2001-02-19 09:32:39 +00:00
|
|
|
/*
|
|
|
|
* ====================================================
|
|
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software is freely granted, provided that this notice
|
|
|
|
* is preserved.
|
|
|
|
* ====================================================
|
|
|
|
*/
|
|
|
|
|
2002-08-26 22:40:48 +00:00
|
|
|
/* Long double expansions are
|
|
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
2011-10-12 15:27:51 +00:00
|
|
|
and are incorporated herein by permission of the author. The author
|
2002-08-28 02:30:36 +00:00
|
|
|
reserves the right to distribute this material elsewhere under different
|
2011-10-12 15:27:51 +00:00
|
|
|
copying permissions. These modifications are distributed here under
|
2002-08-28 02:30:36 +00:00
|
|
|
the following terms:
|
2002-08-26 22:40:48 +00:00
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
2012-02-09 23:18:22 +00:00
|
|
|
License along with this library; if not, see
|
Prefer https to http for gnu.org and fsf.org URLs
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
$(find $(git ls-files) -prune -type f \
! -name '*.po' \
! -name 'ChangeLog*' \
! -path COPYING ! -path COPYING.LIB \
! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
! -path manual/texinfo.tex ! -path scripts/config.guess \
! -path scripts/config.sub ! -path scripts/install-sh \
! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
! -path INSTALL ! -path locale/programs/charmap-kw.h \
! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
! '(' -name configure \
-execdir test -f configure.ac -o -f configure.in ';' ')' \
! '(' -name preconfigure \
-execdir test -f preconfigure.ac ';' ')' \
-print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
chmod a+x sysdeps/unix/sysv/linux/riscv/configure
# Omit irrelevant whitespace and comment-only changes,
# perhaps from a slightly-different Autoconf version.
git checkout -f \
sysdeps/csky/configure \
sysdeps/hppa/configure \
sysdeps/riscv/configure \
sysdeps/unix/sysv/linux/csky/configure
# Omit changes that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
git checkout -f \
sysdeps/powerpc/powerpc64/ppc-mcount.S \
sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
# Omit change that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 05:40:42 +00:00
|
|
|
<https://www.gnu.org/licenses/>. */
|
2001-02-19 09:32:39 +00:00
|
|
|
|
|
|
|
/* __ieee754_j1(x), __ieee754_y1(x)
|
|
|
|
* Bessel function of the first and second kinds of order zero.
|
|
|
|
* Method -- j1(x):
|
|
|
|
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
|
|
|
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
|
|
|
* for x in (0,2)
|
|
|
|
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
|
|
|
* for x in (2,inf)
|
2011-10-12 15:27:51 +00:00
|
|
|
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
|
|
|
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
|
|
|
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
2001-02-19 09:32:39 +00:00
|
|
|
* as follow:
|
|
|
|
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
|
|
|
* = 1/sqrt(2) * (sin(x) - cos(x))
|
|
|
|
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
|
|
* = -1/sqrt(2) * (sin(x) + cos(x))
|
2011-10-12 15:27:51 +00:00
|
|
|
* (To avoid cancellation, use
|
2001-02-19 09:32:39 +00:00
|
|
|
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
2011-10-12 15:27:51 +00:00
|
|
|
* to compute the worse one.)
|
2001-02-19 09:32:39 +00:00
|
|
|
*
|
|
|
|
* 3 Special cases
|
|
|
|
* j1(nan)= nan
|
|
|
|
* j1(0) = 0
|
|
|
|
* j1(inf) = 0
|
|
|
|
*
|
|
|
|
* Method -- y1(x):
|
|
|
|
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
|
|
|
* 2. For x<2.
|
|
|
|
* Since
|
|
|
|
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
|
|
|
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
|
|
|
* We use the following function to approximate y1,
|
|
|
|
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
|
|
|
* Note: For tiny x, 1/x dominate y1 and hence
|
|
|
|
* y1(tiny) = -2/pi/tiny
|
|
|
|
* 3. For x>=2.
