glibc/sysdeps/ieee754/ldbl-128/e_lgammal_r.c

1043 lines
32 KiB
C
Raw Normal View History

/* lgammal
*
* Natural logarithm of gamma function
*
*
*
* SYNOPSIS:
*
* long double x, y, lgammal();
* extern int sgngam;
*
* y = lgammal(x);
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of the absolute
* value of the gamma function of the argument.
* The sign (+1 or -1) of the gamma function is returned in a
* global (extern) variable named sgngam.
*
* The positive domain is partitioned into numerous segments for approximation.
* For x > 10,
* log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2)
* Near the minimum at x = x0 = 1.46... the approximation is
* log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z)
* for small z.
* Elsewhere between 0 and 10,
* log gamma(n + z) = log gamma(n) + z P(z)/Q(z)
* for various selected n and small z.
*
* The cosecant reflection formula is employed for negative arguments.
*
*
*
* ACCURACY:
*
*
* arithmetic domain # trials peak rms
* Relative error:
* IEEE 10, 30 100000 3.9e-34 9.8e-35
* IEEE 0, 10 100000 3.8e-34 5.3e-35
* Absolute error:
* IEEE -10, 0 100000 8.0e-34 8.0e-35
* IEEE -30, -10 100000 4.4e-34 1.0e-34
* IEEE -100, 100 100000 1.0e-34
*
* The absolute error criterion is the same as relative error
* when the function magnitude is greater than one but it is absolute
* when the magnitude is less than one.
*
*/
2002-08-26 Brian Youmans <3diff@gnu.org> * crypt/crypt.c: Changed copying permission notice to Lesser GPL from Library GPL. * crypt/crypt_util.c: Likewise. * crypt/ufc.c: Likewise. * elf/dl-conflict.c: Likewise. * elf/dl-iteratephdr.c: Likewise. * iconv/iconvconfig.h: Likewise. * linuxthreads/Examples/ex10.c: Likewise. * linuxthreads/Examples/ex11.c: Likewise. * linuxthreads/Examples/ex13.c: Likewise. * linuxthreads/Examples/ex8.c: Likewise. * linuxthreads/Examples/ex9.c: Likewise. * linuxthreads/barrier.c: Likewise. * linuxthreads/events.c: Likewise. * linuxthreads/lockfile.c: Likewise. * linuxthreads/no-tsd.c: Likewise. * linuxthreads/pt-machine.c: Likewise. * linuxthreads/ptclock_gettime.c: Likewise. * linuxthreads/ptclock_settime.c: Likewise. * linuxthreads/rwlock.c: Likewise. * linuxthreads/sysdeps/alpha/pspinlock.c: Likewise. * linuxthreads/sysdeps/alpha/pt-machine.h: Likewise. * linuxthreads/sysdeps/arm/pspinlock.c: Likewise. * linuxthreads/sysdeps/arm/pt-machine.h: Likewise. * linuxthreads/sysdeps/cris/pspinlock.c: Likewise. * linuxthreads/sysdeps/cris/pt-machine.h: Likewise. * linuxthreads/sysdeps/hppa/pspinlock.c: Likewise. * linuxthreads/sysdeps/hppa/pt-machine.h: Likewise. * linuxthreads/sysdeps/i386/i686/pt-machine.h: Likewise. * linuxthreads/sysdeps/i386/pspinlock.c: Likewise. * linuxthreads/sysdeps/i386/pt-machine.h: Likewise. * linuxthreads/sysdeps/i386/useldt.h: Likewise. * linuxthreads/sysdeps/ia64/pspinlock.c: Likewise. * linuxthreads/sysdeps/ia64/pt-machine.h: Likewise. * linuxthreads/sysdeps/m68k/pspinlock.c: Likewise. * linuxthreads/sysdeps/m68k/pt-machine.h: Likewise. * linuxthreads/sysdeps/mips/pspinlock.c: Likewise. * linuxthreads/sysdeps/mips/pt-machine.h: Likewise. * linuxthreads/sysdeps/powerpc/pspinlock.c: Likewise. * linuxthreads/sysdeps/powerpc/pt-machine.h: Likewise. * linuxthreads/sysdeps/pthread/bits/initspin.h: Likewise. * linuxthreads/sysdeps/pthread/bits/libc-lock.h: Likewise. * linuxthreads/sysdeps/pthread/bits/libc-tsd.h: Likewise. * linuxthreads/sysdeps/pthread/getcpuclockid.c: Likewise. * linuxthreads/sysdeps/pthread/posix-timer.h: Likewise. * linuxthreads/sysdeps/pthread/timer_create.c: Likewise. * linuxthreads/sysdeps/pthread/timer_delete.c: Likewise. * linuxthreads/sysdeps/pthread/timer_getoverr.c: Likewise. * linuxthreads/sysdeps/pthread/timer_gettime.c: Likewise. * linuxthreads/sysdeps/pthread/timer_routines.c: Likewise. * linuxthreads/sysdeps/pthread/timer_settime.c: Likewise. * linuxthreads/sysdeps/pthread/tst-timer.c: Likewise. * linuxthreads/sysdeps/s390/pspinlock.c: Likewise. * linuxthreads/sysdeps/s390/s390-32/pt-machine.h: Likewise. * linuxthreads/sysdeps/s390/s390-64/pt-machine.h: Likewise. * linuxthreads/sysdeps/sh/pspinlock.c: Likewise. * linuxthreads/sysdeps/sh/pt-machine.h: Likewise. * linuxthreads/sysdeps/sparc/sparc32/pspinlock.c: Likewise. * linuxthreads/sysdeps/sparc/sparc32/pt-machine.h: Likewise. * linuxthreads/sysdeps/sparc/sparc32/sparcv9/pspinlock.c: Likewise. * linuxthreads/sysdeps/sparc/sparc64/pspinlock.c: Likewise. * linuxthreads/sysdeps/sparc/sparc64/pt-machine.h: Likewise. * linuxthreads/sysdeps/unix/sysv/linux/bits/local_lim.h: Likewise. * linuxthreads/sysdeps/unix/sysv/linux/bits/posix_opt.h: Likewise. * linuxthreads/sysdeps/unix/sysv/linux/bits/sigthread.h: Likewise. * linuxthreads/sysdeps/unix/sysv/linux/hppa/bits/initspin.h: Likewise. * linuxthreads/sysdeps/unix/sysv/linux/i386/bits/posix_opt.h: Likewise. * linuxthreads/tststack.c: Likewise. * linuxthreads/unload.c: Likewise. * linuxthreads/weaks.c: Likewise. * linuxthreads/wrapsyscall.c: Likewise. * malloc/arena.c: Likewise. * malloc/hooks.c: Likewise. * malloc/malloc.c: Likewise. * posix/glob/Makefile.ami: Likewise. * posix/glob/Makefile.in: Likewise. * stdlib/gmp-impl.h: Likewise. * stdlib/gmp.h: Likewise. * sysdeps/generic/dl-iteratephdr-static.c: Likewise. * sysdeps/generic/strnlen.c: Likewise. * sysdeps/mach/hurd/powerpc/bits/sigcontext.h: Likewise. * sysdeps/mach/hurd/recvmsg.c: Likewise. * sysdeps/mach/hurd/sendmsg.c: Likewise. * sysdeps/mach/hurd/spawni.c: Likewise. * sysdeps/mach/powerpc/machine-sp.h: Likewise. * sysdeps/mach/powerpc/sysdep.h: Likewise. * sysdeps/mach/powerpc/thread_state.h: Likewise. * sysdeps/unix/bsd/bsd4.4/bits/socket.h: Likewise. * sysdeps/unix/sysv/linux/ia64/dl-iteratephdr-static.c: Likewise. * sysdeps/x86_64/gmp-mparam.h: Likewise.
2002-08-26 22:40:48 +00:00
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
static const _Float128 PIL = L(3.1415926535897932384626433832795028841972E0);
static const _Float128 MAXLGM = L(1.0485738685148938358098967157129705071571E4928);
static const _Float128 one = 1;
static const _Float128 huge = LDBL_MAX;
/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2)
1/x <= 0.0741 (x >= 13.495...)
