glibc/sysdeps/x86_64/multiarch/strchr-evex.S

518 lines
14 KiB
ArmAsm
Raw Normal View History

/* strchr/strchrnul optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
# include <sysdep.h>
# ifndef STRCHR
# define STRCHR __strchr_evex
# endif
# ifndef VEC_SIZE
# include "x86-evex256-vecs.h"
# endif
# ifdef USE_AS_WCSCHR
# define VPBROADCAST vpbroadcastd
# define VPCMP vpcmpd
# define VPCMPEQ vpcmpeqd
# define VPTESTN vptestnmd
# define VPTEST vptestmd
# define VPMINU vpminud
# define CHAR_REG esi
# define SHIFT_REG rcx
# define CHAR_SIZE 4
# define USE_WIDE_CHAR
# else
# define VPBROADCAST vpbroadcastb
# define VPCMP vpcmpb
# define VPCMPEQ vpcmpeqb
# define VPTESTN vptestnmb
# define VPTEST vptestmb
# define VPMINU vpminub
# define CHAR_REG sil
# define SHIFT_REG rdi
# define CHAR_SIZE 1
# endif
# include "reg-macros.h"
# if VEC_SIZE == 64
# define MASK_GPR rcx
# define LOOP_REG rax
# define COND_MASK(k_reg) {%k_reg}
# else
# define MASK_GPR rax
# define LOOP_REG rdi
# define COND_MASK(k_reg)
# endif
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
# if CHAR_PER_VEC == 64
# define LAST_VEC_OFFSET (VEC_SIZE * 3)
# define TESTZ(reg) incq %VGPR_SZ(reg, 64)
# else
# if CHAR_PER_VEC == 32
# define TESTZ(reg) incl %VGPR_SZ(reg, 32)
# elif CHAR_PER_VEC == 16
# define TESTZ(reg) incw %VGPR_SZ(reg, 16)
# else
# define TESTZ(reg) incb %VGPR_SZ(reg, 8)
# endif
# define LAST_VEC_OFFSET (VEC_SIZE * 2)
# endif
# define VMATCH VMM(0)
# define PAGE_SIZE 4096
.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN (STRCHR, 6)
/* Broadcast CHAR to VEC_0. */
VPBROADCAST %esi, %VMATCH
movl %edi, %eax
andl $(PAGE_SIZE - 1), %eax
/* Check if we cross page boundary with one vector load.
Otherwise it is safe to use an unaligned load. */
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
ja L(cross_page_boundary)
/* Check the first VEC_SIZE bytes. Search for both CHAR and the
null bytes. */
VMOVU (%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRAX
# if VEC_SIZE == 64 && defined USE_AS_STRCHRNUL
/* If VEC_SIZE == 64 && STRCHRNUL use bsf to test condition so
that all logic for match/null in first VEC first in 1x cache
lines. This has a slight cost to larger sizes. */
bsf %VRAX, %VRAX
jz L(aligned_more)
# else
test %VRAX, %VRAX
jz L(aligned_more)
bsf %VRAX, %VRAX
# endif
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (%rdi, %rax, CHAR_SIZE), %CHAR_REG
/* NB: Use a branch instead of cmovcc here. The expectation is
that with strchr the user will branch based on input being
null. Since this branch will be 100% predictive of the user
branch a branch miss here should save what otherwise would
be branch miss in the user code. Otherwise using a branch 1)
saves code size and 2) is faster in highly predictable
environments. */
jne L(zero)
# endif
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
ret
# ifndef USE_AS_STRCHRNUL
L(zero):
xorl %eax, %eax
ret
# endif
.p2align 4,, 2
L(first_vec_x3):
subq $-(VEC_SIZE * 2), %rdi
# if VEC_SIZE == 32
/* Reuse L(first_vec_x3) for last VEC2 only for VEC_SIZE == 32.
