2001-03-04 19:25:06 +00:00
|
|
|
/*
|
|
|
|
* ====================================================
|
|
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software is freely granted, provided that this notice
|
|
|
|
* is preserved.
|
|
|
|
* ====================================================
|
|
|
|
*/
|
|
|
|
|
2002-08-26 22:40:48 +00:00
|
|
|
/* Long double expansions are
|
|
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
2007-10-06 18:37:30 +00:00
|
|
|
and are incorporated herein by permission of the author. The author
|
2002-08-28 02:30:36 +00:00
|
|
|
reserves the right to distribute this material elsewhere under different
|
2007-10-06 18:37:30 +00:00
|
|
|
copying permissions. These modifications are distributed here under
|
2002-08-28 02:30:36 +00:00
|
|
|
the following terms:
|
2002-08-26 22:40:48 +00:00
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
2012-02-09 23:18:22 +00:00
|
|
|
License along with this library; if not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
2001-03-04 19:25:06 +00:00
|
|
|
|
|
|
|
/* __ieee754_lgammal_r(x, signgamp)
|
|
|
|
* Reentrant version of the logarithm of the Gamma function
|
|
|
|
* with user provide pointer for the sign of Gamma(x).
|
|
|
|
*
|
|
|
|
* Method:
|
|
|
|
* 1. Argument Reduction for 0 < x <= 8
|
2002-01-28 10:18:33 +00:00
|
|
|
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
|
|
|
* reduce x to a number in [1.5,2.5] by
|
|
|
|
* lgamma(1+s) = log(s) + lgamma(s)
|
2001-03-04 19:25:06 +00:00
|
|
|
* for example,
|
|
|
|
* lgamma(7.3) = log(6.3) + lgamma(6.3)
|
|
|
|
* = log(6.3*5.3) + lgamma(5.3)
|
|
|
|
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
|
|
|
* 2. Polynomial approximation of lgamma around its
|
|
|
|
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
|
|
|
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
|
|
|
* Let z = x-ymin;
|
|
|
|
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
|
|
|
* 2. Rational approximation in the primary interval [2,3]
|
|
|
|
* We use the following approximation:
|
|
|
|
* s = x-2.0;
|
|
|
|
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
|
|
|
* Our algorithms are based on the following observation
|
|
|
|
*
|
|
|
|
* zeta(2)-1 2 zeta(3)-1 3
|
|
|
|
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
|
|
|
* 2 3
|
|
|
|
*
|
|
|
|
* where Euler = 0.5771... is the Euler constant, which is very
|
|
|
|
* close to 0.5.
|
|
|
|
*
|
|
|
|
* 3. For x>=8, we have
|
|
|
|
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
|
|
|
* (better formula:
|
|
|
|
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
|
|
|
* Let z = 1/x, then we approximation
|
|
|
|
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
|
|
|
* by
|
2002-01-28 10:18:33 +00:00
|
|
|
* 3 5 11
|
2001-03-04 19:25:06 +00:00
|
|
|
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
|
|
|
*
|
|
|
|
* 4. For negative x, since (G is gamma function)
|
|
|
|
* -x*G(-x)*G(x) = pi/sin(pi*x),
|
2002-01-28 10:18:33 +00:00
|
|
|
* we have
|
|
|
|
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
|
2001-03-04 19:25:06 +00:00
|
|
|
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
|
|
|
|
* Hence, for x<0, signgam = sign(sin(pi*x)) and
|
|
|
|
* lgamma(x) = log(|Gamma(x)|)
|
|
|
|
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
|
|
|
|
* Note: one should avoid compute pi*(-x) directly in the
|
|
|
|
* computation of sin(pi*(-x)).