|
2011-10-12 15:27:51 +00:00
|
|
|
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
|
|
|
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
2001-02-19 09:32:39 +00:00
|
|
|
* by method mentioned above.
|
|
|
|
*/
|
|
|
|
|
2014-06-23 20:17:13 +00:00
|
|
|
#include <errno.h>
|
2015-06-29 16:52:16 +00:00
|
|
|
#include <float.h>
|
2012-03-09 19:29:16 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
2018-05-10 00:53:04 +00:00
|
|
|
#include <math-underflow.h>
|
2019-07-16 15:17:22 +00:00
|
|
|
#include <libm-alias-finite.h>
|
2001-02-19 09:32:39 +00:00
|
|
|
|
|
|
|
static long double pone (long double), qone (long double);
|
|
|
|
|
|
|
|
static const long double
|
|
|
|
huge = 1e4930L,
|
|
|
|
one = 1.0L,
|
|
|
|
invsqrtpi = 5.6418958354775628694807945156077258584405e-1L,
|
|
|
|
tpi = 6.3661977236758134307553505349005744813784e-1L,
|
|
|
|
|
|
|
|
/* J1(x) = .5 x + x x^2 R(x^2) / S(x^2)
|
|
|
|
0 <= x <= 2
|
|
|
|
Peak relative error 4.5e-21 */
|
|
|
|
R[5] = {
|
|
|
|
-9.647406112428107954753770469290757756814E7L,
|
|
|
|
2.686288565865230690166454005558203955564E6L,
|
|
|
|
-3.689682683905671185891885948692283776081E4L,
|
|
|
|
2.195031194229176602851429567792676658146E2L,
|
|
|
|
-5.124499848728030297902028238597308971319E-1L,
|
|
|
|
},
|
|
|
|
|
|
|
|
S[4] =
|
|
|
|
{
|
|
|
|
1.543584977988497274437410333029029035089E9L,
|
|
|
|
2.133542369567701244002565983150952549520E7L,
|
|
|
|
1.394077011298227346483732156167414670520E5L,
|
|
|
|
5.252401789085732428842871556112108446506E2L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
static const long double zero = 0.0;
|
|
|
|
|
|
|
|
|
|
|
|
long double
|
|
|
|
__ieee754_j1l (long double x)
|
|
|
|
{
|
|
|
|
long double z, c, r, s, ss, cc, u, v, y;
|
|
|
|
int32_t ix;
|
2017-08-03 19:55:04 +00:00
|
|
|
uint32_t se;
|
2001-02-19 09:32:39 +00:00
|
|
|
|
2011-11-12 07:20:29 +00:00
|
|
|
GET_LDOUBLE_EXP (se, x);
|
2001-02-19 09:32:39 +00:00
|
|
|
ix = se & 0x7fff;
|
2014-02-10 13:45:42 +00:00
|
|
|
if (__glibc_unlikely (ix >= 0x7fff))
|
2001-02-19 09:32:39 +00:00
|
|
|
return one / x;
|
|
|
|
y = fabsl (x);
|
|
|
|
if (ix >= 0x4000)
|
|
|
|
{ /* |x| >= 2.0 */
|
2001-04-07 18:31:54 +00:00
|
|
|
__sincosl (y, &s, &c);
|
2001-02-19 09:32:39 +00:00
|
|
|
ss = -s - c;
|
|
|
|
cc = s - c;
|
|
|
|
if (ix < 0x7ffe)
|
|
|
|
{ /* make sure y+y not overflow */
|
|
|
|
z = __cosl (y + y);
|
|
|
|
if ((s * c) > zero)
|
|
|
|
cc = z / ss;
|
|
|
|
else
|
|
|
|
ss = z / cc;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
|
|
|
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
|
|
|
*/
|
Adjust thresholds in Bessel function implementations (bug 14469).
A recent discussion in bug 14469 notes that a threshold in float
Bessel function implementations, used to determine when to use a
simpler implementation approach, results in substantially inaccurate
results.