For VEC_SIZE == 64 the registers don't match. */
L(last_vec_x2):
# endif
L(first_vec_x1):
/* Use bsf here to save 1-byte keeping keeping the block in 1x
fetch block. eax guaranteed non-zero. */
bsf %VRCX, %VRCX
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %CHAR_REG
jne L(zero)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %rax
ret
.p2align 4,, 2
L(first_vec_x4):
subq $-(VEC_SIZE * 2), %rdi
L(first_vec_x2):
# ifndef USE_AS_STRCHRNUL
/* Check to see if first match was CHAR (k0) or null (k1). */
KMOV %k0, %VRAX
tzcnt %VRAX, %VRAX
KMOV %k1, %VRCX
/* bzhil will not be 0 if first match was null. */
bzhi %VRAX, %VRCX, %VRCX
jne L(zero)
# else
/* Combine CHAR and null matches. */
KOR %k0, %k1, %k0
KMOV %k0, %VRAX
bsf %VRAX, %VRAX
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
# ifdef USE_AS_STRCHRNUL
/* We use this as a hook to get imm8 encoding for the jmp to
L(page_cross_boundary). This allows the hot case of a
match/null-term in first VEC to fit entirely in 1 cache
line. */
L(cross_page_boundary):
jmp L(cross_page_boundary_real)
# endif
.p2align 4
L(aligned_more):
L(cross_page_continue):
/* Align data to VEC_SIZE. */
andq $-VEC_SIZE, %rdi
/* Check the next 4 * VEC_SIZE. Only one VEC_SIZE at a time
since data is only aligned to VEC_SIZE. Use two alternating
methods for checking VEC to balance latency and port
contention. */
/* Method(1) with 8c latency:
For VEC_SIZE == 32:
p0 * 1.83, p1 * 0.83, p5 * 1.33
For VEC_SIZE == 64:
p0 * 2.50, p1 * 0.00, p5 * 1.50 */
VMOVA (VEC_SIZE)(%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x1)
/* Method(2) with 6c latency:
For VEC_SIZE == 32:
p0 * 1.00, p1 * 0.00, p5 * 2.00
For VEC_SIZE == 64:
p0 * 1.00, p1 * 0.00, p5 * 2.00 */
VMOVA (VEC_SIZE * 2)(%rdi), %VMM(1)
/* Each bit in K0 represents a CHAR in VEC_1. */
VPCMPEQ %VMM(1), %VMATCH, %k0
/* Each bit in K1 represents a CHAR in VEC_1. */
VPTESTN %VMM(1), %VMM(1), %k1
KORTEST %k0, %k1
jnz L(first_vec_x2)
/* By swapping between Method 1/2 we get more fair port
distrubition and better throughput. */
VMOVA (VEC_SIZE * 3)(%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x3)
VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1)
/* Each bit in K0 represents a CHAR in VEC_1. */
VPCMPEQ %VMM(1), %VMATCH, %k0
/* Each bit in K1 represents a CHAR in VEC_1. */
VPTESTN %VMM(1), %VMM(1), %k1
KORTEST %k0, %k1
jnz L(first_vec_x4)
/* Align data to VEC_SIZE * 4 for the loop. */
# if VEC_SIZE == 64
/* Use rax for the loop reg as it allows to the loop to fit in
exactly 2-cache-lines. (more efficient imm32 + gpr
encoding). */
leaq (VEC_SIZE)(%rdi), %rax
/* No partial register stalls on evex512 processors. */
xorb %al, %al
# else
/* For VEC_SIZE == 32 continue using rdi for loop reg so we can
reuse more code and save space. */
addq $VEC_SIZE, %rdi
andq $-(VEC_SIZE * 4), %rdi
# endif
.p2align 4
L(loop_4x_vec):
/* Check 4x VEC at a time. No penalty for imm32 offset with evex
