glibc/sysdeps/x86_64/multiarch/memchr-avx2.S

443 lines
10 KiB
ArmAsm
Raw Normal View History

x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* memchr/wmemchr optimized with AVX2.
Copyright (C) 2017-2024 Free Software Foundation, Inc.
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
Prefer https to http for gnu.org and fsf.org URLs Also, change sources.redhat.com to sourceware.org. This patch was automatically generated by running the following shell script, which uses GNU sed, and which avoids modifying files imported from upstream: sed -ri ' s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g ' \ $(find $(git ls-files) -prune -type f \ ! -name '*.po' \ ! -name 'ChangeLog*' \ ! -path COPYING ! -path COPYING.LIB \ ! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \ ! -path manual/texinfo.tex ! -path scripts/config.guess \ ! -path scripts/config.sub ! -path scripts/install-sh \ ! -path scripts/mkinstalldirs ! -path scripts/move-if-change \ ! -path INSTALL ! -path locale/programs/charmap-kw.h \ ! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \ ! '(' -name configure \ -execdir test -f configure.ac -o -f configure.in ';' ')' \ ! '(' -name preconfigure \ -execdir test -f preconfigure.ac ';' ')' \ -print) and then by running 'make dist-prepare' to regenerate files built from the altered files, and then executing the following to cleanup: chmod a+x sysdeps/unix/sysv/linux/riscv/configure # Omit irrelevant whitespace and comment-only changes, # perhaps from a slightly-different Autoconf version. git checkout -f \ sysdeps/csky/configure \ sysdeps/hppa/configure \ sysdeps/riscv/configure \ sysdeps/unix/sysv/linux/csky/configure # Omit changes that caused a pre-commit check to fail like this: # remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines git checkout -f \ sysdeps/powerpc/powerpc64/ppc-mcount.S \ sysdeps/unix/sysv/linux/s390/s390-64/syscall.S # Omit change that caused a pre-commit check to fail like this: # remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 05:40:42 +00:00
<https://www.gnu.org/licenses/>. */
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
x86: Add support for compiling {raw|w}memchr with high ISA level 1. Refactor files so that all implementations for in the multiarch directory. - Essentially moved sse2 {raw|w}memchr.S implementation to multiarch/{raw|w}memchr-sse2.S - The non-multiarch {raw|w}memchr.S file now only includes one of the implementations in the multiarch directory based on the compiled ISA level (only used for non-multiarch builds. Otherwise we go through the ifunc selector). 2. Add ISA level build guards to different implementations. - I.e memchr-avx2.S which is ISA level 3 will only build if compiled ISA level <= 3. Otherwise there is no reason to include it as we will always use one of the ISA level 4 implementations (memchr-evex{-rtm}.S). 3. Add new multiarch/rtld-{raw}memchr.S that just include the non-multiarch {raw}memchr.S which will in turn select the best implementation based on the compiled ISA level. 4. Refactor the ifunc selector and ifunc implementation list to use the ISA level aware wrapper macros that allow functions below the compiled ISA level (with a guranteed replacement) to be skipped. - Guranteed replacement essentially means that for any ISA level build there must be a function that the baseline of the ISA supports. So for {raw|w}memchr.S since there is not ISA level 2 function, the ISA level 2 build still includes the ISA level 1 (sse2) function. Once we reach the ISA level 3 build, however, {raw|w}memchr-avx2{-rtm}.S will always be sufficient so the ISA level 1 implementation ({raw|w}memchr-sse2.S) will not be built. Tested with and without multiarch on x86_64 for ISA levels: {generic, x86-64-v2, x86-64-v3, x86-64-v4} And m32 with and without multiarch.