As I discussed in
<https://sourceware.org/ml/libc-alpha/2013-03/msg00345.html>, a
heuristic argument suggests 2^(S+P) as the right order of magnitude
for a suitable threshold, where S is the number of significand bits in
the floating-point type and P is the number of significant bits in the
representation of the floating-point type, and the float and ldbl-96
implementations use thresholds that are too small. Some threshold
does need using, there or elsewhere in the implementation, to avoid
spurious underflow and overflow for large arguments.
This patch sets the thresholds in the affected implementations to more
heuristically justifiable values. Results will still be inaccurate
close to zeroes of the functions (thus this patch does *not* fix any
of the bugs for Bessel function inaccuracy); fixing that would require
a different implementation approach, likely along the lines described
in <http://www.cl.cam.ac.uk/~jrh13/papers/bessel.ps.gz>.
So the justification for a change such as this would be statistical
rather than based on particular tests that had excessive errors and no
longer do so (no doubt such tests could be found, but would probably
be too fragile to add to the testsuite, as liable to give large errors
again from very small implementation changes or even from compiler
changes). See
<https://sourceware.org/ml/libc-alpha/2020-02/msg00638.html> for such
statistics of the resulting improvements for float functions.
Tested (glibc testsuite) for x86_64.
2020-02-14 14:16:25 +00:00
|
|
|
if (__glibc_unlikely (ix > 0x408e))
|
2018-03-15 18:05:03 +00:00
|
|
|
z = (invsqrtpi * cc) / sqrtl (y);
|
2001-02-19 09:32:39 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
u = pone (y);
|
|
|
|
v = qone (y);
|
2018-03-15 18:05:03 +00:00
|
|
|
z = invsqrtpi * (u * cc - v * ss) / sqrtl (y);
|
2001-02-19 09:32:39 +00:00
|
|
|
}
|
|
|
|
if (se & 0x8000)
|
|
|
|
return -z;
|
|
|
|
else
|
|
|
|
return z;
|
|
|
|
}
|
2014-02-10 13:45:42 +00:00
|
|
|
if (__glibc_unlikely (ix < 0x3fde)) /* |x| < 2^-33 */
|
2001-02-19 09:32:39 +00:00
|
|
|
{
|
2015-06-29 16:52:16 +00:00
|
|
|
if (huge + x > one) /* inexact if x!=0 necessary */
|
|
|
|
{
|
|
|
|
long double ret = 0.5 * x;
|
2015-09-23 22:42:30 +00:00
|
|
|
math_check_force_underflow (ret);
|
2015-10-23 21:37:33 +00:00
|
|
|
if (ret == 0 && x != 0)
|
|
|
|
__set_errno (ERANGE);
|
2015-06-29 16:52:16 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2001-02-19 09:32:39 +00:00
|
|
|
}
|
|
|
|
z = x * x;
|
|
|
|
r = z * (R[0] + z * (R[1]+ z * (R[2] + z * (R[3] + z * R[4]))));
|
|
|
|
s = S[0] + z * (S[1] + z * (S[2] + z * (S[3] + z)));
|
|
|
|
r *= x;
|
|
|
|
return (x * 0.5 + r / s);
|
|
|
|
}
|
2019-07-16 15:17:22 +00:00
|
|
|
libm_alias_finite (__ieee754_j1l, __j1l)
|
2001-02-19 09:32:39 +00:00
|
|
|
|
|
|
|
|
|
|
|
/* Y1(x) = 2/pi * (log(x) * j1(x) - 1/x) + x R(x^2)
|
|
|
|
0 <= x <= 2
|
|
|
|
Peak relative error 2.3e-23 */
|
|
|
|
static const long double U0[6] = {
|
|
|
|
-5.908077186259914699178903164682444848615E10L,
|
|
|
|
1.546219327181478013495975514375773435962E10L,
|
|
|
|
-6.438303331169223128870035584107053228235E8L,
|
|
|
|
9.708540045657182600665968063824819371216E6L,
|
|
|
|
-6.138043997084355564619377183564196265471E4L,
|
|
|
|
1.418503228220927321096904291501161800215E2L,
|
|
|
|
};
|
|
|
|
static const long double V0[5] = {
|
|
|
|
3.013447341682896694781964795373783679861E11L,
|
|
|
|
4.669546565705981649470005402243136124523E9L,
|
|
|
|
3.595056091631351184676890179233695857260E7L,
|
|
|
|
1.761554028569108722903944659933744317994E5L,