|
|
|
|
*
|
|
|
|
* 5. Special Cases
|
|
|
|
* lgamma(2+s) ~ s*(1-Euler) for tiny s
|
|
|
|
* lgamma(1)=lgamma(2)=0
|
|
|
|
* lgamma(x) ~ -log(x) for tiny x
|
|
|
|
* lgamma(0) = lgamma(inf) = inf
|
2002-01-28 10:18:33 +00:00
|
|
|
* lgamma(-integer) = +-inf
|
2001-03-04 19:25:06 +00:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2015-05-21 23:44:33 +00:00
|
|
|
#include <libc-internal.h>
|
2012-03-09 19:29:16 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
2001-03-04 19:25:06 +00:00
|
|
|
|
|
|
|
static const long double
|
|
|
|
half = 0.5L,
|
|
|
|
one = 1.0L,
|
|
|
|
pi = 3.14159265358979323846264L,
|
2002-01-28 10:18:33 +00:00
|
|
|
two63 = 9.223372036854775808e18L,
|
2001-03-04 19:25:06 +00:00
|
|
|
|
|
|
|
/* lgam(1+x) = 0.5 x + x a(x)/b(x)
|
|
|
|
-0.268402099609375 <= x <= 0
|
|
|
|
peak relative error 6.6e-22 */
|
|
|
|
a0 = -6.343246574721079391729402781192128239938E2L,
|
|
|
|
a1 = 1.856560238672465796768677717168371401378E3L,
|
|
|
|
a2 = 2.404733102163746263689288466865843408429E3L,
|
|
|
|
a3 = 8.804188795790383497379532868917517596322E2L,
|
|
|
|
a4 = 1.135361354097447729740103745999661157426E2L,
|
|
|
|
a5 = 3.766956539107615557608581581190400021285E0L,
|
|
|
|
|
|
|
|
b0 = 8.214973713960928795704317259806842490498E3L,
|
|
|
|
b1 = 1.026343508841367384879065363925870888012E4L,
|
|
|
|
b2 = 4.553337477045763320522762343132210919277E3L,
|
|
|
|
b3 = 8.506975785032585797446253359230031874803E2L,
|
|
|
|
b4 = 6.042447899703295436820744186992189445813E1L,
|
|
|
|
/* b5 = 1.000000000000000000000000000000000000000E0 */
|
|
|
|
|
|
|
|
|
|
|
|
tc = 1.4616321449683623412626595423257213284682E0L,
|
|
|
|
tf = -1.2148629053584961146050602565082954242826E-1,/* double precision */
|
|
|
|
/* tt = (tail of tf), i.e. tf + tt has extended precision. */
|
|
|
|
tt = 3.3649914684731379602768989080467587736363E-18L,
|
|
|
|
/* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
|
|
|
|
-1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
|
|
|
|
|
|
|
|
/* lgam (x + tc) = tf + tt + x g(x)/h(x)
|
|
|
|
- 0.230003726999612341262659542325721328468 <= x
|
|
|
|
<= 0.2699962730003876587373404576742786715318
|
|
|
|
peak relative error 2.1e-21 */
|
|
|
|
g0 = 3.645529916721223331888305293534095553827E-18L,
|
|
|
|
g1 = 5.126654642791082497002594216163574795690E3L,
|
|
|
|
g2 = 8.828603575854624811911631336122070070327E3L,
|
|
|
|
g3 = 5.464186426932117031234820886525701595203E3L,
|
|
|
|
g4 = 1.455427403530884193180776558102868592293E3L,
|
|
|
|
g5 = 1.541735456969245924860307497029155838446E2L,
|
|
|
|
g6 = 4.335498275274822298341872707453445815118E0L,
|
|
|
|
|
|
|
|
h0 = 1.059584930106085509696730443974495979641E4L,
|
|
|
|
h1 = 2.147921653490043010629481226937850618860E4L,
|
|
|
|
h2 = 1.643014770044524804175197151958100656728E4L,
|
|
|
|
h3 = 5.869021995186925517228323497501767586078E3L,
|
|
|
|
h4 = 9.764244777714344488787381271643502742293E2L,
|
|
|
|
h5 = 6.442485441570592541741092969581997002349E1L,
|
|
|
|
