glibc/sysdeps/hppa/dl-machine.h

691 lines
22 KiB
C
Raw Normal View History

/* Machine-dependent ELF dynamic relocation inline functions. PA-RISC version.
Copyright (C) 1995-1997,1999,2000,2001,2002 Free Software Foundation, Inc.
Contributed by David Huggins-Daines <dhd@debian.org>
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
2001-07-06 04:56:23 +00:00
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
2001-07-06 04:56:23 +00:00
Lesser General Public License for more details.
2001-07-06 04:56:23 +00:00
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#ifndef dl_machine_h
#define dl_machine_h 1
#define ELF_MACHINE_NAME "hppa"
#include <sys/param.h>
#include <string.h>
#include <link.h>
#include <assert.h>
/* These must match the definition of the stub in bfd/elf32-hppa.c. */
#define SIZEOF_PLT_STUB (4*4)
#define GOT_FROM_PLT_STUB (4*4)
/* A PLABEL is a function descriptor. Properly they consist of just
FUNC and GP. But we want to traverse a binary tree too. See
dl-fptr.c for the code (it may be made common between HPPA and
IA-64 in the future).
We call these 'fptr' to make it easier to steal code from IA-64. */
/* ld.so currently has 12 PLABEL32 relocs. We'll keep this constant
large for now in case we require more, as the rest of these will be
used by the dynamic program itself (libc.so has quite a few
PLABEL32 relocs in it). */
#define HPPA_BOOT_FPTR_SIZE 256
struct hppa_fptr
{
Elf32_Addr func;
Elf32_Addr gp;
struct hppa_fptr *next;
};
extern struct hppa_fptr __boot_ldso_fptr[];
extern struct hppa_fptr *__fptr_root;
extern int __fptr_count;
extern Elf32_Addr __hppa_make_fptr (const struct link_map *, Elf32_Addr,
struct hppa_fptr **, struct hppa_fptr *);
/* Return nonzero iff ELF header is compatible with the running host. */
static inline int
elf_machine_matches_host (const Elf32_Ehdr *ehdr)
{
return ehdr->e_machine == EM_PARISC;
}
/* Return the link-time address of _DYNAMIC. */
static inline Elf32_Addr
elf_machine_dynamic (void)
{
Elf32_Addr dynamic;
#if 0
/* Use this method if GOT address not yet set up. */
asm (
" b,l 1f,%0\n"
" depi 0,31,2,%0\n"
"1: addil L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 8),%0\n"
" ldw R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 12)(%%r1),%0\n"
: "=r" (dynamic) : : "r1");
#else
/* This works because we already have our GOT address available. */
dynamic = (Elf32_Addr) &_DYNAMIC;
#endif
return dynamic;
}
/* Return the run-time load address of the shared object. */
static inline Elf32_Addr
elf_machine_load_address (void)
{
Elf32_Addr dynamic, dynamic_linkaddress;
asm (
" b,l 1f,%0\n"
" depi 0,31,2,%0\n"
"1: addil L'_DYNAMIC - ($PIC_pcrel$0 - 8),%0\n"
" ldo R'_DYNAMIC - ($PIC_pcrel$0 - 12)(%%r1),%1\n"
" addil L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 16),%0\n"
" ldw R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 20)(%%r1),%0\n"
: "=r" (dynamic_linkaddress), "=r" (dynamic) : : "r1");
return dynamic - dynamic_linkaddress;
}
/* Fixup a PLT entry to bounce directly to the function at VALUE. */
static inline Elf32_Addr
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
const Elf32_Rela *reloc,
Elf32_Addr *reloc_addr, Elf32_Addr value)
{
/* l is the link_map for the caller, t is the link_map for the object
