glibc/sysdeps/ia64/fpu/e_exp.S

801 lines
22 KiB
ArmAsm
Raw Normal View History

.file "exp.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 2/02/00 Initial version
// 3/07/00 exp(inf) = inf but now does NOT call error support
// exp(-inf) = 0 but now does NOT call error support
// 4/04/00 Unwind support added
// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 11/30/00 Reworked to shorten main path, widen main path to include all
// args in normal range, and add quick exit for 0, nan, inf.
// 12/05/00 Loaded constants earlier with setf to save 2 cycles.
// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
// 05/20/02 Cleaned up namespace and sf0 syntax
// 09/07/02 Force inexact flag
// 11/15/02 Split underflow path into zero/nonzero; eliminated fma in main path
// 05/30/03 Set inexact flag on unmasked overflow/underflow
// 03/31/05 Reformatted delimiters between data tables
// API
//==============================================================
// double exp(double)
// Overview of operation
//==============================================================
// Take the input x. w is "how many log2/128 in x?"
// w = x * 128/log2
// n = int(w)
// x = n log2/128 + r + delta
// n = 128M + index_1 + 2^4 index_2
// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
// Construct 2^M
// Get 2^(index_1/128) from table_1;
// Get 2^(index_2/8) from table_2;
// Calculate exp(r) by 5th order polynomial
// r = x - n (log2/128)_high
// delta = - n (log2/128)_low
// Calculate exp(delta) as 1 + delta
// Special values
//==============================================================
// exp(+0) = 1.0
// exp(-0) = 1.0
// exp(+qnan) = +qnan
// exp(-qnan) = -qnan
// exp(+snan) = +qnan
// exp(-snan) = -qnan
// exp(-inf) = +0
// exp(+inf) = +inf
// Overflow and Underflow
//=======================
// exp(x) = largest double normal when
// x = 709.7827 = 0x40862e42fefa39ef
// exp(x) = smallest double normal when
// x = -708.396 = 0xc086232bdd7abcd2
// exp(x) = largest round-to-nearest single zero when
// x = -745.1332 = 0xc0874910d52d3052
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input, output
// f6 -> f15, f32 -> f49
// General registers used:
// r14 -> r40
// Predicate registers used:
// p6 -> p15
// Assembly macros
//==============================================================
rRshf = r14
rAD_TB1 = r15
rAD_T1 = r15
rAD_TB2 = r16
rAD_T2 = r16
rAD_P = r17
rN = r18
rIndex_1 = r19
rIndex_2_16 = r20
rM = r21
rBiased_M = r21
rIndex_1_16 = r21
rSig_inv_ln2 = r22
rExp_bias = r23
rExp_mask = r24
rTmp = r25
rRshf_2to56 = r26
rGt_ln = r27
rExp_2tom56 = r28
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_SAVE_SP = r36
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
GR_Parameter_TAG = r40
FR_X = f10
FR_Y = f1
FR_RESULT = f8
fRSHF_2TO56 = f6
fINV_LN2_2TO63 = f7
fW_2TO56_RSH = f9
f2TOM56 = f11
fP5 = f12
fP54 = f12
fP5432 = f12
fP4 = f13
fP3 = f14
fP32 = f14
fP2 = f15
fP = f15
fLn2_by_128_hi = f33
fLn2_by_128_lo = f34
fRSHF = f35
fNfloat = f36
fNormX = f37
fR = f38
fF = f39
fRsq = f40
f2M = f41
fS1 = f42
fT1 = f42
fS2 = f43
fT2 = f43
fS = f43
fWre_urm_f8 = f44
fFtz_urm_f8 = f44
fMIN_DBL_OFLOW_ARG = f45
fMAX_DBL_ZERO_ARG = f46
fMAX_DBL_NORM_ARG = f47
fMIN_DBL_NORM_ARG = f48
fGt_pln = f49
fTmp = f49
// Data tables
//==============================================================
RODATA
.align 16
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
// double-extended 1/ln(2)
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
// 3fff b8aa 3b29 5c17 f0bc
// For speed the significand will be loaded directly with a movl and setf.sig
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
// computations need to scale appropriately.