/* h6 = 1.000000000000000000000000000000000000000E0 */
|
|
|
|
|
|
|
|
|
|
|
|
/* lgam (x+1) = -0.5 x + x u(x)/v(x)
|
|
|
|
-0.100006103515625 <= x <= 0.231639862060546875
|
|
|
|
peak relative error 1.3e-21 */
|
|
|
|
u0 = -8.886217500092090678492242071879342025627E1L,
|
|
|
|
u1 = 6.840109978129177639438792958320783599310E2L,
|
|
|
|
u2 = 2.042626104514127267855588786511809932433E3L,
|
|
|
|
u3 = 1.911723903442667422201651063009856064275E3L,
|
|
|
|
u4 = 7.447065275665887457628865263491667767695E2L,
|
|
|
|
u5 = 1.132256494121790736268471016493103952637E2L,
|
|
|
|
u6 = 4.484398885516614191003094714505960972894E0L,
|
|
|
|
|
|
|
|
v0 = 1.150830924194461522996462401210374632929E3L,
|
|
|
|
v1 = 3.399692260848747447377972081399737098610E3L,
|
|
|
|
v2 = 3.786631705644460255229513563657226008015E3L,
|
|
|
|
v3 = 1.966450123004478374557778781564114347876E3L,
|
|
|
|
v4 = 4.741359068914069299837355438370682773122E2L,
|
|
|
|
v5 = 4.508989649747184050907206782117647852364E1L,
|
|
|
|
/* v6 = 1.000000000000000000000000000000000000000E0 */
|
|
|
|
|
|
|
|
|
|
|
|
/* lgam (x+2) = .5 x + x s(x)/r(x)
|
|
|
|
0 <= x <= 1
|
|
|
|
peak relative error 7.2e-22 */
|
|
|
|
s0 = 1.454726263410661942989109455292824853344E6L,
|
|
|
|
s1 = -3.901428390086348447890408306153378922752E6L,
|
|
|
|
s2 = -6.573568698209374121847873064292963089438E6L,
|
|
|
|
s3 = -3.319055881485044417245964508099095984643E6L,
|
|
|
|
s4 = -7.094891568758439227560184618114707107977E5L,
|
|
|
|
s5 = -6.263426646464505837422314539808112478303E4L,
|
|
|
|
s6 = -1.684926520999477529949915657519454051529E3L,
|
|
|
|
|
|
|
|
r0 = -1.883978160734303518163008696712983134698E7L,
|
|
|
|
r1 = -2.815206082812062064902202753264922306830E7L,
|
|
|
|
r2 = -1.600245495251915899081846093343626358398E7L,
|
|
|
|
r3 = -4.310526301881305003489257052083370058799E6L,
|
|
|
|
r4 = -5.563807682263923279438235987186184968542E5L,
|
|
|
|
r5 = -3.027734654434169996032905158145259713083E4L,
|
|
|
|
r6 = -4.501995652861105629217250715790764371267E2L,
|
|
|
|
/* r6 = 1.000000000000000000000000000000000000000E0 */
|
|
|
|
|
|
|
|
|
|
|
|
/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
|
|
|
|
x >= 8
|
|
|
|
Peak relative error 1.51e-21
|
|
|
|
w0 = LS2PI - 0.5 */
|
|
|
|
w0 = 4.189385332046727417803e-1L,
|
|
|
|
w1 = 8.333333333333331447505E-2L,
|
|
|
|
w2 = -2.777777777750349603440E-3L,
|
|
|
|
w3 = 7.936507795855070755671E-4L,
|
|
|
|
w4 = -5.952345851765688514613E-4L,
|
|
|
|
w5 = 8.412723297322498080632E-4L,
|
|
|
|
w6 = -1.880801938119376907179E-3L,
|
|
|
|
w7 = 4.885026142432270781165E-3L;
|
|
|
|
|
|
|
|
static const long double zero = 0.0L;
|
|
|
|
|
|
|
|
static long double
|
|
|
|
sin_pi (long double x)
|
|
|
|
{
|
|
|
|
long double y, z;
|
|
|
|
int n, ix;
|
|
|
|
u_int32_t se, i0, i1;
|
|
|
|
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
|
|
ix = se & 0x7fff;
|
2002-01-07 13:28:49 +00:00
|
|
|
ix = (ix << 16) | (i0 >> 16);
|
2001-03-04 19:25:06 +00:00
|
|
|
if (ix < 0x3ffd8000) /* 0.25 */
|
|
|
|
return __sinl (pi * x);