2022-06-22 23:51:20 +00:00
#include <isa-level.h>
#include <sysdep.h>
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
x86: Add support for compiling {raw|w}memchr with high ISA level 1. Refactor files so that all implementations for in the multiarch directory. - Essentially moved sse2 {raw|w}memchr.S implementation to multiarch/{raw|w}memchr-sse2.S - The non-multiarch {raw|w}memchr.S file now only includes one of the implementations in the multiarch directory based on the compiled ISA level (only used for non-multiarch builds. Otherwise we go through the ifunc selector). 2. Add ISA level build guards to different implementations. - I.e memchr-avx2.S which is ISA level 3 will only build if compiled ISA level <= 3. Otherwise there is no reason to include it as we will always use one of the ISA level 4 implementations (memchr-evex{-rtm}.S). 3. Add new multiarch/rtld-{raw}memchr.S that just include the non-multiarch {raw}memchr.S which will in turn select the best implementation based on the compiled ISA level. 4. Refactor the ifunc selector and ifunc implementation list to use the ISA level aware wrapper macros that allow functions below the compiled ISA level (with a guranteed replacement) to be skipped. - Guranteed replacement essentially means that for any ISA level build there must be a function that the baseline of the ISA supports. So for {raw|w}memchr.S since there is not ISA level 2 function, the ISA level 2 build still includes the ISA level 1 (sse2) function. Once we reach the ISA level 3 build, however, {raw|w}memchr-avx2{-rtm}.S will always be sufficient so the ISA level 1 implementation ({raw|w}memchr-sse2.S) will not be built. Tested with and without multiarch on x86_64 for ISA levels: {generic, x86-64-v2, x86-64-v3, x86-64-v4} And m32 with and without multiarch.
2022-06-22 23:51:20 +00:00
#if ISA_SHOULD_BUILD (3)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# ifndef MEMCHR
# define MEMCHR __memchr_avx2
# endif
# ifdef USE_AS_WMEMCHR
# define VPCMPEQ vpcmpeqd
# define VPBROADCAST vpbroadcastd
# define CHAR_SIZE 4
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# else
# define VPCMPEQ vpcmpeqb
# define VPBROADCAST vpbroadcastb
# define CHAR_SIZE 1
# endif
# ifdef USE_AS_RAWMEMCHR
# define ERAW_PTR_REG ecx
# define RRAW_PTR_REG rcx
# define ALGN_PTR_REG rdi
# else
# define ERAW_PTR_REG edi
# define RRAW_PTR_REG rdi
# define ALGN_PTR_REG rcx
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# endif
# ifndef VZEROUPPER
# define VZEROUPPER vzeroupper
# endif
# ifndef SECTION
# define SECTION(p) p##.avx
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# define VEC_SIZE 32
# define PAGE_SIZE 4096
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.section SECTION(.text),"ax",@progbits
ENTRY_P2ALIGN (MEMCHR, 5)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# ifndef USE_AS_RAWMEMCHR
/* Check for zero length. */
# ifdef __ILP32__
/* Clear upper bits. */
and %RDX_LP, %RDX_LP
# else
test %RDX_LP, %RDX_LP
# endif
jz L(null)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# endif
/* Broadcast CHAR to YMMMATCH. */
vmovd %esi, %xmm0
VPBROADCAST %xmm0, %ymm0
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* Check if we may cross page boundary with one vector load. */
movl %edi, %eax
andl $(PAGE_SIZE - 1), %eax
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
ja L(cross_page_boundary)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* Check the first VEC_SIZE bytes. */
VPCMPEQ (%rdi), %ymm0, %ymm1
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm1, %eax
# ifndef USE_AS_RAWMEMCHR
/* If length < CHAR_PER_VEC handle special. */
cmpq $CHAR_PER_VEC, %rdx
jbe L(first_vec_x0)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# endif
testl %eax, %eax
jz L(aligned_more)
bsfl %eax, %eax
addq %rdi, %rax
L(return_vzeroupper):