// The constant 128/ln(2) is needed for the computation of w. This is also
// obtained by scaling the computations.
//
// Two shifting constants are loaded directly with movl and setf.d.
// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
// This constant is added to x*1/ln2 to shift the integer part of
// x*128/ln2 into the rightmost bits of the significand.
// The result of this fma is fW_2TO56_RSH.
// 2. fRSHF = 1.1000..00 * 2^(63)
// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
// the integer part of w, n, as a floating-point number.
// The result of this fms is fNfloat.
LOCAL_OBJECT_START(exp_table_1)
data8 0x40862e42fefa39f0 // smallest dbl overflow arg, +709.7827
data8 0xc0874910d52d3052 // largest arg for rnd-to-nearest 0 result, -745.133
data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result, +709.7827
data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result, -708.396
data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
//
// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15
//
data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
data8 0x8218AF4373FC25EC , 0x00003FFF
data8 0x82CD8698AC2BA1D7 , 0x00003FFF
data8 0x8383594EEFB6EE37 , 0x00003FFF
data8 0x843A28C3ACDE4046 , 0x00003FFF
data8 0x84F1F656379C1A29 , 0x00003FFF
data8 0x85AAC367CC487B15 , 0x00003FFF
data8 0x8664915B923FBA04 , 0x00003FFF
data8 0x871F61969E8D1010 , 0x00003FFF
data8 0x87DB357FF698D792 , 0x00003FFF
data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
LOCAL_OBJECT_END(exp_table_1)
// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
LOCAL_OBJECT_START(exp_table_2)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
data8 0xA5FED6A9B15138EA , 0x00003FFF
data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
LOCAL_OBJECT_END(exp_table_2)
LOCAL_OBJECT_START(exp_p_table)
data8 0x3f8111116da21757 //P5
data8 0x3fa55555d787761c //P4
data8 0x3fc5555555555414 //P3
data8 0x3fdffffffffffd6a //P2
LOCAL_OBJECT_END(exp_p_table)
.section .text
GLOBAL_IEEE754_ENTRY(exp)
{ .mlx
nop.m 0
movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
}
{ .mlx
addl rAD_TB1 = @ltoff(exp_table_1), gp
movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
}
;;
{ .mfi
ld8 rAD_TB1 = [rAD_TB1]
fclass.m p8,p0 = f8,0x07 // Test for x=0
mov rExp_mask = 0x1ffff
}
{ .mfi
mov rExp_bias = 0xffff
fnorm.s1 fNormX = f8
mov rExp_2tom56 = 0xffff-56
}
;;
// Form two constants we need
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
{ .mfi
setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
fclass.m p9,p0 = f8,0x22 // Test for x=-inf
nop.i 0
}
{ .mlx
setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
}
;;
{ .mfi
ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_ZERO_ARG = [rAD_TB1],16
fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, nan, NaT
nop.i 0
}
{ .mfb
setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
(p9) fma.d.s0 f8 = f0,f0,f0 // quick exit for x=-inf
(p9) br.ret.spnt b0
}
;;
{ .mfi
ldfpd fMAX_DBL_NORM_ARG, fMIN_DBL_NORM_ARG = [rAD_TB1],16
nop.f 0
nop.i 0
}
{ .mfb
setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0
(p8) br.ret.spnt b0
}
;;
{ .mfb
ldfe fLn2_by_128_hi = [rAD_TB1],16
(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=+inf, nan, NaT
(p10) br.ret.spnt b0 // quick exit for x=+inf, nan, NaT
}
;;
{ .mfi
ldfe fLn2_by_128_lo = [rAD_TB1],16
fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
nop.i 0
}
;;
// After that last load, rAD_TB1 points to the beginning of table 1
// W = X * Inv_log2_by_128
// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
{ .mfi
nop.m 0
fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
nop.i 0
}
;;
// Divide arguments into the following categories:
// Certain Underflow p11 - -inf < x <= MAX_DBL_ZERO_ARG
// Possible Underflow p13 - MAX_DBL_ZERO_ARG < x < MIN_DBL_NORM_ARG
// Certain Safe - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG
// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf
//
// If the input is really a double arg, then there will never be
// "Possible Overflow" arguments.