encoding (if offset % VEC_SIZE == 0). */
VMOVA (VEC_SIZE * 4)(%LOOP_REG), %VMM(1)
VMOVA (VEC_SIZE * 5)(%LOOP_REG), %VMM(2)
VMOVA (VEC_SIZE * 6)(%LOOP_REG), %VMM(3)
VMOVA (VEC_SIZE * 7)(%LOOP_REG), %VMM(4)
/* Collect bits where VEC_1 does NOT match esi. This is later
use to mask of results (getting not matches allows us to
save an instruction on combining). */
VPCMP $4, %VMATCH, %VMM(1), %k1
/* Two methods for loop depending on VEC_SIZE. This is because
with zmm registers VPMINU can only run on p0 (as opposed to
p0/p1 for ymm) so it is less preferred. */
# if VEC_SIZE == 32
/* For VEC_2 and VEC_3 use xor to set the CHARs matching esi to
zero. */
vpxorq %VMM(2), %VMATCH, %VMM(6)
vpxorq %VMM(3), %VMATCH, %VMM(7)
/* Find non-matches in VEC_4 while combining with non-matches
from VEC_1. NB: Try and use masked predicate execution on
instructions that have mask result as it has no latency
penalty. */
VPCMP $4, %VMATCH, %VMM(4), %k4{%k1}
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
VPMINU %VMM(1), %VMM(2), %VMM(2)
/* Use min to select all zeros from either xor or end of
string). */
VPMINU %VMM(3), %VMM(7), %VMM(3)
VPMINU %VMM(2), %VMM(6), %VMM(2)
/* Combined zeros from VEC_2 / VEC_3 (search for null term). */
VPMINU %VMM(3), %VMM(4), %VMM(4)
/* Combined zeros from VEC_2 / VEC_4 (this has all null term and
esi matches for VEC_2 / VEC_3). */
VPMINU %VMM(2), %VMM(4), %VMM(4)
# else
/* Collect non-matches for VEC_2. */
VPCMP $4, %VMM(2), %VMATCH, %k2
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
VPMINU %VMM(1), %VMM(2), %VMM(2)
/* Find non-matches in VEC_3/VEC_4 while combining with non-
matches from VEC_1/VEC_2 respectively. */
VPCMP $4, %VMM(3), %VMATCH, %k3{%k1}
VPCMP $4, %VMM(4), %VMATCH, %k4{%k2}
/* Finish combining zeros in all VECs. */
VPMINU %VMM(3), %VMM(4), %VMM(4)
/* Combine in esi matches for VEC_3 (if there was a match with
esi, the corresponding bit in %k3 is zero so the
VPMINU_MASKZ will have a zero in the result). NB: This make
the VPMINU 3c latency. The only way to avoid it is to
create a 12c dependency chain on all the `VPCMP $4, ...`
which has higher total latency. */
VPMINU %VMM(2), %VMM(4), %VMM(4){%k3}{z}
# endif
VPTEST %VMM(4), %VMM(4), %k0{%k4}
KMOV %k0, %VRDX
subq $-(VEC_SIZE * 4), %LOOP_REG
/* TESTZ is inc using the proper register width depending on
CHAR_PER_VEC. An esi match or null-term match leaves a zero-
bit in rdx so inc won't overflow and won't be zero. */
TESTZ (rdx)
jz L(loop_4x_vec)
VPTEST %VMM(1), %VMM(1), %k0{%k1}
KMOV %k0, %VGPR(MASK_GPR)
TESTZ (MASK_GPR)
# if VEC_SIZE == 32
/* We can reuse the return code in page_cross logic for VEC_SIZE
== 32. */
jnz L(last_vec_x1_vec_size32)
# else
jnz L(last_vec_x1_vec_size64)
# endif
/* COND_MASK integrates the esi matches for VEC_SIZE == 64. For
VEC_SIZE == 32 they are already integrated. */
VPTEST %VMM(2), %VMM(2), %k0 COND_MASK(k2)
KMOV %k0, %VRCX