|
|
|
|
5.668480419646516568875555062047234534863E2L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
long double
|
|
|
|
__ieee754_y1l (long double x)
|
|
|
|
{
|
|
|
|
long double z, s, c, ss, cc, u, v;
|
|
|
|
int32_t ix;
|
2017-08-03 19:55:04 +00:00
|
|
|
uint32_t se, i0, i1;
|
2001-02-19 09:32:39 +00:00
|
|
|
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
|
|
ix = se & 0x7fff;
|
|
|
|
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
2014-02-10 13:45:42 +00:00
|
|
|
if (__glibc_unlikely (se & 0x8000))
|
2003-12-28 20:51:20 +00:00
|
|
|
return zero / (zero * x);
|
2014-02-10 13:45:42 +00:00
|
|
|
if (__glibc_unlikely (ix >= 0x7fff))
|
2001-02-19 09:32:39 +00:00
|
|
|
return one / (x + x * x);
|
2014-02-10 13:45:42 +00:00
|
|
|
if (__glibc_unlikely ((i0 | i1) == 0))
|
2003-12-28 20:51:20 +00:00
|
|
|
return -HUGE_VALL + x; /* -inf and overflow exception. */
|
2001-02-19 09:32:39 +00:00
|
|
|
if (ix >= 0x4000)
|
|
|
|
{ /* |x| >= 2.0 */
|
2001-04-07 18:31:54 +00:00
|
|
|
__sincosl (x, &s, &c);
|
2001-02-19 09:32:39 +00:00
|
|
|
ss = -s - c;
|
|
|
|
cc = s - c;
|
2013-03-16 17:51:48 +00:00
|
|
|
if (ix < 0x7ffe)
|
2001-02-19 09:32:39 +00:00
|
|
|
{ /* make sure x+x not overflow */
|
|
|
|
z = __cosl (x + x);
|
|
|
|
if ((s * c) > zero)
|
|
|
|
cc = z / ss;
|
|
|
|
else
|
|
|
|
ss = z / cc;
|
|
|
|
}
|
|
|
|
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
|
|
|
* where x0 = x-3pi/4
|
|
|
|
* Better formula:
|
|
|
|
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
|
|
|
* = 1/sqrt(2) * (sin(x) - cos(x))
|
|
|
|
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
|
|
* = -1/sqrt(2) * (cos(x) + sin(x))
|
|
|
|
* To avoid cancellation, use
|
|
|
|
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
|
|
* to compute the worse one.
|
|
|
|
*/
|
Adjust thresholds in Bessel function implementations (bug 14469).
A recent discussion in bug 14469 notes that a threshold in float
Bessel function implementations, used to determine when to use a
simpler implementation approach, results in substantially inaccurate
results.
As I discussed in
<https://sourceware.org/ml/libc-alpha/2013-03/msg00345.html>, a
heuristic argument suggests 2^(S+P) as the right order of magnitude
for a suitable threshold, where S is the number of significand bits in
the floating-point type and P is the number of significant bits in the
representation of the floating-point type, and the float and ldbl-96
implementations use thresholds that are too small. Some threshold
does need using, there or elsewhere in the implementation, to avoid
spurious underflow and overflow for large arguments.
This patch sets the thresholds in the affected implementations to more
heuristically justifiable values. Results will still be inaccurate
close to zeroes of the functions (thus this patch does *not* fix any
of the bugs for Bessel function inaccuracy); fixing that would require
a different implementation approach, likely along the lines described
in <http://www.cl.cam.ac.uk/~jrh13/papers/bessel.ps.gz>.
So the justification for a change such as this would be statistical
rather than based on particular tests that had excessive errors and no
longer do so (no doubt such tests could be found, but would probably
be too fragile to add to the testsuite, as liable to give large errors
again from very small implementation changes or even from compiler
changes). See
<https://sourceware.org/ml/libc-alpha/2020-02/msg00638.html> for such
statistics of the resulting improvements for float functions.