//
{ .mfi
add rAD_TB2 = 0x100, rAD_TB1
fcmp.ge.s1 p15,p0 = fNormX,fMIN_DBL_OFLOW_ARG
nop.i 0
}
;;
{ .mfi
add rAD_P = 0x80, rAD_TB2
fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_ZERO_ARG
nop.i 0
}
;;
{ .mfb
ldfpd fP5, fP4 = [rAD_P] ,16
fcmp.gt.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG
(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW
}
;;
// Nfloat = round_int(W)
// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
// as a twos complement number in the lower bits (that is, it may be negative).
// That twos complement number (called N) is put into rN.
// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
// Thus, fNfloat contains the floating point version of N
{ .mfb
ldfpd fP3, fP2 = [rAD_P]
fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW
}
;;
{ .mfi
getf.sig rN = fW_2TO56_RSH
nop.f 0
nop.i 0
}
;;
// rIndex_1 has index_1
// rIndex_2_16 has index_2 * 16
// rBiased_M has M
// rIndex_1_16 has index_1 * 16
// rM has true M
// r = x - Nfloat * ln2_by_128_hi
// f = 1 - Nfloat * ln2_by_128_lo
{ .mfi
and rIndex_1 = 0x0f, rN
fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
shr rM = rN, 0x7
}
{ .mfi
and rIndex_2_16 = 0x70, rN
fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
nop.i 0
}
;;
// rAD_T1 has address of T1
// rAD_T2 has address if T2
{ .mmi
add rBiased_M = rExp_bias, rM
add rAD_T2 = rAD_TB2, rIndex_2_16
shladd rAD_T1 = rIndex_1, 4, rAD_TB1
}
;;
// Create Scale = 2^M
{ .mmi
setf.exp f2M = rBiased_M
ldfe fT2 = [rAD_T2]
nop.i 0
}
;;
// Load T1 and T2
{ .mfi
ldfe fT1 = [rAD_T1]
fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fRsq = fR, fR, f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fP54 = fR, fP5, fP4
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.lt.s1 p13,p0 = fNormX,fMIN_DBL_NORM_ARG
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fP32 = fR, fP3, fP2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP5432 = fRsq, fP54, fP32
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fS1 = f2M,fT1,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS2 = fF,fT2,f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP = fRsq, fP5432, fR
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fS = fS1,fS2,f0
nop.i 0
}
;;
{ .mbb
nop.m 0
(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW
(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW
}
;;
{ .mfb
nop.m 0
fma.d.s0 f8 = fS, fP, fS
br.ret.sptk b0 // Normal path exit
}
;;
EXP_POSSIBLE_OVERFLOW:
// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
// This cannot happen if input is a double, only if input higher precision.
// Overflow is a possibility, not a certainty.