* being called */
reloc_addr[1] = D_PTR (t, l_info[DT_PLTGOT]);
reloc_addr[0] = value;
/* Return the PLT slot rather than the function value so that the
trampoline can load the new LTP. */
return (Elf32_Addr) reloc_addr;
}
/* Return the final value of a plt relocation. */
static inline Elf32_Addr
elf_machine_plt_value (struct link_map *map, const Elf32_Rela *reloc,
Elf32_Addr value)
{
/* We are rela only */
return value + reloc->r_addend;
}
/* Set up the loaded object described by L so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c. */
static inline int
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
{
extern void _dl_runtime_resolve (void);
extern void _dl_runtime_profile (void);
Elf32_Addr jmprel = D_PTR(l, l_info[DT_JMPREL]);
if (lazy && jmprel)
{
Elf32_Addr *got = NULL;
Elf32_Addr l_addr;
Elf32_Addr end_jmprel;
Elf32_Addr iplt;
/* Relocate all the PLT slots. */
l_addr = l->l_addr;
end_jmprel = jmprel + l->l_info[DT_PLTRELSZ]->d_un.d_val;
for (iplt = jmprel; iplt < end_jmprel; iplt += sizeof (Elf32_Rela))
{
const Elf32_Rela *reloc;
Elf32_Word r_type;
Elf32_Word r_sym;
struct hppa_fptr *fptr;
reloc = (const Elf32_Rela *) iplt;
r_type = ELF32_R_TYPE (reloc->r_info);
r_sym = ELF32_R_SYM (reloc->r_info);
if (__builtin_expect (r_type == R_PARISC_IPLT, 1))
{
fptr = (struct hppa_fptr *) (reloc->r_offset + l_addr);
if (r_sym != 0)
{
/* Relocate the pointer to the stub. */
fptr->func += l_addr;
/* Instead of the LTP value, we put the reloc offset
here. The trampoline code will load the proper
LTP and pass the reloc offset to the fixup
function. */
fptr->gp = iplt - jmprel;
if (!got)
{
static union {
unsigned char c[8];
Elf32_Addr i[2];
} sig = {{0x00,0xc0,0xff,0xee, 0xde,0xad,0xbe,0xef}};
/* Find our .got section. It's right after the
stub. */
got = (Elf32_Addr *) (fptr->func + GOT_FROM_PLT_STUB);
/* Sanity check to see if the address we are
going to check below is within a reasonable
approximation of the bounds of the PLT (or,
at least, is at an address that won't fault
on read). Then check for the magic signature
above. */
if (fptr->func < (Elf32_Addr) fptr + sizeof(*fptr))
return 0;
if (fptr->func >
((Elf32_Addr) fptr
+ SIZEOF_PLT_STUB
+ ((l->l_info[DT_PLTRELSZ]->d_un.d_val / sizeof (Elf32_Rela))
* 8)))
return 0;
if (got[-2] != sig.i[0] || got[-1] != sig.i[1])
return 0; /* No lazy linking for you! */
}
}
else
{
/* Relocate this *ABS* entry. */
fptr->func = reloc->r_addend + l_addr;
fptr->gp = D_PTR (l, l_info[DT_PLTGOT]);
}
}
else if (__builtin_expect (r_type != R_PARISC_NONE, 0))
_dl_reloc_bad_type (l, r_type, 1);
}
if (got)
{
register Elf32_Addr ltp __asm__ ("%r19");
/* Identify this shared object. */
got[1] = (Elf32_Addr) l;
/* This function will be called to perform the relocation. */
if (__builtin_expect (!profile, 1))
got[-2] =
(Elf32_Addr) ((struct hppa_fptr *)
((unsigned long) &_dl_runtime_resolve & ~3))->func;
else
{
if (_dl_name_match_p (GL(dl_profile), l))
{
/* This is the object we are looking for. Say that
we really want profiling and the timers are
started. */
GL(dl_profile_map) = l;
}
got[-2] =
(Elf32_Addr) ((struct hppa_fptr *)
((unsigned long) &_dl_runtime_profile & ~3))->func;
}
got[-1] = ltp;
}
}
return lazy;
}
/* Initial entry point code for the dynamic linker.