Tested (glibc testsuite) for x86_64.
2020-02-14 14:16:25 +00:00
|
|
|
if (__glibc_unlikely (ix > 0x408e))
|
2018-03-15 18:05:03 +00:00
|
|
|
z = (invsqrtpi * ss) / sqrtl (x);
|
2001-02-19 09:32:39 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
u = pone (x);
|
|
|
|
v = qone (x);
|
2018-03-15 18:05:03 +00:00
|
|
|
z = invsqrtpi * (u * ss + v * cc) / sqrtl (x);
|
2001-02-19 09:32:39 +00:00
|
|
|
}
|
|
|
|
return z;
|
|
|
|
}
|
2014-02-10 13:45:42 +00:00
|
|
|
if (__glibc_unlikely (ix <= 0x3fbe))
|
2001-02-19 09:32:39 +00:00
|
|
|
{ /* x < 2**-65 */
|
2014-06-23 20:17:13 +00:00
|
|
|
z = -tpi / x;
|
2015-06-03 14:36:34 +00:00
|
|
|
if (isinf (z))
|
2014-06-23 20:17:13 +00:00
|
|
|
__set_errno (ERANGE);
|
|
|
|
return z;
|
2001-02-19 09:32:39 +00:00
|
|
|
}
|
|
|
|
z = x * x;
|
|
|
|
u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * (U0[4] + z * U0[5]))));
|
|
|
|
v = V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * (V0[4] + z))));
|
|
|
|
return (x * (u / v) +
|
|
|
|
tpi * (__ieee754_j1l (x) * __ieee754_logl (x) - one / x));
|
|
|
|
}
|
2019-07-16 15:17:22 +00:00
|
|
|
libm_alias_finite (__ieee754_y1l, __y1l)
|
2001-02-19 09:32:39 +00:00
|
|
|
|
|
|
|
|
|
|
|
/* For x >= 8, the asymptotic expansions of pone is
|
|
|
|
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
|
|
|
* We approximate pone by
|
2011-10-12 15:27:51 +00:00
|
|
|
* pone(x) = 1 + (R/S)
|
2001-02-19 09:32:39 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
|
|
8 <= x <= inf (0 <= z <= 0.125)
|
|
|
|
Peak relative error 5.2e-22 */
|
|
|
|
|
|
|
|
static const long double pr8[7] = {
|
|
|
|
8.402048819032978959298664869941375143163E-9L,
|
|
|
|
1.813743245316438056192649247507255996036E-6L,
|
|
|
|
1.260704554112906152344932388588243836276E-4L,
|
|
|
|
3.439294839869103014614229832700986965110E-3L,
|
|
|
|
3.576910849712074184504430254290179501209E-2L,
|
|
|
|
1.131111483254318243139953003461511308672E-1L,
|
|
|
|
4.480715825681029711521286449131671880953E-2L,
|
|
|
|
};
|
|
|
|
static const long double ps8[6] = {
|
|
|
|
7.169748325574809484893888315707824924354E-8L,
|
|
|
|
1.556549720596672576431813934184403614817E-5L,
|
|
|
|
1.094540125521337139209062035774174565882E-3L,
|
|
|
|
3.060978962596642798560894375281428805840E-2L,
|
|
|
|
3.374146536087205506032643098619414507024E-1L,
|
|
|
|
1.253830208588979001991901126393231302559E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
|
|
4.54541015625 <= x <= 8
|
|
|
|
Peak relative error 7.7e-22 */
|
|
|
|
static const long double pr5[7] = {
|
|
|
|
4.318486887948814529950980396300969247900E-7L,
|
|
|
|
4.715341880798817230333360497524173929315E-5L,
|
|
|
|
1.642719430496086618401091544113220340094E-3L,
|
|
|
|
2.228688005300803935928733750456396149104E-2L,
|
|
|
|
1.142773760804150921573259605730018327162E-1L,
|
|
|
|
1.755576530055079253910829652698703791957E-1L,
|
|
|
|
3.218803858282095929559165965353784980613E-2L,
|
|
|
|
};
|
|
|
|
static const long double ps5[6] = {
|
|
|
|
3.685108812227721334719884358034713967557E-6L,
|
|
|
|
4.069102509511177498808856515005792027639E-4L,