TESTZ (rcx)
jnz L(last_vec_x2)
VPTEST %VMM(3), %VMM(3), %k0 COND_MASK(k3)
KMOV %k0, %VRCX
# if CHAR_PER_VEC == 64
TESTZ (rcx)
jnz L(last_vec_x3)
# else
salq $CHAR_PER_VEC, %rdx
TESTZ (rcx)
orq %rcx, %rdx
# endif
bsfq %rdx, %rdx
# ifndef USE_AS_STRCHRNUL
/* Check if match was CHAR or null. */
cmp (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %rax
ret
# ifndef USE_AS_STRCHRNUL
L(zero_end):
xorl %eax, %eax
ret
# endif
/* Separate return label for last VEC1 because for VEC_SIZE ==
32 we can reuse return code in L(page_cross) but VEC_SIZE ==
64 has mismatched registers. */
# if VEC_SIZE == 64
.p2align 4,, 8
L(last_vec_x1_vec_size64):
bsf %VRCX, %VRCX
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (%rax, %rcx, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rax, %rcx, CHAR_SIZE), %rax
# else
addq %rcx, %rax
# endif
ret
/* Since we can't combine the last 2x matches for CHAR_PER_VEC
== 64 we need return label for last VEC3. */
# if CHAR_PER_VEC == 64
.p2align 4,, 8
L(last_vec_x3):
addq $VEC_SIZE, %LOOP_REG
# endif
/* Duplicate L(last_vec_x2) for VEC_SIZE == 64 because we can't
reuse L(first_vec_x3) due to register mismatch. */
L(last_vec_x2):
bsf %VGPR(MASK_GPR), %VGPR(MASK_GPR)
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %rax
ret
# endif
/* Cold case for crossing page with first load. */
.p2align 4,, 10
# ifndef USE_AS_STRCHRNUL
L(cross_page_boundary):
# endif
L(cross_page_boundary_real):
/* Align rdi. */
xorq %rdi, %rax
VMOVA (PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1)
/* Use high latency method of getting matches to save code size.
*/
/* K1 has 1s where VEC(1) does NOT match esi. */
VPCMP $4, %VMM(1), %VMATCH, %k1
/* K0 has ones where K1 is 1 (non-match with esi), and non-zero
(null). */
VPTEST %VMM(1), %VMM(1), %k0{%k1}
KMOV %k0, %VRAX
/* Remove the leading bits. */
# ifdef USE_AS_WCSCHR
movl %edi, %VGPR_SZ(SHIFT_REG, 32)
/* NB: Divide shift count by 4 since each bit in K1 represent 4
bytes. */
sarl $2, %VGPR_SZ(SHIFT_REG, 32)
andl $(CHAR_PER_VEC - 1), %VGPR_SZ(SHIFT_REG, 32)
/* if wcsrchr we need to reverse matches as we can't rely on
signed shift to bring in ones. There is not sarx for
gpr8/16. Also not we can't use inc here as the lower bits
represent matches out of range so we can't rely on overflow.
*/
xorl $((1 << CHAR_PER_VEC)- 1), %eax
# endif
/* Use arithmetic shift so that leading 1s are filled in. */
sarx %VGPR(SHIFT_REG), %VRAX, %VRAX
/* If eax is all ones then no matches for esi or NULL. */
# ifdef USE_AS_WCSCHR
test %VRAX, %VRAX
# else
inc %VRAX
# endif
jz L(cross_page_continue)
.p2align 4,, 10
L(last_vec_x1_vec_size32):
bsf %VRAX, %VRAX
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
# ifndef USE_AS_STRCHRNUL
/* Check to see if match was CHAR or null. */
cmp (%rax), %CHAR_REG
jne L(zero_end_0)
# endif
ret
# ifndef USE_AS_STRCHRNUL
L(zero_end_0):
xorl %eax, %eax
ret
# endif
END (STRCHR)
#endif