|
|
|
|
y = -x; /* x is assume negative */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* argument reduction, make sure inexact flag not raised if input
|
|
|
|
* is an integer
|
|
|
|
*/
|
|
|
|
z = __floorl (y);
|
|
|
|
if (z != y)
|
|
|
|
{ /* inexact anyway */
|
2002-01-07 13:28:49 +00:00
|
|
|
y *= 0.5;
|
|
|
|
y = 2.0*(y - __floorl(y)); /* y = |x| mod 2.0 */
|
|
|
|
n = (int) (y*4.0);
|
2001-03-04 19:25:06 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2002-01-07 13:28:49 +00:00
|
|
|
if (ix >= 0x403f8000) /* 2^64 */
|
|
|
|
{
|
|
|
|
y = zero; n = 0; /* y must be even */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (ix < 0x403e8000) /* 2^63 */
|
|
|
|
z = y + two63; /* exact */
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, z);
|
|
|
|
n = i1 & 1;
|
|
|
|
y = n;
|
|
|
|
n <<= 2;
|
|
|
|
}
|
2001-03-04 19:25:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
switch (n)
|
|
|
|
{
|
|
|
|
case 0:
|
|
|
|
y = __sinl (pi * y);
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
case 2:
|
|
|
|
y = __cosl (pi * (half - y));
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
case 4:
|
|
|
|
y = __sinl (pi * (one - y));
|
|
|
|
break;
|
|
|
|
case 5:
|
|
|
|
case 6:
|
|
|
|
y = -__cosl (pi * (y - 1.5));
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
y = __sinl (pi * (y - 2.0));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return -y;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
long double
|
|
|
|
__ieee754_lgammal_r (long double x, int *signgamp)
|
|
|
|
{
|
|
|
|
long double t, y, z, nadj, p, p1, p2, q, r, w;
|
|
|
|
int i, ix;
|
|
|
|
u_int32_t se, i0, i1;
|
|
|
|
|
2002-01-07 13:28:49 +00:00
|
|
|
*signgamp = 1;
|
2001-03-04 19:25:06 +00:00
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
|
|
ix = se & 0x7fff;
|
|
|
|
|
2011-10-12 15:27:51 +00:00
|
|
|
if (__builtin_expect((ix | i0 | i1) == 0, 0))
|
2007-10-06 18:37:30 +00:00
|
|
|
{
|
|
|
|
if (se & 0x8000)
|
|
|
|
*signgamp = -1;
|
|
|
|
return one / fabsl (x);
|
|
|
|
}
|
2001-03-04 19:25:06 +00:00
|
|
|
|
|
|
|
ix = (ix << 16) | (i0 >> 16);
|
|
|
|
|
|
|
|
/* purge off +-inf, NaN, +-0, and negative arguments */
|
2011-10-12 15:27:51 +00:00
|
|
|
if (__builtin_expect(ix >= 0x7fff0000, 0))
|
2001-03-04 19:25:06 +00:00
|
|
|
return x * x;
|
|
|
|
|
2011-10-12 15:27:51 +00:00
|
|
|
if (__builtin_expect(ix < 0x3fc08000, 0)) /* 2^-63 */
|
2001-03-04 19:25:06 +00:00
|
|
|
{ /* |x|<2**-63, return -log(|x|) */
|
|
|
|
if (se & 0x8000)
|
|
|
|
{
|
|
|
|
*signgamp = -1;
|
|
|
|
return -__ieee754_logl (-x);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return -__ieee754_logl (x);
|
|
|
|
}
|
|
|
|
if (se & 0x8000)
|
|
|
|
{
|
Fix lgamma (negative) inaccuracy (bug 2542, bug 2543, bug 2558).
The existing implementations of lgamma functions (except for the ia64
versions) use the reflection formula for negative arguments. This
suffers large inaccuracy from cancellation near zeros of lgamma (near
where the gamma function is +/- 1).
