glibc/sysdeps/aarch64/fpu/erfc_advsimd.c

207 lines
7.7 KiB
C
Raw Normal View History

/* Double-precision vector (Advanced SIMD) erfc function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "vecmath_config.h"
static const struct data
{
uint64x2_t offset, table_scale;
float64x2_t max, shift;
float64x2_t p20, p40, p41, p42;
float64x2_t p51, p52;
double qr5[2], qr6[2], qr7[2], qr8[2], qr9[2];
#if WANT_SIMD_EXCEPT
float64x2_t uflow_bound;
#endif
} data = {
/* Set an offset so the range of the index used for lookup is 3487, and it
can be clamped using a saturated add on an offset index.
Index offset is 0xffffffffffffffff - asuint64(shift) - 3487. */
.offset = V2 (0xbd3ffffffffff260),
.table_scale = V2 (0x37f0000000000000 << 1), /* asuint64 (2^-128) << 1. */
.max = V2 (0x1.b3ep+4), /* 3487/128. */
.shift = V2 (0x1p45),
.p20 = V2 (0x1.5555555555555p-2), /* 1/3, used to compute 2/3 and 1/6. */
.p40 = V2 (-0x1.999999999999ap-4), /* 1/10. */
.p41 = V2 (-0x1.999999999999ap-2), /* 2/5. */
.p42 = V2 (0x1.1111111111111p-3), /* 2/15. */
.p51 = V2 (-0x1.c71c71c71c71cp-3), /* 2/9. */
.p52 = V2 (0x1.6c16c16c16c17p-5), /* 2/45. */
/* Qi = (i+1) / i, Ri = -2 * i / ((i+1)*(i+2)), for i = 5, ..., 9. */
.qr5 = { 0x1.3333333333333p0, -0x1.e79e79e79e79ep-3 },
.qr6 = { 0x1.2aaaaaaaaaaabp0, -0x1.b6db6db6db6dbp-3 },
.qr7 = { 0x1.2492492492492p0, -0x1.8e38e38e38e39p-3 },
.qr8 = { 0x1.2p0, -0x1.6c16c16c16c17p-3 },
.qr9 = { 0x1.1c71c71c71c72p0, -0x1.4f2094f2094f2p-3 },
#if WANT_SIMD_EXCEPT
.uflow_bound = V2 (0x1.a8b12fc6e4892p+4),
#endif
};
#define TinyBound 0x4000000000000000 /* 0x1p-511 << 1. */
#define Off 0xfffffffffffff260 /* 0xffffffffffffffff - 3487. */
struct entry
{
float64x2_t erfc;
float64x2_t scale;
};
static inline struct entry
lookup (uint64x2_t i)
{
struct entry e;
float64x2_t e1
= vld1q_f64 (&__erfc_data.tab[vgetq_lane_u64 (i, 0) - Off].erfc);
float64x2_t e2
= vld1q_f64 (&__erfc_data.tab[vgetq_lane_u64 (i, 1) - Off].erfc);
e.erfc = vuzp1q_f64 (e1, e2);
e.scale = vuzp2q_f64 (e1, e2);
return e;
}
#if WANT_SIMD_EXCEPT
static float64x2_t VPCS_ATTR NOINLINE
special_case (float64x2_t x, float64x2_t y, uint64x2_t cmp)
{
return v_call_f64 (erfc, x, y, cmp);
}
#endif
/* Optimized double-precision vector erfc(x).
Approximation based on series expansion near x rounded to
nearest multiple of 1/128.
Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r,
erfc(x) ~ erfc(r) - scale * d * poly(r, d), with
poly(r, d) = 1 - r d + (2/3 r^2 - 1/3) d^2 - r (1/3 r^2 - 1/2) d^3
+ (2/15 r^4 - 2/5 r^2 + 1/10) d^4
- r * (2/45 r^4 - 2/9 r^2 + 1/6) d^5
+ p6(r) d^6 + ... + p10(r) d^10
Polynomials p6(r) to p10(r) are computed using recurrence relation
2(i+1)p_i + 2r(i+2)p_{i+1} + (i+2)(i+3)p_{i+2} = 0,
with p0 = 1, and p1(r) = -r.
Values of erfc(r) and scale are read from lookup tables. Stored values
are scaled to avoid hitting the subnormal range.
Note that for x < 0, erfc(x) = 2.0 - erfc(-x).
