|
||
|
// http://developer.intel.com/opensource.
|
||
|
//
|
||
|
|
||
|
#include "libm_support.h"
|
||
|
|
||
|
.align 32
|
||
|
.global ceilf#
|
||
|
|
||
|
.section .text
|
||
|
.proc ceilf#
|
||
|
.align 32
|
||
|
|
||
|
// History
|
||
|
//==============================================================
|
||
|
// 2/02/00: Initial version
|
||
|
// 6/13/00: Improved speed
|
||
|
// 6/27/00: Eliminated incorrect invalid flag setting
|
||
|
|
||
|
// API
|
||
|
//==============================================================
|
||
|
// float ceilf(float x)
|
||
|
|
||
|
// general input registers:
|
||
|
|
||
|
ceil_GR_FFFF = r14
|
||
|
ceil_GR_signexp = r15
|
||
|
ceil_GR_exponent = r16
|
||
|
ceil_GR_expmask = r17
|
||
|
ceil_GR_bigexp = r18
|
||
|
|
||
|
|
||
|
// predicate registers used:
|
||
|
|
||
|
// p6 ==> Input is NaN, infinity, zero
|
||
|
// p7 ==> Input is denormal
|
||
|
// p8 ==> Input is <0
|
||
|
// p9 ==> Input is >=0
|
||
|
// p10 ==> Input is already an integer (bigger than largest integer)
|
||
|
// p11 ==> Input is not a large integer
|
||
|
// p12 ==> Input is a smaller integer
|
||
|
// p13 ==> Input is not an even integer, so inexact must be set
|
||
|
// p14 ==> Input is between -1 and 0, so result will be -0 and inexact
|
||
|
|
||
|
|
||
|
// floating-point registers used:
|
||
|
|
||
|
CEIL_SIGNED_ZERO = f7
|
||
|
CEIL_NORM_f8 = f9
|
||
|
CEIL_FFFF = f10
|
||
|
CEIL_INEXACT = f11
|
||
|
CEIL_FLOAT_INT_f8 = f12
|
||
|
CEIL_INT_f8 = f13
|
||
|
CEIL_adj = f14
|
||
|
CEIL_MINUS_ONE = f15
|
||
|
|
||
|
// Overview of operation
|
||
|
//==============================================================
|
||
|
|
||
|
// float ceilf(float x)
|
||
|
// Return an integer value (represented as a float) that is the smallest
|
||
|
// value not less than x
|
||
|
// This is x rounded toward +infinity to an integral value.
|
||
|
// Inexact is set if x != ceilf(x)
|
||
|
// **************************************************************************
|
||
|
|
||
|
// Set denormal flag for denormal input and
|
||
|
// and take denormal fault if necessary.
|
||
|
|
||
|
// Is the input an integer value already?
|
||
|
|
||
|
// double_extended
|
||
|
// if the exponent is > 1003e => 3F(true) = 63(decimal)
|
||
|
// we have a significand of 64 bits 1.63-bits.
|
||
|
// If we multiply by 2^63, we no longer have a fractional part
|
||
|
// So input is an integer value already.
|
||
|
|
||
|
// double
|
||
|
// if the exponent is >= 10033 => 34(true) = 52(decimal)
|
||
|
// 34 + 3ff = 433
|
||
|
// we have a significand of 53 bits 1.52-bits. (implicit 1)
|
||
|
// If we multiply by 2^52, we no longer have a fractional part
|
||
|
// So input is an integer value already.
|
||
|
|
||
|
// single
|
||
|
// if the exponent is > 10016 => 17(true) = 23(decimal)
|
||
|
// we have a significand of 24 bits 1.23-bits. (implicit 1)
|
||
|
// If we multiply by 2^23, we no longer have a fractional part
|
||
|
// So input is an integer value already.