ZERO_UPPER_VEC_REGISTERS_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# ifndef USE_AS_RAWMEMCHR
.p2align 4
L(first_vec_x0):
/* Check if first match was before length. */
tzcntl %eax, %eax
# ifdef USE_AS_WMEMCHR
/* NB: Multiply length by 4 to get byte count. */
sall $2, %edx
# endif
COND_VZEROUPPER
/* Use branch instead of cmovcc so L(first_vec_x0) fits in one fetch
block. branch here as opposed to cmovcc is not that costly. Common
usage of memchr is to check if the return was NULL (if string was
known to contain CHAR user would use rawmemchr). This branch will be
highly correlated with the user branch and can be used by most
modern branch predictors to predict the user branch. */
cmpl %eax, %edx
jle L(null)
addq %rdi, %rax
ret
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# endif
.p2align 4,, 10
L(first_vec_x1):
bsfl %eax, %eax
incq %rdi
addq %rdi, %rax
VZEROUPPER_RETURN
# ifndef USE_AS_RAWMEMCHR
/* First in aligning bytes here. */
L(null):
xorl %eax, %eax
ret
# endif
.p2align 4
L(first_vec_x2):
tzcntl %eax, %eax
addq $(VEC_SIZE + 1), %rdi
addq %rdi, %rax
VZEROUPPER_RETURN
.p2align 4
L(first_vec_x3):
tzcntl %eax, %eax
addq $(VEC_SIZE * 2 + 1), %rdi
addq %rdi, %rax
VZEROUPPER_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(first_vec_x4):
tzcntl %eax, %eax
addq $(VEC_SIZE * 3 + 1), %rdi
addq %rdi, %rax
VZEROUPPER_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(aligned_more):
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* Check the first 4 * VEC_SIZE. Only one VEC_SIZE at a time
since data is only aligned to VEC_SIZE. */
# ifndef USE_AS_RAWMEMCHR
L(cross_page_continue):
/* Align data to VEC_SIZE - 1. */
xorl %ecx, %ecx
subl %edi, %ecx
orq $(VEC_SIZE - 1), %rdi
/* esi is for adjusting length to see if near the end. */
leal (VEC_SIZE * 4 + 1)(%rdi, %rcx), %esi
# ifdef USE_AS_WMEMCHR
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %esi
# endif
# else
orq $(VEC_SIZE - 1), %rdi
L(cross_page_continue):
# endif
/* Load first VEC regardless. */
VPCMPEQ 1(%rdi), %ymm0, %ymm1
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm1, %eax
# ifndef USE_AS_RAWMEMCHR
/* Adjust length. If near end handle specially. */
subq %rsi, %rdx
jbe L(last_4x_vec_or_less)
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
testl %eax, %eax
jnz L(first_vec_x1)
VPCMPEQ (VEC_SIZE + 1)(%rdi), %ymm0, %ymm1
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm1, %eax
testl %eax, %eax
jnz L(first_vec_x2)
VPCMPEQ (VEC_SIZE * 2 + 1)(%rdi), %ymm0, %ymm1
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm1, %eax
testl %eax, %eax
jnz L(first_vec_x3)
VPCMPEQ (VEC_SIZE * 3 + 1)(%rdi), %ymm0, %ymm1
vpmovmskb %ymm1, %eax
testl %eax, %eax
jnz L(first_vec_x4)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# ifndef USE_AS_RAWMEMCHR
/* Check if at last VEC_SIZE * 4 length. */
subq $(CHAR_PER_VEC * 4), %rdx
jbe L(last_4x_vec_or_less_cmpeq)
/* Align data to VEC_SIZE * 4 - 1 for the loop and readjust
length. */
incq %rdi
movl %edi, %ecx
orq $(VEC_SIZE * 4 - 1), %rdi
andl $(VEC_SIZE * 4 - 1), %ecx
# ifdef USE_AS_WMEMCHR
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %ecx
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
addq %rcx, %rdx
# else
/* Align data to VEC_SIZE * 4 - 1 for loop. */
incq %rdi
orq $(VEC_SIZE * 4 - 1), %rdi
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# endif
/* Compare 4 * VEC at a time forward. */
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(loop_4x_vec):
VPCMPEQ 1(%rdi), %ymm0, %ymm1
VPCMPEQ (VEC_SIZE + 1)(%rdi), %ymm0, %ymm2
VPCMPEQ (VEC_SIZE * 2 + 1)(%rdi), %ymm0, %ymm3
VPCMPEQ (VEC_SIZE * 3 + 1)(%rdi), %ymm0, %ymm4
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpor %ymm1, %ymm2, %ymm5
vpor %ymm3, %ymm4, %ymm6
vpor %ymm5, %ymm6, %ymm5
vpmovmskb %ymm5, %ecx
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# ifdef USE_AS_RAWMEMCHR
subq $-(VEC_SIZE * 4), %rdi
testl %ecx, %ecx