|
|
|
|
1.449728676496155025507893322405597039816E-2L,
|
|
|
|
2.058869213229520086582695850441194363103E-1L,
|
|
|
|
1.164890985918737148968424972072751066553E0L,
|
|
|
|
2.274776933457009446573027260373361586841E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L,*/
|
|
|
|
};
|
|
|
|
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
|
|
2.85711669921875 <= x <= 4.54541015625
|
|
|
|
Peak relative error 6.5e-21 */
|
|
|
|
static const long double pr3[7] = {
|
|
|
|
1.265251153957366716825382654273326407972E-5L,
|
|
|
|
8.031057269201324914127680782288352574567E-4L,
|
|
|
|
1.581648121115028333661412169396282881035E-2L,
|
|
|
|
1.179534658087796321928362981518645033967E-1L,
|
|
|
|
3.227936912780465219246440724502790727866E-1L,
|
|
|
|
2.559223765418386621748404398017602935764E-1L,
|
|
|
|
2.277136933287817911091370397134882441046E-2L,
|
|
|
|
};
|
|
|
|
static const long double ps3[6] = {
|
|
|
|
1.079681071833391818661952793568345057548E-4L,
|
|
|
|
6.986017817100477138417481463810841529026E-3L,
|
|
|
|
1.429403701146942509913198539100230540503E-1L,
|
|
|
|
1.148392024337075609460312658938700765074E0L,
|
|
|
|
3.643663015091248720208251490291968840882E0L,
|
|
|
|
3.990702269032018282145100741746633960737E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x)
|
|
|
|
P1(x) = 1 + z^2 R(z^2), z=1/x
|
|
|
|
2 <= x <= 2.85711669921875
|
|
|
|
Peak relative error 3.5e-21 */
|
|
|
|
static const long double pr2[7] = {
|
|
|
|
2.795623248568412225239401141338714516445E-4L,
|
|
|
|
1.092578168441856711925254839815430061135E-2L,
|
|
|
|
1.278024620468953761154963591853679640560E-1L,
|
|
|
|
5.469680473691500673112904286228351988583E-1L,
|
|
|
|
8.313769490922351300461498619045639016059E-1L,
|
|
|
|
3.544176317308370086415403567097130611468E-1L,
|
|
|
|
1.604142674802373041247957048801599740644E-2L,
|
|
|
|
};
|
|
|
|
static const long double ps2[6] = {
|
|
|
|
2.385605161555183386205027000675875235980E-3L,
|
|
|
|
9.616778294482695283928617708206967248579E-2L,
|
|
|
|
1.195215570959693572089824415393951258510E0L,
|
|
|
|
5.718412857897054829999458736064922974662E0L,
|
|
|
|
1.065626298505499086386584642761602177568E1L,
|
|
|
|
6.809140730053382188468983548092322151791E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static long double
|
|
|
|
pone (long double x)
|
|
|
|
{
|
|
|
|
const long double *p, *q;
|
|
|
|
long double z, r, s;
|
|
|
|
int32_t ix;
|
2017-08-03 19:55:04 +00:00
|
|
|
uint32_t se, i0, i1;
|
2001-02-19 09:32:39 +00:00
|
|
|
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
|
|
ix = se & 0x7fff;
|
2015-02-26 21:49:19 +00:00
|
|
|
/* ix >= 0x4000 for all calls to this function. */
|
2001-02-19 09:32:39 +00:00
|
|
|
if (ix >= 0x4002) /* x >= 8 */
|
|
|
|
{
|
|
|
|
p = pr8;
|
|
|
|
q = ps8;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
i1 = (ix << 16) | (i0 >> 16);
|
|
|
|
if (i1 >= 0x40019174) /* x >= 4.54541015625 */
|
|
|
|
{
|
|
|
|
p = pr5;
|
|
|
|
q = ps5;
|
|
|
|
}
|
|
|
|
else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */
|
|
|
|
{
|
|
|
|
p = pr3;
|
|
|
|
q = ps3;
|