|
||
|
|
||
|
// If x is NAN, ZERO, or INFINITY, then return
|
||
|
|
||
|
// qnan snan inf norm unorm 0 -+
|
||
|
// 1 1 1 0 0 1 11 0xe7
|
||
|
|
||
|
|
||
|
ceilf:
|
||
|
|
||
|
{ .mfi
|
||
|
getf.exp ceil_GR_signexp = f8
|
||
|
fcvt.fx.trunc.s1 CEIL_INT_f8 = f8
|
||
|
addl ceil_GR_bigexp = 0x10016, r0
|
||
|
}
|
||
|
{ .mfi
|
||
|
addl ceil_GR_FFFF = -1,r0
|
||
|
fcmp.lt.s1 p8,p9 = f8,f0
|
||
|
mov ceil_GR_expmask = 0x1FFFF ;;
|
||
|
}
|
||
|
|
||
|
// p7 ==> denorm
|
||
|
{ .mfi
|
||
|
setf.sig CEIL_FFFF = ceil_GR_FFFF
|
||
|
fclass.m p7,p0 = f8, 0x0b
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fnorm CEIL_NORM_f8 = f8
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
// Form 0 with sign of input in case negative zero is needed
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fmerge.s CEIL_SIGNED_ZERO = f8, f0
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
fsub.s1 CEIL_MINUS_ONE = f0, f1
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
// p6 ==> NAN, INF, ZERO
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
fclass.m p6,p10 = f8, 0xe7
|
||
|
(p7) br.cond.spnt L(CEIL_DENORM) ;;
|
||
|
}
|
||
|
|
||
|
L(CEIL_COMMON):
|
||
|
.pred.rel "mutex",p8,p9
|
||
|
// Set adjustment to add to trunc(x) for result
|
||
|
// If x>0, adjustment is 1.0
|
||
|
// If x<=0, adjustment is 0.0
|
||
|
{ .mfi
|
||
|
and ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask
|
||
|
(p9) fadd.s1 CEIL_adj = f1,f0
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p8) fadd.s1 CEIL_adj = f0,f0
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
(p10) cmp.ge.unc p10,p11 = ceil_GR_exponent, ceil_GR_bigexp
|
||
|
(p6) fnorm.s f8 = f8
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fcvt.xf CEIL_FLOAT_INT_f8 = CEIL_INT_f8
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p10) fnorm.s f8 = CEIL_NORM_f8
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
// Is -1 < x < 0? If so, result will be -0. Special case it with p14 set.
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p8) fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
(p14) cmp.ne p11,p0 = r0,r0
|
||
|
(p14) fnorm.s f8 = CEIL_SIGNED_ZERO
|
||
|
nop.i 999
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p14) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fadd.s f8 = CEIL_FLOAT_INT_f8,CEIL_adj
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p11) fcmp.eq.unc.s1 p12,p13 = CEIL_FLOAT_INT_f8, CEIL_NORM_f8
|
||
|
nop.i 999 ;;
|
||
|
}
|
||
|
|
||
|
// Set inexact if result not equal to input
|
||
|
{ .mfi
|
||
|
nop.m 999
|
||
|
(p13) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
|
||
|
nop.i 999
|
||
|
}
|
||
|
// Set result to input if integer
|
||
|
{ .mfb
|
||
|
nop.m 999
|
||
|
(p12) fnorm.s f8 = CEIL_NORM_f8
|
||
|
br.ret.sptk b0 ;;
|
||
|
}
|
||
|
|
||
|
// Here if input denorm
|
||
|
L(CEIL_DENORM):
|
||
|
{ .mfb
|
||
|
getf.exp ceil_GR_signexp = CEIL_NORM_f8
|
||
|
fcvt.fx.trunc.s1 CEIL_INT_f8 = CEIL_NORM_f8
|
||
|
br.cond.sptk L(CEIL_COMMON) ;;
|
||
|
}
|
||
|
|
||
|
.endp ceilf
|
||
|
ASM_SIZE_DIRECTIVE(ceilf)
|