mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-09 10:50:08 +00:00
225 lines
6.7 KiB
ArmAsm
225 lines
6.7 KiB
ArmAsm
|
.file "ceilf.s"
|
||
|
|
||
|
|
||
|
// Copyright (c) 2000 - 2003, Intel Corporation
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote
|
||
|
// products derived from this software without specific prior written
|
||
|
// permission.
|
||
|
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
||
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Intel Corporation is the author of this code, and requests that all
|
||
|
// problem reports or change requests be submitted to it directly at
|
||
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
||
|
//
|
||
|
// History
|
||
|
//==============================================================
|
||
|
// 02/02/00 Initial version
|
||
|
// 06/13/00 Improved speed
|
||
|
// 06/27/00 Eliminated incorrect invalid flag setting
|
||
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
||
|
// 01/28/03 Improved performance
|
||
|
//==============================================================
|
||
|
|
||
|
// API
|
||
|
//==============================================================
|
||
|
// float ceilf(float x)
|
||
|
//==============================================================
|
||
|
|
||
|
// general input registers:
|
||
|
// r14 - r19
|
||
|
|
||
|
rSignexp = r14
|
||
|
rExp = r15
|
||
|
rExpMask = r16
|
||
|
rBigexp = r17
|
||
|
rM1 = r18
|
||
|
rSignexpM1 = r19
|
||
|
|
||
|
// floating-point registers:
|
||
|
// f8 - f13
|
||
|
|
||
|
fXInt = f9
|
||
|
fNormX = f10
|
||
|
fTmp = f11
|
||
|
fAdj = f12
|
||
|
fPreResult = f13
|
||
|
|
||
|
// predicate registers used:
|
||
|
// p6 - p10
|
||
|
|
||
|
// Overview of operation
|
||
|
//==============================================================
|
||
|
// float ceilf(float x)
|
||
|
// Return an integer value (represented as a float) that is the smallest
|
||
|
// value not less than x
|
||
|
// This is x rounded toward +infinity to an integral value.
|
||
|
// Inexact is set if x != ceilf(x)
|
||
|
//==============================================================
|
||
|
|
||
|
// double_extended
|
||
|
// if the exponent is > 1003e => 3F(true) = 63(decimal)
|
||
|
// we have a significand of 64 bits 1.63-bits.
|
||
|
// If we multiply by 2^63, we no longer have a fractional part
|
||
|
// So input is an integer value already.
|
||
|
|
||
|
// double
|
||
|
// if the exponent is >= 10033 => 34(true) = 52(decimal)
|
||
|
// 34 + 3ff = 433
|
||
|
// we have a significand of 53 bits 1.52-bits. (implicit 1)
|
||
|
// If we multiply by 2^52, we no longer have a fractional part
|
||
|
// So input is an integer value already.
|
||
|
|
||
|
// single
|
||
|
// if the exponent is > 10016 => 17(true) = 23(decimal)
|
||
|
// we have a significand of 24 bits 1.23-bits. (implicit 1)
|
||
|
// If we multiply by 2^23, we no longer have a fractional part
|
||
|
// So input is an integer value already.
|
||
|
|
||
|
|
||
|
.section .text
|
||
|
GLOBAL_LIBM_ENTRY(ceilf)
|
||
|
|
||
|
{ .mfi
|
||
|
getf.exp rSignexp = f8 // Get signexp, recompute if unorm
|
||
|
fclass.m p7,p0 = f8, 0x0b // Test x unorm
|
||
|
addl rBigexp = 0x10016, r0 // Set exponent at which is integer
|
||
|
}
|
||
|
{ .mfi
|
||
|
mov rM1 = -1 // Set all ones
|
||
|
fcvt.fx.trunc.s1 fXInt = f8 // Convert to int in significand
|
||
|
mov rExpMask = 0x1FFFF // Form exponent mask
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mfi
|
||
|
mov rSignexpM1 = 0x2FFFF // Form signexp of -1
|
||
|
fcmp.lt.s1 p8,p9 = f8, f0 // Test x < 0
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfb
|
||
|
setf.sig fTmp = rM1 // Make const for setting inexact
|
||
|
fnorm.s1 fNormX = f8 // Normalize input
|
||
|
(p7) br.cond.spnt CEIL_UNORM // Branch if x unorm
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
CEIL_COMMON:
|
||
|
// Return here from CEIL_UNORM
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fclass.m p6,p0 = f8, 0x1e7 // Test x natval, nan, inf, 0
|
||
|
nop.i 0
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
.pred.rel "mutex",p8,p9
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
(p8) fma.s1 fAdj = f0, f0, f0 // If x < 0, adjustment is 0
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
(p9) fma.s1 fAdj = f1, f1, f0 // If x > 0, adjustment is +1
|
||
|
nop.i 0
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
fcvt.xf fPreResult = fXInt // trunc(x)
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfb
|
||
|
nop.m 0
|
||
|
(p6) fma.s.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf, 0
|
||
|
(p6) br.ret.spnt b0 // Exit if x natval, nan, inf, 0
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mmi
|
||
|
and rExp = rSignexp, rExpMask // Get biased exponent
|
||
|
;;
|
||
|
cmp.ge p7,p6 = rExp, rBigexp // Is |x| >= 2^23?
|
||
|
(p8) cmp.lt.unc p10,p0 = rSignexp, rSignexpM1 // Is -1 < x < 0?
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
// If -1 < x < 0, we turn off p6 and compute result as -0
|
||
|
{ .mfi
|
||
|
(p10) cmp.ne p6,p0 = r0,r0
|
||
|
(p10) fmerge.s f8 = fNormX, f0
|
||
|
nop.i 0
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
.pred.rel "mutex",p6,p7
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
(p6) fma.s.s0 f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^23
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
(p7) fma.s.s0 f8 = fNormX, f1, f0 // Result, if |x| >= 2^23
|
||
|
(p10) cmp.eq p6,p0 = r0,r0 // If -1 < x < 0, turn on p6 again
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
(p6) fcmp.eq.unc.s1 p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?
|
||
|
nop.i 0
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
{ .mfi
|
||
|
nop.m 0
|
||
|
(p9) fmpy.s0 fTmp = fTmp, fTmp // Dummy to set inexact
|
||
|
nop.i 0
|
||
|
}
|
||
|
{ .mfb
|
||
|
nop.m 0
|
||
|
(p8) fma.s.s0 f8 = fNormX, f1, f0 // If x int, result normalized x
|
||
|
br.ret.sptk b0 // Exit main path, 0 < |x| < 2^23
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
|
||
|
CEIL_UNORM:
|
||
|
// Here if x unorm
|
||
|
{ .mfb
|
||
|
getf.exp rSignexp = fNormX // Get signexp, recompute if unorm
|
||
|
fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag
|
||
|
br.cond.sptk CEIL_COMMON // Return to main path
|
||
|
}
|
||
|
;;
|
||
|
|
||
|
GLOBAL_LIBM_END(ceilf)
|