The C function `_dl_start' is the real entry point;
its return value is the user program's entry point. */
#define RTLD_START \
/* Set up dp for any non-PIC lib constructors that may be called. */ \
static struct link_map * \
set_dp (struct link_map *map) \
{ \
register Elf32_Addr dp asm ("%r27"); \
dp = D_PTR (map, l_info[DT_PLTGOT]); \
asm volatile ("" : : "r" (dp)); \
return map; \
} \
\
asm ( \
" .text\n" \
" .globl _start\n" \
" .type _start,@function\n" \
"_start:\n" \
/* The kernel does not give us an initial stack frame. */ \
" ldo 64(%sp),%sp\n" \
/* Save the relevant arguments (yes, those are the correct \
registers, the kernel is weird) in their stack slots. */ \
" stw %r25,-40(%sp)\n" /* argc */ \
" stw %r24,-44(%sp)\n" /* argv */ \
\
/* We need the LTP, and we need it now. */ \
/* $PIC_pcrel$0 points 8 bytes past the current instruction, \
just like a branch reloc. This sequence gets us the runtime \
address of _DYNAMIC. */ \
" bl 0f,%r19\n" \
" depi 0,31,2,%r19\n" /* clear priviledge bits */ \
"0: addil L'_DYNAMIC - ($PIC_pcrel$0 - 8),%r19\n" \
" ldo R'_DYNAMIC - ($PIC_pcrel$0 - 12)(%r1),%r26\n" \
\
/* Also get the link time address from the first entry of the GOT. */ \
" addil L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 16),%r19\n" \
" ldw R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 20)(%r1),%r20\n" \
\
" sub %r26,%r20,%r20\n" /* Calculate load offset */ \
\
/* Rummage through the dynamic entries, looking for DT_PLTGOT. */ \
" ldw,ma 8(%r26),%r19\n" \
"1: cmpib,=,n 3,%r19,2f\n" /* tag == DT_PLTGOT? */ \
" cmpib,<>,n 0,%r19,1b\n" \
" ldw,ma 8(%r26),%r19\n" \
\
/* Uh oh! We didn't find one. Abort. */ \
" iitlbp %r0,(%r0)\n" \
\
"2: ldw -4(%r26),%r19\n" /* Found it, load value. */ \
" add %r19,%r20,%r19\n" /* And add the load offset. */ \
\
/* Our initial stack layout is rather different from everyone \
else's due to the unique PA-RISC ABI. As far as I know it \
looks like this: \
\
----------------------------------- (this frame created above) \
| 32 bytes of magic | \
|---------------------------------| \
| 32 bytes argument/sp save area | \
|---------------------------------| ((current->mm->env_end) + 63 & ~63) \
| N bytes of slack | \
|---------------------------------| \
| envvar and arg strings | \
|---------------------------------| \
| ELF auxiliary info | \
| (up to 28 words) | \
|---------------------------------| \
| Environment variable pointers | \
| upwards to NULL | \
|---------------------------------| \
| Argument pointers | \
| upwards to NULL | \
|---------------------------------| \
| argc (1 word) | \
----------------------------------- \
\
So, obviously, we can't just pass %sp to _dl_start. That's \
okay, argv-4 will do just fine. \
\
The pleasant part of this is that if we need to skip \
arguments we can just decrement argc and move argv, because \
the stack pointer is utterly unrelated to the location of \
the environment and argument vectors. */ \
\
/* This is always within range so we'll be okay. */ \
" bl _dl_start,%rp\n" \
" ldo -4(%r24),%r26\n" \
\
" .globl _dl_start_user\n" \
" .type _dl_start_user,@function\n" \
"_dl_start_user:\n" \
/* Save the entry point in %r3. */ \
" copy %ret0,%r3\n" \
\
/* Remember the lowest stack address. */ \