This patch fixes this inaccuracy. For arguments above -2, there are
no zeros and no large cancellation, while for sufficiently large
negative arguments the zeros are so close to integers that even for
integers +/- 1ulp the log(gamma(1-x)) term dominates and cancellation
is not significant. Thus, it is only necessary to take special care
about cancellation for arguments around a limited number of zeros.
Accordingly, this patch uses precomputed tables of relevant zeros,
expressed as the sum of two floating-point values. The log of the
ratio of two sines can be computed accurately using log1p in cases
where log would lose accuracy. The log of the ratio of two gamma(1-x)
values can be computed using Stirling's approximation (the difference
between two values of that approximation to lgamma being computable
without computing the two values and then subtracting), with
appropriate adjustments (which don't reduce accuracy too much) in
cases where 1-x is too small to use Stirling's approximation directly.
In the interval from -3 to -2, using the ratios of sines and of
gamma(1-x) can still produce too much cancellation between those two
parts of the computation (and that interval is also the worst interval
for computing the ratio between gamma(1-x) values, which computation
becomes more accurate, while being less critical for the final result,
for larger 1-x). Because this can result in errors slightly above
those accepted in glibc, this interval is instead dealt with by
polynomial approximations. Separate polynomial approximations to
(|gamma(x)|-1)(x-n)/(x-x0) are used for each interval of length 1/8
from -3 to -2, where n (-3 or -2) is the nearest integer to the
1/8-interval and x0 is the zero of lgamma in the relevant half-integer
interval (-3 to -2.5 or -2.5 to -2).
Together, the two approaches are intended to give sufficient accuracy
for all negative arguments in the problem range. Outside that range,
the previous implementation continues to be used.
Tested for x86_64, x86, mips64 and powerpc. The mips64 and powerpc
testing shows up pre-existing problems for ldbl-128 and ldbl-128ibm
with large negative arguments giving spurious "invalid" exceptions
(exposed by newly added tests for cases this patch doesn't affect the
logic for); I'll address those problems separately.
[BZ #2542]
[BZ #2543]
[BZ #2558]
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r): Call
__lgamma_neg for arguments from -28.0 to -2.0.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Call
__lgamma_negf for arguments from -15.0 to -2.0.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -48.0 or -50.0 to -2.0.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -33.0 to -2.0.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: New file.
* sysdeps/ieee754/dbl-64/lgamma_product.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_productf.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_product.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_productl.c: Likewise.
* sysdeps/generic/math_private.h (__lgamma_negf): New prototype.
(__lgamma_neg): Likewise.
(__lgamma_negl): Likewise.
(__lgamma_product): Likewise.
(__lgamma_productl): Likewise.
* math/Makefile (libm-calls): Add lgamma_neg and lgamma_product.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2015-09-10 22:27:58 +00:00
|
|
|
if (x < -2.0L && x > -33.0L)
|
|
|
|
return __lgamma_negl (x, signgamp);
|
2001-03-04 19:25:06 +00:00
|
|
|
t = sin_pi (x);
|
|
|
|
if (t == zero)
|
|
|
|
return one / fabsl (t); /* -integer */
|
|
|
|
nadj = __ieee754_logl (pi / fabsl (t * x));
|
|
|
|
if (t < zero)
|
|
|
|