jz L(loop_4x_vec)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# else
testl %ecx, %ecx
jnz L(loop_4x_vec_end)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
subq $-(VEC_SIZE * 4), %rdi
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
subq $(CHAR_PER_VEC * 4), %rdx
ja L(loop_4x_vec)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* Fall through into less than 4 remaining vectors of length
case. */
VPCMPEQ (VEC_SIZE * 0 + 1)(%rdi), %ymm0, %ymm1
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm1, %eax
.p2align 4
L(last_4x_vec_or_less):
# ifdef USE_AS_WMEMCHR
/* NB: Multiply length by 4 to get byte count. */
sall $2, %edx
# endif
/* Check if first VEC contained match. */
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
testl %eax, %eax
jnz L(first_vec_x1_check)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* If remaining length > VEC_SIZE * 2. */
addl $(VEC_SIZE * 2), %edx
jg L(last_4x_vec)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
L(last_2x_vec):
/* If remaining length < VEC_SIZE. */
addl $VEC_SIZE, %edx
jle L(zero_end)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* Check VEC2 and compare any match with remaining length. */
VPCMPEQ (VEC_SIZE + 1)(%rdi), %ymm0, %ymm1
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm1, %eax
tzcntl %eax, %eax
cmpl %eax, %edx
jbe L(set_zero_end)
addq $(VEC_SIZE + 1), %rdi
addq %rdi, %rax
L(zero_end):
VZEROUPPER_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(loop_4x_vec_end):
# endif
/* rawmemchr will fall through into this if match was found in
loop. */
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm1, %eax
testl %eax, %eax
jnz L(last_vec_x1_return)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm2, %eax
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
testl %eax, %eax
jnz L(last_vec_x2_return)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
vpmovmskb %ymm3, %eax
/* Combine VEC3 matches (eax) with VEC4 matches (ecx). */
salq $32, %rcx
orq %rcx, %rax
tzcntq %rax, %rax
# ifdef USE_AS_RAWMEMCHR
subq $(VEC_SIZE * 2 - 1), %rdi
# else
subq $-(VEC_SIZE * 2 + 1), %rdi
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
addq %rdi, %rax
VZEROUPPER_RETURN
# ifndef USE_AS_RAWMEMCHR
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(first_vec_x1_check):
tzcntl %eax, %eax
/* Adjust length. */
subl $-(VEC_SIZE * 4), %edx
/* Check if match within remaining length. */
cmpl %eax, %edx
jbe L(set_zero_end)
incq %rdi
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
addq %rdi, %rax
VZEROUPPER_RETURN
.p2align 4,, 6
L(set_zero_end):
xorl %eax, %eax
VZEROUPPER_RETURN
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(last_vec_x1_return):
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
tzcntl %eax, %eax
# ifdef USE_AS_RAWMEMCHR
subq $(VEC_SIZE * 4 - 1), %rdi
# else
incq %rdi
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
addq %rdi, %rax
VZEROUPPER_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(last_vec_x2_return):
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
tzcntl %eax, %eax
# ifdef USE_AS_RAWMEMCHR
subq $(VEC_SIZE * 3 - 1), %rdi
# else
subq $-(VEC_SIZE + 1), %rdi
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
addq %rdi, %rax
VZEROUPPER_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
# ifndef USE_AS_RAWMEMCHR
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(last_4x_vec_or_less_cmpeq):
VPCMPEQ (VEC_SIZE * 4 + 1)(%rdi), %ymm0, %ymm1
vpmovmskb %ymm1, %eax
# ifdef USE_AS_WMEMCHR
/* NB: Multiply length by 4 to get byte count. */
sall $2, %edx
# endif
subq $-(VEC_SIZE * 4), %rdi
/* Check first VEC regardless. */
testl %eax, %eax
jnz L(first_vec_x1_check)
/* If remaining length <= CHAR_PER_VEC * 2. */
addl $(VEC_SIZE * 2), %edx
jle L(last_2x_vec)
.p2align 4
L(last_4x_vec):
VPCMPEQ (VEC_SIZE + 1)(%rdi), %ymm0, %ymm1
vpmovmskb %ymm1, %eax
testl %eax, %eax