// Recompute result using status field 2 with user's rounding mode,
// and wre set. If result is larger than largest double, then we have
// overflow
{ .mfi
mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
nop.i 0
}
;;
{ .mfi
setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
nop.i 0
}
;;
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x40 // Turn off wre in sf2
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
nop.i 0
}
;;
{ .mfb
nop.m 0
nop.f 0
(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow
}
;;
{ .mfb
nop.m 0
fma.d.s0 f8 = fS, fP, fS
br.ret.sptk b0 // Exit if really no overflow
}
;;
EXP_CERTAIN_OVERFLOW:
{ .mmi
sub rTmp = rExp_mask, r0, 1
;;
setf.exp fTmp = rTmp
nop.i 0
}
;;
{ .mfi
alloc r32=ar.pfs,1,4,4,0
fmerge.s FR_X = f8,f8
nop.i 0
}
{ .mfb
mov GR_Parameter_TAG = 14
fma.d.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
br.cond.sptk __libm_error_region
}
;;
EXP_POSSIBLE_UNDERFLOW:
// Here if fMAX_DBL_ZERO_ARG < x < fMIN_DBL_NORM_ARG
// Underflow is a possibility, not a certainty
// We define an underflow when the answer with
// ftz set
// is zero (tiny numbers become zero)
// Notice (from below) that if we have an unlimited exponent range,
// then there is an extra machine number E between the largest denormal and
// the smallest normal.
// So if with unbounded exponent we round to E or below, then we are
// tiny and underflow has occurred.
// But notice that you can be in a situation where we are tiny, namely
// rounded to E, but when the exponent is bounded we round to smallest
// normal. So the answer can be the smallest normal with underflow.
// E
// -----+--------------------+--------------------+-----
// | | |
// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
// 0.1...11 2^-3ffe (biased, 1)
// largest dn smallest normal
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.d.s2 fFtz_urm_f8 = fS, fP, fS // Result with ftz set
nop.i 0
}
;;
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x40 // Turn off ftz in sf2
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow
nop.i 0
}
{ .mfi
nop.m 0
fma.d.s0 f8 = fS, fP, fS // Compute result, set I, maybe U
nop.i 0
}
;;
{ .mbb
nop.m 0
(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow
(p7) br.ret.sptk b0 // Exit if really no underflow
}
;;
EXP_CERTAIN_UNDERFLOW:
// Here if x < fMAX_DBL_ZERO_ARG
// Result will be zero (or smallest denorm if round to +inf) with I, U set
{ .mmi
mov rTmp = 1
;;
setf.exp fTmp = rTmp // Form small normal
nop.i 0
}
;;
{ .mfi
nop.m 0
fmerge.se fTmp = fTmp, fLn2_by_128_lo // Small with signif lsb 1
nop.i 0
}
;;
{ .mfb
nop.m 0
fma.d.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
br.cond.sptk EXP_UNDERFLOW_COMMON
}
;;
EXP_UNDERFLOW_COMMON:
// Determine if underflow result is zero or nonzero
{ .mfi
alloc r32=ar.pfs,1,4,4,0
fcmp.eq.s1 p6, p0 = f8, f0
nop.i 0
}
;;
{ .mfb
nop.m 0
fmerge.s FR_X = fNormX,fNormX
(p6) br.cond.spnt EXP_UNDERFLOW_ZERO
}
;;
EXP_UNDERFLOW_NONZERO:
// Here if x < fMIN_DBL_NORM_ARG and result nonzero;
// I, U are set
{ .mfb
mov GR_Parameter_TAG = 15
nop.f 0 // FR_RESULT already set
br.cond.sptk __libm_error_region
}
;;
EXP_UNDERFLOW_ZERO:
// Here if x < fMIN_DBL_NORM_ARG and result zero;
// I, U are set
{ .mfb
mov GR_Parameter_TAG = 15