Maximum measured error: 1.71 ULP
V_NAME_D1 (erfc)(0x1.46cfe976733p+4) got 0x1.e15fcbea3e7afp-608
want 0x1.e15fcbea3e7adp-608. */
VPCS_ATTR
float64x2_t V_NAME_D1 (erfc) (float64x2_t x)
{
const struct data *dat = ptr_barrier (&data);
#if WANT_SIMD_EXCEPT
/* |x| < 2^-511. Avoid fabs by left-shifting by 1. */
uint64x2_t ix = vreinterpretq_u64_f64 (x);
uint64x2_t cmp = vcltq_u64 (vaddq_u64 (ix, ix), v_u64 (TinyBound));
/* x >= ~26.54 (into subnormal case and uflow case). Comparison is done in
integer domain to avoid raising exceptions in presence of nans. */
uint64x2_t uflow = vcgeq_s64 (vreinterpretq_s64_f64 (x),
vreinterpretq_s64_f64 (dat->uflow_bound));
cmp = vorrq_u64 (cmp, uflow);
float64x2_t xm = x;
/* If any lanes are special, mask them with 0 and retain a copy of x to allow
special case handler to fix special lanes later. This is only necessary if
fenv exceptions are to be triggered correctly. */
if (__glibc_unlikely (v_any_u64 (cmp)))
x = v_zerofy_f64 (x, cmp);
#endif
float64x2_t a = vabsq_f64 (x);
a = vminq_f64 (a, dat->max);
/* Lookup erfc(r) and scale(r) in tables, e.g. set erfc(r) to 0 and scale to
2/sqrt(pi), when x reduced to r = 0. */
float64x2_t shift = dat->shift;
float64x2_t z = vaddq_f64 (a, shift);
/* Clamp index to a range of 3487. A naive approach would use a subtract and
min. Instead we offset the table address and the index, then use a
saturating add. */
uint64x2_t i = vqaddq_u64 (vreinterpretq_u64_f64 (z), dat->offset);
struct entry e = lookup (i);
/* erfc(x) ~ erfc(r) - scale * d * poly(r, d). */
float64x2_t r = vsubq_f64 (z, shift);
float64x2_t d = vsubq_f64 (a, r);
float64x2_t d2 = vmulq_f64 (d, d);
float64x2_t r2 = vmulq_f64 (r, r);
float64x2_t p1 = r;
float64x2_t p2 = vfmsq_f64 (dat->p20, r2, vaddq_f64 (dat->p20, dat->p20));
float64x2_t p3 = vmulq_f64 (r, vfmaq_f64 (v_f64 (-0.5), r2, dat->p20));
float64x2_t p4 = vfmaq_f64 (dat->p41, r2, dat->p42);
p4 = vfmsq_f64 (dat->p40, r2, p4);
float64x2_t p5 = vfmaq_f64 (dat->p51, r2, dat->p52);
p5 = vmulq_f64 (r, vfmaq_f64 (vmulq_f64 (v_f64 (0.5), dat->p20), r2, p5));
/* Compute p_i using recurrence relation:
p_{i+2} = (p_i + r * Q_{i+1} * p_{i+1}) * R_{i+1}. */
float64x2_t qr5 = vld1q_f64 (dat->qr5), qr6 = vld1q_f64 (dat->qr6),
qr7 = vld1q_f64 (dat->qr7), qr8 = vld1q_f64 (dat->qr8),
qr9 = vld1q_f64 (dat->qr9);
float64x2_t p6 = vfmaq_f64 (p4, p5, vmulq_laneq_f64 (r, qr5, 0));
p6 = vmulq_laneq_f64 (p6, qr5, 1);
float64x2_t p7 = vfmaq_f64 (p5, p6, vmulq_laneq_f64 (r, qr6, 0));
p7 = vmulq_laneq_f64 (p7, qr6, 1);
float64x2_t p8 = vfmaq_f64 (p6, p7, vmulq_laneq_f64 (r, qr7, 0));
p8 = vmulq_laneq_f64 (p8, qr7, 1);
float64x2_t p9 = vfmaq_f64 (p7, p8, vmulq_laneq_f64 (r, qr8, 0));
p9 = vmulq_laneq_f64 (p9, qr8, 1);
float64x2_t p10 = vfmaq_f64 (p8, p9, vmulq_laneq_f64 (r, qr9, 0));
p10 = vmulq_laneq_f64 (p10, qr9, 1);
/* Compute polynomial in d using pairwise Horner scheme. */
float64x2_t p90 = vfmaq_f64 (p9, d, p10);
float64x2_t p78 = vfmaq_f64 (p7, d, p8);
float64x2_t p56 = vfmaq_f64 (p5, d, p6);
float64x2_t p34 = vfmaq_f64 (p3, d, p4);
float64x2_t p12 = vfmaq_f64 (p1, d, p2);
float64x2_t y = vfmaq_f64 (p78, d2, p90);
y = vfmaq_f64 (p56, d2, y);
y = vfmaq_f64 (p34, d2, y);
y = vfmaq_f64 (p12, d2, y);
y = vfmsq_f64 (e.erfc, e.scale, vfmsq_f64 (d, d2, y));
/* Offset equals 2.0 if sign, else 0.0. */
uint64x2_t sign = vshrq_n_u64 (vreinterpretq_u64_f64 (x), 63);
float64x2_t off = vreinterpretq_f64_u64 (vshlq_n_u64 (sign, 62));
/* Copy sign and scale back in a single fma. Since the bit patterns do not
overlap, then logical or and addition are equivalent here. */
float64x2_t fac = vreinterpretq_f64_u64 (
vsraq_n_u64 (vshlq_n_u64 (sign, 63), dat->table_scale, 1));
#if WANT_SIMD_EXCEPT
if (__glibc_unlikely (v_any_u64 (cmp)))
return special_case (xm, vfmaq_f64 (off, fac, y), cmp);
#endif
return vfmaq_f64 (off, fac, y);
}