|
|
|
}
|
2015-02-26 21:49:19 +00:00
|
|
|
else /* x >= 2 */
|
2001-02-19 09:32:39 +00:00
|
|
|
{
|
|
|
|
p = pr2;
|
|
|
|
q = ps2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
z = one / (x * x);
|
|
|
|
r = p[0] + z * (p[1] +
|
|
|
|
z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
|
|
|
|
s = q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * (q[5] + z)))));
|
|
|
|
return one + z * r / s;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* For x >= 8, the asymptotic expansions of qone is
|
|
|
|
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
|
|
|
* We approximate pone by
|
2011-10-12 15:27:51 +00:00
|
|
|
* qone(x) = s*(0.375 + (R/S))
|
2001-02-19 09:32:39 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
|
|
8 <= x <= inf
|
|
|
|
Peak relative error 8.3e-22 */
|
|
|
|
|
|
|
|
static const long double qr8[7] = {
|
|
|
|
-5.691925079044209246015366919809404457380E-10L,
|
|
|
|
-1.632587664706999307871963065396218379137E-7L,
|
|
|
|
-1.577424682764651970003637263552027114600E-5L,
|
|
|
|
-6.377627959241053914770158336842725291713E-4L,
|
|
|
|
-1.087408516779972735197277149494929568768E-2L,
|
|
|
|
-6.854943629378084419631926076882330494217E-2L,
|
|
|
|
-1.055448290469180032312893377152490183203E-1L,
|
|
|
|
};
|
|
|
|
static const long double qs8[7] = {
|
|
|
|
5.550982172325019811119223916998393907513E-9L,
|
|
|
|
1.607188366646736068460131091130644192244E-6L,
|
|
|
|
1.580792530091386496626494138334505893599E-4L,
|
|
|
|
6.617859900815747303032860443855006056595E-3L,
|
|
|
|
1.212840547336984859952597488863037659161E-1L,
|
|
|
|
9.017885953937234900458186716154005541075E-1L,
|
|
|
|
2.201114489712243262000939120146436167178E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
|
|
4.54541015625 <= x <= 8
|
|
|
|
Peak relative error 4.1e-22 */
|
|
|
|
static const long double qr5[7] = {
|
|
|
|
-6.719134139179190546324213696633564965983E-8L,
|
|
|
|
-9.467871458774950479909851595678622044140E-6L,
|
|
|
|
-4.429341875348286176950914275723051452838E-4L,
|
|
|
|
-8.539898021757342531563866270278505014487E-3L,
|
|
|
|
-6.818691805848737010422337101409276287170E-2L,
|
|
|
|
-1.964432669771684034858848142418228214855E-1L,
|
|
|
|
-1.333896496989238600119596538299938520726E-1L,
|
|
|
|
};
|
|
|
|
static const long double qs5[7] = {
|
|
|
|
6.552755584474634766937589285426911075101E-7L,
|
|
|
|
9.410814032118155978663509073200494000589E-5L,
|
|
|
|
4.561677087286518359461609153655021253238E-3L,
|
|
|
|
9.397742096177905170800336715661091535805E-2L,
|
|
|
|
8.518538116671013902180962914473967738771E-1L,
|
|
|
|
3.177729183645800174212539541058292579009E0L,
|
|
|
|
4.006745668510308096259753538973038902990E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
|
|
2.85711669921875 <= x <= 4.54541015625
|
|
|
|
Peak relative error 2.2e-21 */
|
|
|
|
static const long double qr3[7] = {
|
|
|
|
-3.618746299358445926506719188614570588404E-6L,
|
|
|
|
-2.951146018465419674063882650970344502798E-4L,
|
|
|
|
-7.728518171262562194043409753656506795258E-3L,
|
|
|
|
-8.058010968753999435006488158237984014883E-2L,