nop.f 0 // FR_RESULT already set
br.cond.sptk __libm_error_region
}
;;
GLOBAL_IEEE754_END(exp)
Use libm_alias_double for ia64. Continuing the preparation for additional _FloatN / _FloatNx function aliases, this patch makes ia64 libm function implementations use libm_alias_double to define function aliases. The same approach is followed as with the corresponding long double patch: the ia64-specific macros are left unchanged, with calls to libm_alias_double_other being added in most cases and libm_alias_double itself being used in only a few places. Tested with build-many-glibcs.py for ia64-linux-gnu that installed stripped shared libraries are unchanged by the patch. * sysdeps/ia64/fpu/libm-symbols.h: Include <libm-alias-double.h>. * sysdeps/ia64/fpu/e_acos.S (acos): Use libm_alias_double_other. * sysdeps/ia64/fpu/e_acosh.S (acosh): Likewise. * sysdeps/ia64/fpu/e_asin.S (asin): Likewise. * sysdeps/ia64/fpu/e_atan2.S (atan2): Likewise. * sysdeps/ia64/fpu/e_atanh.S (atanh): Likewise. * sysdeps/ia64/fpu/e_cosh.S (cosh): Likewise. * sysdeps/ia64/fpu/e_exp.S (exp): Likewise. * sysdeps/ia64/fpu/e_exp10.S (exp10): Likewise. * sysdeps/ia64/fpu/e_exp2.S (exp2): Likewise. * sysdeps/ia64/fpu/e_fmod.S (fmod): Likewise. * sysdeps/ia64/fpu/e_hypot.S (hypot): Likewise. * sysdeps/ia64/fpu/e_lgamma_r.c (lgamma_r): Define using libm_alias_double_r. * sysdeps/ia64/fpu/e_log.S (log10): Use libm_alias_double_other. (log): Likewise. * sysdeps/ia64/fpu/e_log2.S (log2): Likewise. * sysdeps/ia64/fpu/e_pow.S (pow): Likewise. * sysdeps/ia64/fpu/e_remainder.S (remainder): Likewise. * sysdeps/ia64/fpu/e_sinh.S (sinh): Likewise. * sysdeps/ia64/fpu/e_sqrt.S (sqrt): Likewise. * sysdeps/ia64/fpu/libm_sincos.S (sincos): Likewise. * sysdeps/ia64/fpu/s_asinh.S (asinh): Likewise. * sysdeps/ia64/fpu/s_atan.S (atan): Likewise. * sysdeps/ia64/fpu/s_cbrt.S (cbrt): Likewise. * sysdeps/ia64/fpu/s_ceil.S (ceil): Likewise. * sysdeps/ia64/fpu/s_copysign.S (copysign): Define using libm_alias_double. * sysdeps/ia64/fpu/s_cos.S (sin): Use libm_alias_double_other. (cos): Likewise. * sysdeps/ia64/fpu/s_erf.S (erf): Likewise. * sysdeps/ia64/fpu/s_erfc.S (erfc): Likewise. * sysdeps/ia64/fpu/s_expm1.S (expm1): Likewise. * sysdeps/ia64/fpu/s_fabs.S (fabs): Likewise. * sysdeps/ia64/fpu/s_fdim.S (fdim): Likewise. * sysdeps/ia64/fpu/s_floor.S (floor): Likewise. * sysdeps/ia64/fpu/s_fma.S (fma): Likewise. * sysdeps/ia64/fpu/s_fmax.S (fmax): Likewise. * sysdeps/ia64/fpu/s_frexp.c (frexp): Likewise. * sysdeps/ia64/fpu/s_ldexp.c (ldexp): Likewise. * sysdeps/ia64/fpu/s_log1p.S (log1p): Likewise. * sysdeps/ia64/fpu/s_logb.S (logb): Likewise. * sysdeps/ia64/fpu/s_modf.S (modf): Likewise. * sysdeps/ia64/fpu/s_nearbyint.S (nearbyint): Likewise. * sysdeps/ia64/fpu/s_nextafter.S (nextafter): Likewise. * sysdeps/ia64/fpu/s_rint.S (rint): Likewise. * sysdeps/ia64/fpu/s_round.S (round): Likewise. * sysdeps/ia64/fpu/s_scalbn.c (scalbn): Define using libm_alias_double. * sysdeps/ia64/fpu/s_tan.S (tan): Use libm_alias_double_other. * sysdeps/ia64/fpu/s_tanh.S (tanh): Likewise. * sysdeps/ia64/fpu/s_trunc.S (trunc): Likewise. * sysdeps/ia64/fpu/w_lgamma_main.c [BUILD_LGAMMA && !USE_AS_COMPAT] (lgamma): Likewise. * sysdeps/ia64/fpu/w_tgamma_compat.S (tgamma): Likewise.