*signgamp = -1;
|
|
|
|
x = -x;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* purge off 1 and 2 */
|
|
|
|
if ((((ix - 0x3fff8000) | i0 | i1) == 0)
|
|
|
|
|| (((ix - 0x40008000) | i0 | i1) == 0))
|
|
|
|
r = 0;
|
|
|
|
else if (ix < 0x40008000) /* 2.0 */
|
|
|
|
{
|
|
|
|
/* x < 2.0 */
|
|
|
|
if (ix <= 0x3ffee666) /* 8.99993896484375e-1 */
|
|
|
|
{
|
|
|
|
/* lgamma(x) = lgamma(x+1) - log(x) */
|
|
|
|
r = -__ieee754_logl (x);
|
|
|
|
if (ix >= 0x3ffebb4a) /* 7.31597900390625e-1 */
|
|
|
|
{
|
|
|
|
y = x - one;
|
|
|
|
i = 0;
|
|
|
|
}
|
|
|
|
else if (ix >= 0x3ffced33)/* 2.31639862060546875e-1 */
|
|
|
|
{
|
|
|
|
y = x - (tc - one);
|
|
|
|
i = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* x < 0.23 */
|
|
|
|
y = x;
|
|
|
|
i = 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
r = zero;
|
|
|
|
if (ix >= 0x3fffdda6) /* 1.73162841796875 */
|
|
|
|
{
|
|
|
|
/* [1.7316,2] */
|
|
|
|
y = x - 2.0;
|
|
|
|
i = 0;
|
|
|
|
}
|
|
|
|
else if (ix >= 0x3fff9da6)/* 1.23162841796875 */
|
|
|
|
{
|
|
|
|
/* [1.23,1.73] */
|
|
|
|
y = x - tc;
|
|
|
|
i = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* [0.9, 1.23] */
|
|
|
|
y = x - one;
|
|
|
|
i = 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
switch (i)
|
|
|
|
{
|
|
|
|
case 0:
|
|
|
|
p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
|
|
|
|
p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
|
|
|
|
r += half * y + y * p1/p2;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
|
|
|
|
p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
|
|
|
|
p = tt + y * p1/p2;
|
|
|
|
r += (tf + p);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
|
|
|
|
p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
|
|
|
|
r += (-half * y + p1 / p2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (ix < 0x40028000) /* 8.0 */
|
|
|
|
{
|
|
|
|
/* x < 8.0 */
|
|
|
|
i = (int) x;
|
|
|
|
t = zero;
|
|
|
|
y = x - (double) i;
|
|
|
|
p = y *
|
|
|
|
(s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
|
|
|
|
q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
|
|
|
|
r = half * y + p / q;
|
|
|
|
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
|
|
|
|
switch (i)
|
|
|
|
{
|
|
|
|
case 7:
|
|
|
|
z *= (y + 6.0); /* FALLTHRU */
|
|
|
|
case 6:
|
|
|
|
z *= (y + 5.0); /* FALLTHRU */
|
|
|
|
case 5:
|
|
|
|
z *= (y + 4.0); /* FALLTHRU */
|
|
|
|
case 4:
|
|
|
|
z *= (y + 3.0); /* FALLTHRU */
|
|
|
|
case 3:
|
|
|
|
z *= (y + 2.0); /* FALLTHRU */
|
|
|
|
r += __ieee754_logl (z);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (ix < 0x40418000) /* 2^66 */
|
|
|
|
{
|
|
|
|
/* 8.0 <= x < 2**66 */
|
|
|
|
t = __ieee754_logl (x);
|
|
|
|
z = one / x;
|
|
|
|
y = z * z;
|
|
|
|
w = w0 + z * (w1
|
2011-10-12 15:27:51 +00:00
|
|
|
+ y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
|
2001-03-04 19:25:06 +00:00
|
|
|
r = (x - half) * (t - one) + w;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
/* 2**66 <= x <= inf */
|
|
|
|
r = x * (__ieee754_logl (x) - one);
|
2015-05-21 23:44:33 +00:00
|
|
|
/* NADJ is set for negative arguments but not otherwise, resulting
|
|
|
|
in warnings that it may be used uninitialized although in the
|
|
|
|
cases where it is used it has always been set. */
|
|
|
|
DIAG_PUSH_NEEDS_COMMENT;
|
|
|
|
DIAG_IGNORE_NEEDS_COMMENT (4.9, "-Wmaybe-uninitialized");
|
2001-03-04 19:25:06 +00:00
|
|
|
if (se & 0x8000)
|
|
|
|
r = nadj - r;
|
2015-05-21 23:44:33 +00:00
|
|
|
DIAG_POP_NEEDS_COMMENT;
|
2001-03-04 19:25:06 +00:00
|
|
|
return r;
|
|
|
|
}
|
2011-10-12 15:27:51 +00:00
|
|
|
strong_alias (__ieee754_lgammal_r, __lgammal_r_finite)
|