|
|
|
|
-3.356232856677966691703904770937143483472E-1L,
|
|
|
|
-4.858192581793118040782557808823460276452E-1L,
|
|
|
|
-1.592399251246473643510898335746432479373E-1L,
|
|
|
|
};
|
|
|
|
static const long double qs3[7] = {
|
|
|
|
3.529139957987837084554591421329876744262E-5L,
|
|
|
|
2.973602667215766676998703687065066180115E-3L,
|
|
|
|
8.273534546240864308494062287908662592100E-2L,
|
|
|
|
9.613359842126507198241321110649974032726E-1L,
|
|
|
|
4.853923697093974370118387947065402707519E0L,
|
|
|
|
1.002671608961669247462020977417828796933E1L,
|
|
|
|
7.028927383922483728931327850683151410267E0L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
|
|
|
|
Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
|
|
|
|
2 <= x <= 2.85711669921875
|
|
|
|
Peak relative error 6.9e-22 */
|
|
|
|
static const long double qr2[7] = {
|
|
|
|
-1.372751603025230017220666013816502528318E-4L,
|
|
|
|
-6.879190253347766576229143006767218972834E-3L,
|
|
|
|
-1.061253572090925414598304855316280077828E-1L,
|
|
|
|
-6.262164224345471241219408329354943337214E-1L,
|
|
|
|
-1.423149636514768476376254324731437473915E0L,
|
|
|
|
-1.087955310491078933531734062917489870754E0L,
|
|
|
|
-1.826821119773182847861406108689273719137E-1L,
|
|
|
|
};
|
|
|
|
static const long double qs2[7] = {
|
|
|
|
1.338768933634451601814048220627185324007E-3L,
|
|
|
|
7.071099998918497559736318523932241901810E-2L,
|
|
|
|
1.200511429784048632105295629933382142221E0L,
|
|
|
|
8.327301713640367079030141077172031825276E0L,
|
|
|
|
2.468479301872299311658145549931764426840E1L,
|
|
|
|
2.961179686096262083509383820557051621644E1L,
|
|
|
|
1.201402313144305153005639494661767354977E1L,
|
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static long double
|
|
|
|
qone (long double x)
|
|
|
|
{
|
|
|
|
const long double *p, *q;
|
2017-12-06 15:19:06 +00:00
|
|
|
long double s, r, z;
|
2001-02-19 09:32:39 +00:00
|
|
|
int32_t ix;
|
2017-08-03 19:55:04 +00:00
|
|
|
uint32_t se, i0, i1;
|
2001-02-19 09:32:39 +00:00
|
|
|
|
|
|
|
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
|
|
|
ix = se & 0x7fff;
|
2015-02-26 21:49:19 +00:00
|
|
|
/* ix >= 0x4000 for all calls to this function. */
|
2001-02-19 09:32:39 +00:00
|
|
|
if (ix >= 0x4002) /* x >= 8 */
|
|
|
|
{
|
|
|
|
p = qr8;
|
|
|
|
q = qs8;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
i1 = (ix << 16) | (i0 >> 16);
|
|
|
|
if (i1 >= 0x40019174) /* x >= 4.54541015625 */
|
|
|
|
{
|
|
|
|
p = qr5;
|
|
|
|
q = qs5;
|
|
|
|
}
|
|
|
|
else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */
|
|
|
|
{
|
|
|
|
p = qr3;
|
|
|
|
q = qs3;
|
|
|
|
}
|
2015-02-26 21:49:19 +00:00
|
|
|
else /* x >= 2 */
|
2001-02-19 09:32:39 +00:00
|
|
|
{
|
|
|
|
p = qr2;
|
|
|
|
q = qs2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
z = one / (x * x);
|
|
|
|
r =
|
|
|
|
p[0] + z * (p[1] +
|
|
|
|
z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
|
|
|
|
s =
|
|
|
|
q[0] + z * (q[1] +
|
|
|
|
z * (q[2] +
|
|
|
|
z * (q[3] + z * (q[4] + z * (q[5] + z * (q[6] + z))))));
|
|
|
|
return (.375 + z * r / s) / x;
|
|
|
|
}
|