2017-11-29 01:23:23 +00:00
libm_alias_double_other (__exp, exp)
Remove the error handling wrapper from exp and exp2 Introduce new exp and exp2 symbol version that don't do SVID compatible error handling. The standard errno and fp exception based error handling is inline in the new code and does not have significant overhead. The double precision wrappers are disabled for sysdeps/ieee754/dbl-64 by using empty w_exp.c and w_exp2.c files, the math/w_exp.c and math/w_exp2.c files use the wrapper template and can be included by targets that have their own exp and exp2 implementations or use ifunc on the glibc internal __ieee754_exp symbol. The compatibility symbol versions still use the wrapper with SVID error handling around the new code. There is no new symbol version nor compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv). On targets where previously expl and exp2l were aliases of exp and exp2, now they point to the compatibility symbols with the wrapper, because they still need the SVID compatible error handling. This affects NO_LONG_DOUBLE (e.g arm) and LONG_DOUBLE_COMPAT (e.g. alpha) targets as well. The _finite symbols are now aliases of the standard symbols (they have no performance advantage anymore). Both the standard symbols and _finite symbols set errno and thus not const functions. The ia64 asm is changed so the compat and new symbol versions map to the same address. On x86_64 #include <math.h> was added before macro definitions that may affect that header (the new macro name is __exp instead of __ieee754_exp which breaks some math.h macros). Tested with build-many-glibcs.py. * math/Versions (GLIBC_2.29): Add exp and exp2. * math/w_exp2_compat.c (__exp2_compat): Change to versioned compat symbol, handle NO_LONG_DOUBLE and LONG_DOUBLE_COMPAT explicitly. * math/w_exp_compat.c (__exp_compat): Likewise. * math/w_exp.c: New file. * math/w_exp2.c: New file. * sysdeps/i386/fpu/w_exp.c: New file. * sysdeps/i386/fpu/w_exp2.c: New file. * sysdeps/ia64/fpu/e_exp.S: Add versioned symbols. * sysdeps/ia64/fpu/e_exp2.S: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Rename to __exp and add necessary aliases. * sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Rename to __exp2 and add necessary aliases. * sysdeps/ieee754/dbl-64/w_exp.c: New file. * sysdeps/ieee754/dbl-64/w_exp2.c: New file. * sysdeps/m68k/m680x0/fpu/w_exp.c: New file. * sysdeps/m68k/m680x0/fpu/w_exp2.c: New file. * sysdeps/mach/hurd/i386/libm.abilist: Update. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Update. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Update. * sysdeps/unix/sysv/linux/arm/libm.abilist: Update. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Update. * sysdeps/unix/sysv/linux/i386/libm.abilist: Update. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Update. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Update. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Update. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Update. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Update. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Update. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Update. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Update. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Update. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Update. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Update. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Update. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Update. * sysdeps/unix/sysv/linux/sh/libm.abilist: Update. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Update. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Update. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Update. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Update. * sysdeps/x86_64/fpu/multiarch/e_exp-avx.c (__exp1): Remove. (__ieee754_exp): Rename to __exp. * sysdeps/x86_64/fpu/multiarch/e_exp-fma.c (__exp1): Remove. (__ieee754_exp): Rename to __exp. * sysdeps/x86_64/fpu/multiarch/e_exp-fma4.c (__exp1): Remove. (__ieee754_exp): Rename to __exp. * sysdeps/x86_64/fpu/multiarch/e_exp.c (__ieee754_exp): Rename to __exp. * sysdeps/x86_64/fpu/multiarch/w_exp.c: New file.
2018-02-22 11:34:40 +00:00
#ifdef SHARED
.symver exp,exp@@GLIBC_2.29
.weak __exp_compat
.set __exp_compat,__exp
.symver __exp_compat,exp@GLIBC_2.2
#endif
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#