" addil LT'__libc_stack_end,%r19\n" \
" ldw RT'__libc_stack_end(%r1),%r20\n" \
" stw %sp,0(%r20)\n" \
\
/* See if we were called as a command with the executable file \
name as an extra leading argument. */ \
" addil LT'_dl_skip_args,%r19\n" \
" ldw RT'_dl_skip_args(%r1),%r20\n" \
" ldw 0(%r20),%r20\n" \
\
" ldw -40(%sp),%r25\n" /* argc */ \
" comib,= 0,%r20,.Lnofix\n" /* FIXME: will be mispredicted */ \
" ldw -44(%sp),%r24\n" /* argv (delay slot) */ \
\
" sub %r25,%r20,%r25\n" \
" stw %r25,-40(%sp)\n" \
" sh2add %r20,%r24,%r24\n" \
" stw %r24,-44(%sp)\n" \
\
".Lnofix:\n" \
" addil LT'_rtld_local,%r19\n" \
" ldw RT'_rtld_local(%r1),%r26\n" \
" bl set_dp, %r2\n" \
" ldw 0(%r26),%r26\n" \
\
/* Call _dl_init(_dl_loaded, argc, argv, envp). */ \
" copy %r28,%r26\n" \
\
/* envp = argv + argc + 1 */ \
" sh2add %r25,%r24,%r23\n" \
" bl _dl_init_internal,%r2\n" \
" ldo 4(%r23),%r23\n" /* delay slot */ \
\
/* Reload argc, argv to the registers start.S expects them in (feh) */ \
" ldw -40(%sp),%r25\n" \
" ldw -44(%sp),%r24\n" \
\
/* _dl_fini does have a PLT slot now. I don't know how to get \
to it though, so this hack will remain. */ \
" .section .data\n" \
"__dl_fini_plabel:\n" \
" .word _dl_fini\n" \
" .word 0xdeadbeef\n" \
" .previous\n" \
\
/* %r3 contains a function pointer, we need to mask out the lower \
* bits and load the gp and jump address. */ \
" depi 0,31,2,%r3\n" \
" ldw 0(%r3),%r2\n" \
" addil LT'__dl_fini_plabel,%r19\n" \
" ldw RT'__dl_fini_plabel(%r1),%r23\n" \
" stw %r19,4(%r23)\n" \
" ldw 4(%r3),%r19\n" /* load the object's gp */ \
" bv %r0(%r2)\n" \
" depi 2,31,2,%r23\n" /* delay slot */ \
);
/* This code gets called via the .plt stub, and is used in
dl-runtime.c to call the `fixup' function and then redirect to the
address it returns.
Enter with r19 = reloc offset, r20 = got-8, r21 = fixup ltp. */
#define TRAMPOLINE_TEMPLATE(tramp_name, fixup_name) \
extern void tramp_name (void); \
asm ( "\
2002-06-20 06:23:14 +00:00
/* Trampoline for " #tramp_name " */ \n\
.globl " #tramp_name " \n\
.type " #tramp_name ",@function \n\
" #tramp_name ": \n\
/* Save return pointer */ \n\
stw %r2,-20(%sp) \n\
/* Save argument registers in the call stack frame. */ \n\
stw %r26,-36(%sp) \n\
stw %r25,-40(%sp) \n\
stw %r24,-44(%sp) \n\
stw %r23,-48(%sp) \n\
/* Build a call frame. */ \n\
stwm %sp,64(%sp) \n\
\n\
/* Set up args to fixup func. */ \n\
ldw 8+4(%r20),%r26 /* got[1] == struct link_map * */ \n\
copy %r19,%r25 /* reloc offset */ \n\
\n\
/* Call the real address resolver. */ \n\
bl " #fixup_name ",%r2 \n\
copy %r21,%r19 /* delay slot, set fixup func ltp */ \n\
\n\
ldwm -64(%sp),%sp \n\
/* Arguments. */ \n\
ldw -36(%sp),%r26 \n\
ldw -40(%sp),%r25 \n\
ldw -44(%sp),%r24 \n\
ldw -48(%sp),%r23 \n\
/* Return pointer. */ \n\
ldw -20(%sp),%r2 \n\
/* Call the real function. */ \n\
ldw 0(%r28),%r22 \n\
bv %r0(%r22) \n\
ldw 4(%r28),%r19 \n\
");
#ifndef PROF
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \
TRAMPOLINE_TEMPLATE (_dl_runtime_profile, profile_fixup);
#else
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \
strong_alias (_dl_runtime_resolve, _dl_runtime_profile);
#endif
/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry, so
PLT entries should not be allowed to define the value.
ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one
of the main executable's symbols, as for a COPY reloc. */
#define elf_machine_type_class(type) \
((((type) == R_PARISC_IPLT || (type) == R_PARISC_EPLT) \
* ELF_RTYPE_CLASS_PLT) \
| (((type) == R_PARISC_COPY) * ELF_RTYPE_CLASS_COPY))
/* Used by ld.so for ... something ... */
#define ELF_MACHINE_JMP_SLOT R_PARISC_IPLT
/* We only use RELA. */
#define ELF_MACHINE_NO_REL 1
2001-04-22 03:22:03 +00:00
/* Return the address of the entry point. */
#define ELF_MACHINE_START_ADDRESS(map, start) \
DL_FUNCTION_ADDRESS (map, start)
#endif /* !dl_machine_h */
/* These are only actually used where RESOLVE_MAP is defined, anyway. */
#ifdef RESOLVE_MAP
static inline void
elf_machine_rela (struct link_map *map, const Elf32_Rela *reloc,
const Elf32_Sym *sym, const struct r_found_version *version,
Elf32_Addr *const reloc_addr)
{
const Elf32_Sym *const refsym = sym;
unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
struct link_map *sym_map;
Elf32_Addr value;
#if !defined RTLD_BOOTSTRAP && !defined SHARED
/* This is defined in rtld.c, but nowhere in the static libc.a; make the
reference weak so static programs can still link. This declaration
cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
because rtld.c contains the common defn for _dl_rtld_map, which is
incompatible with a weak decl in the same file. */
weak_extern (GL(dl_rtld_map));
#endif
/* RESOLVE_MAP will return a null value for undefined syms, and
non-null for all other syms. In particular, relocs with no
symbol (symbol index of zero), also called *ABS* relocs, will be
resolved to MAP. (The first entry in a symbol table is all
zeros, and an all zero Elf32_Sym has a binding of STB_LOCAL.)
See RESOLVE_MAP definition in elf/dl-reloc.c */
#ifdef RTLD_BOOTSTRAP
/* RESOLVE_MAP in rtld.c doesn't have the local sym test. */
sym_map = (ELF32_ST_BIND (sym->st_info) != STB_LOCAL
? RESOLVE_MAP (&sym, version, r_type) : map);
#else
sym_map = RESOLVE_MAP (&sym, version, r_type);
#endif
if (sym_map)
{
value = sym ? sym_map->l_addr + sym->st_value : 0;
value += reloc->r_addend;
}
else
value = 0;
switch (r_type)
{
case R_PARISC_DIR32:
#ifndef RTLD_BOOTSTRAP
/* All hell breaks loose if we try to relocate these twice,
because any initialized variables in ld.so that refer to
other ones will have their values reset. In particular,
__fptr_next will be reset, sometimes causing endless loops in
__hppa_make_fptr(). So don't do that. */
if (map == &GL(dl_rtld_map))
return;
#endif
/* .eh_frame can have unaligned relocs. */
if ((unsigned long) reloc_addr & 3)
{
char *rel_addr = (char *) reloc_addr;
rel_addr[0] = value >> 24;
rel_addr[1] = value >> 16;
rel_addr[2] = value >> 8;
rel_addr[3] = value;
return;
}
break;
case R_PARISC_PLABEL32:
/* Easy rule: If there is a symbol and it is global, then we
need to make a dynamic function descriptor. Otherwise we
have the address of a PLT slot for a local symbol which we
know to be unique. */
if (sym == NULL
|| sym_map == NULL
|| ELF32_ST_BIND (sym->st_info) == STB_LOCAL)
break;
/* Okay, we need to make ourselves a PLABEL then. See the IA64
code for an explanation of how this works. */
#ifndef RTLD_BOOTSTRAP