jnz L(last_vec_x2_return)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
VPCMPEQ (VEC_SIZE * 2 + 1)(%rdi), %ymm0, %ymm1
vpmovmskb %ymm1, %eax
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* Create mask for possible matches within remaining length. */
movq $-1, %rcx
bzhiq %rdx, %rcx, %rcx
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
/* Test matches in data against length match. */
andl %ecx, %eax
jnz L(last_vec_x3)
/* if remaining length <= VEC_SIZE * 3 (Note this is after
remaining length was found to be > VEC_SIZE * 2. */
subl $VEC_SIZE, %edx
jbe L(zero_end2)
VPCMPEQ (VEC_SIZE * 3 + 1)(%rdi), %ymm0, %ymm1
vpmovmskb %ymm1, %eax
/* Shift remaining length mask for last VEC. */
shrq $32, %rcx
andl %ecx, %eax
jz L(zero_end2)
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
tzcntl %eax, %eax
addq $(VEC_SIZE * 3 + 1), %rdi
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
addq %rdi, %rax
L(zero_end2):
VZEROUPPER_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(last_vec_x3):
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
tzcntl %eax, %eax
subq $-(VEC_SIZE * 2 + 1), %rdi
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
addq %rdi, %rax
VZEROUPPER_RETURN
# endif
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
.p2align 4
L(cross_page_boundary):
/* Save pointer before aligning as its original value is necessary for
computer return address if byte is found or adjusting length if it
is not and this is memchr. */
movq %rdi, %rcx
/* Align data to VEC_SIZE - 1. ALGN_PTR_REG is rcx for memchr
and rdi for rawmemchr. */
orq $(VEC_SIZE - 1), %ALGN_PTR_REG
VPCMPEQ -(VEC_SIZE - 1)(%ALGN_PTR_REG), %ymm0, %ymm1
vpmovmskb %ymm1, %eax
# ifndef USE_AS_RAWMEMCHR
/* Calculate length until end of page (length checked for a match). */
leaq 1(%ALGN_PTR_REG), %rsi
subq %RRAW_PTR_REG, %rsi
# ifdef USE_AS_WMEMCHR
/* NB: Divide bytes by 4 to get wchar_t count. */
shrl $2, %esi
# endif
# endif
/* Remove the leading bytes. */
sarxl %ERAW_PTR_REG, %eax, %eax
# ifndef USE_AS_RAWMEMCHR
/* Check the end of data. */
cmpq %rsi, %rdx
jbe L(first_vec_x0)
# endif
testl %eax, %eax
jz L(cross_page_continue)
bsfl %eax, %eax
addq %RRAW_PTR_REG, %rax
VZEROUPPER_RETURN
x86-64: Optimize memchr/rawmemchr/wmemchr with SSE2/AVX2 SSE2 memchr is extended to support wmemchr. AVX2 memchr/rawmemchr/wmemchr are added to search 32 bytes with a single vector compare instruction. AVX2 memchr/rawmemchr/wmemchr are as fast as SSE2 memchr/rawmemchr/wmemchr for small sizes and up to 1.5X faster for larger sizes on Haswell and Skylake. Select AVX2 memchr/rawmemchr/wmemchr on AVX2 machines where vzeroupper is preferred and AVX unaligned load is fast. NB: It uses TZCNT instead of BSF since TZCNT produces the same result as BSF for non-zero input. TZCNT is faster than BSF and is executed as BSF if machine doesn't support TZCNT. * sysdeps/x86_64/memchr.S (MEMCHR): New. Depending on if USE_AS_WMEMCHR is defined. (PCMPEQ): Likewise. (memchr): Renamed to ... (MEMCHR): This. Support wmemchr if USE_AS_WMEMCHR is defined. Replace pcmpeqb with PCMPEQ. * sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Add memchr-sse2, rawmemchr-sse2, memchr-avx2, rawmemchr-avx2, wmemchr-sse4_1, wmemchr-avx2 and wmemchr-c. * sysdeps/x86_64/multiarch/ifunc-avx2.h: New file. * sysdeps/x86_64/multiarch/memchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/memchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/memchr.c: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/rawmemchr.c: Likewise. * sysdeps/x86_64/multiarch/wmemchr-avx2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr-sse2.S: Likewise. * sysdeps/x86_64/multiarch/wmemchr.c: Likewise. * sysdeps/x86_64/multiarch/ifunc-impl-list.c (__libc_ifunc_impl_list): Test __memchr_avx2, __memchr_sse2, __rawmemchr_avx2, __rawmemchr_sse2, __wmemchr_avx2 and __wmemchr_sse2.
2017-06-09 12:13:15 +00:00
END (MEMCHR)
#endif