value = __hppa_make_fptr (sym_map, value, &__fptr_root, NULL);
#else
{
struct hppa_fptr *p_boot_ldso_fptr;
struct hppa_fptr **p_fptr_root;
int *p_fptr_count;
unsigned long dot;
/* Go from the top of __boot_ldso_fptr. As on IA64, we
probably haven't relocated the necessary values by this
point so we have to find them ourselves. */
2002-06-20 06:23:14 +00:00
asm ("bl 0f,%0 \n\
depi 0,31,2,%0 \n\
0: addil L'__boot_ldso_fptr - ($PIC_pcrel$0 - 8),%0 \n\
ldo R'__boot_ldso_fptr - ($PIC_pcrel$0 - 12)(%%r1),%1 \n\
addil L'__fptr_root - ($PIC_pcrel$0 - 16),%0 \n\
ldo R'__fptr_root - ($PIC_pcrel$0 - 20)(%%r1),%2 \n\
addil L'__fptr_count - ($PIC_pcrel$0 - 24),%0 \n\
ldo R'__fptr_count - ($PIC_pcrel$0 - 28)(%%r1),%3"
:
"=r" (dot),
"=r" (p_boot_ldso_fptr),
"=r" (p_fptr_root),
"=r" (p_fptr_count));
value = __hppa_make_fptr (sym_map, value, p_fptr_root,
&p_boot_ldso_fptr[--*p_fptr_count]);
}
#endif
break;
case R_PARISC_IPLT:
if (__builtin_expect (sym_map != NULL, 1))
elf_machine_fixup_plt (NULL, sym_map, reloc, reloc_addr, value);
else
{
/* If we get here, it's a (weak) undefined sym. */
elf_machine_fixup_plt (NULL, map, reloc, reloc_addr, value);
}
return;
case R_PARISC_COPY:
if (__builtin_expect (sym == NULL, 0))
/* This can happen in trace mode if an object could not be
found. */
break;
if (__builtin_expect (sym->st_size > refsym->st_size, 0)
|| (__builtin_expect (sym->st_size < refsym->st_size, 0)
&& __builtin_expect (GL(dl_verbose), 0)))
{
const char *strtab;
strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
_dl_error_printf ("\
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
rtld_progname ?: "<program name unknown>",
strtab + refsym->st_name);
}
memcpy (reloc_addr, (void *) value,
MIN (sym->st_size, refsym->st_size));
return;
case R_PARISC_NONE: /* Alright, Wilbur. */
return;
default:
_dl_reloc_bad_type (map, r_type, 0);
}
*reloc_addr = value;
}
#define DO_ELF_MACHINE_REL_RELATIVE(map, l_addr, relative) \
elf_machine_rel_relative (map, l_addr, relative, \
(void *) (l_addr + relative->r_offset))
/* hppa doesn't have an R_PARISC_RELATIVE reloc, but uses relocs with
ELF32_R_SYM (info) == 0 for a similar purpose. */
static inline void
elf_machine_rela_relative (struct link_map *map, Elf32_Addr l_addr,
const Elf32_Rela *reloc,
Elf32_Addr *const reloc_addr)
{
unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
Elf32_Addr value;
value = l_addr + reloc->r_addend;
if (ELF32_R_SYM (reloc->r_info) != 0)
asm volatile ("iitlbp %r0,(%r0)"); /* Crash. */
switch (r_type)
{
case R_PARISC_DIR32:
/* .eh_frame can have unaligned relocs. */
if ((unsigned long) reloc_addr & 3)
{
char *rel_addr = (char *) reloc_addr;
rel_addr[0] = value >> 24;
rel_addr[1] = value >> 16;
rel_addr[2] = value >> 8;
rel_addr[3] = value;
return;
}
break;
case R_PARISC_PLABEL32:
break;
case R_PARISC_IPLT:
elf_machine_fixup_plt (NULL, map, reloc, reloc_addr, value);
return;
case R_PARISC_NONE:
return;
default:
_dl_reloc_bad_type (map, r_type, 0);
}
*reloc_addr = value;
}
static inline void
elf_machine_lazy_rel (struct link_map *map,
Elf32_Addr l_addr, const Elf32_Rela *reloc)
{
/* We don't have anything to do here. elf_machine_runtime_setup has
done all the relocs already. */
}
#endif /* RESOLVE_MAP */