Peak relative error 1.5e-36 */
static const _Float128 ls2pi = L(9.1893853320467274178032973640561763986140E-1);
#define NRASY 12
static const _Float128 RASY[NRASY + 1] =
{
L(8.333333333333333333333333333310437112111E-2),
L(-2.777777777777777777777774789556228296902E-3),
L(7.936507936507936507795933938448586499183E-4),
L(-5.952380952380952041799269756378148574045E-4),
L(8.417508417507928904209891117498524452523E-4),
L(-1.917526917481263997778542329739806086290E-3),
L(6.410256381217852504446848671499409919280E-3),
L(-2.955064066900961649768101034477363301626E-2),
L(1.796402955865634243663453415388336954675E-1),
L(-1.391522089007758553455753477688592767741E0),
L(1.326130089598399157988112385013829305510E1),
L(-1.420412699593782497803472576479997819149E2),
L(1.218058922427762808938869872528846787020E3)
};
/* log gamma(x+13) = log gamma(13) + x P(x)/Q(x)
-0.5 <= x <= 0.5
12.5 <= x+13 <= 13.5
Peak relative error 1.1e-36 */
static const _Float128 lgam13a = L(1.9987213134765625E1);
static const _Float128 lgam13b = L(1.3608962611495173623870550785125024484248E-6);
#define NRN13 7
static const _Float128 RN13[NRN13 + 1] =
{
L(8.591478354823578150238226576156275285700E11),
L(2.347931159756482741018258864137297157668E11),
L(2.555408396679352028680662433943000804616E10),
L(1.408581709264464345480765758902967123937E9),
L(4.126759849752613822953004114044451046321E7),
L(6.133298899622688505854211579222889943778E5),
L(3.929248056293651597987893340755876578072E3),
L(6.850783280018706668924952057996075215223E0)
};
#define NRD13 6
static const _Float128 RD13[NRD13 + 1] =
{
L(3.401225382297342302296607039352935541669E11),
L(8.756765276918037910363513243563234551784E10),
L(8.873913342866613213078554180987647243903E9),
L(4.483797255342763263361893016049310017973E8),
L(1.178186288833066430952276702931512870676E7),
L(1.519928623743264797939103740132278337476E5),
L(7.989298844938119228411117593338850892311E2)
/* 1.0E0L */
};
/* log gamma(x+12) = log gamma(12) + x P(x)/Q(x)
-0.5 <= x <= 0.5
11.5 <= x+12 <= 12.5
Peak relative error 4.1e-36 */
static const _Float128 lgam12a = L(1.75023040771484375E1);
static const _Float128 lgam12b = L(3.7687254483392876529072161996717039575982E-6);
#define NRN12 7
static const _Float128 RN12[NRN12 + 1] =
{
L(4.709859662695606986110997348630997559137E11),
L(1.398713878079497115037857470168777995230E11),
L(1.654654931821564315970930093932954900867E10),
L(9.916279414876676861193649489207282144036E8),
L(3.159604070526036074112008954113411389879E7),
L(5.109099197547205212294747623977502492861E5),
L(3.563054878276102790183396740969279826988E3),
L(6.769610657004672719224614163196946862747E0)
};
#define NRD12 6
static const _Float128 RD12[NRD12 + 1] =
{
L(1.928167007860968063912467318985802726613E11),
L(5.383198282277806237247492369072266389233E10),
L(5.915693215338294477444809323037871058363E9),
L(3.241438287570196713148310560147925781342E8),
L(9.236680081763754597872713592701048455890E6),
L(1.292246897881650919242713651166596478850E5),
L(7.366532445427159272584194816076600211171E2)
/* 1.0E0L */
};
/* log gamma(x+11) = log gamma(11) + x P(x)/Q(x)
-0.5 <= x <= 0.5
10.5 <= x+11 <= 11.5
Peak relative error 1.8e-35 */
static const _Float128 lgam11a = L(1.5104400634765625E1);
static const _Float128 lgam11b = L(1.1938309890295225709329251070371882250744E-5);
#define NRN11 7
static const _Float128 RN11[NRN11 + 1] =
{
L(2.446960438029415837384622675816736622795E11),
L(7.955444974446413315803799763901729640350E10),
L(1.030555327949159293591618473447420338444E10),
L(6.765022131195302709153994345470493334946E8),
L(2.361892792609204855279723576041468347494E7),
L(4.186623629779479136428005806072176490125E5),
L(3.202506022088912768601325534149383594049E3),
L(6.681356101133728289358838690666225691363E0)
};
#define NRD11 6
static const _Float128 RD11[NRD11 + 1] =
{
L(1.040483786179428590683912396379079477432E11),
L(3.172251138489229497223696648369823779729E10),
L(3.806961885984850433709295832245848084614E9),
L(2.278070344022934913730015420611609620171E8),
L(7.089478198662651683977290023829391596481E6),
L(1.083246385105903533237139380509590158658E5),
L(6.744420991491385145885727942219463243597E2)
/* 1.0E0L */
};
/* log gamma(x+10) = log gamma(10) + x P(x)/Q(x)
-0.5 <= x <= 0.5
9.5 <= x+10 <= 10.5
Peak relative error 5.4e-37 */
static const _Float128 lgam10a = L(1.280181884765625E1);
static const _Float128 lgam10b = L(8.6324252196112077178745667061642811492557E-6);
#define NRN10 7
static const _Float128 RN10[NRN10 + 1] =
{
L(-1.239059737177249934158597996648808363783E14),
L(-4.725899566371458992365624673357356908719E13),
L(-7.283906268647083312042059082837754850808E12),
L(-5.802855515464011422171165179767478794637E11),
L(-2.532349691157548788382820303182745897298E10),
L(-5.884260178023777312587193693477072061820E8),
L(-6.437774864512125749845840472131829114906E6),
L(-2.350975266781548931856017239843273049384E4)
};
#define NRD10 7
static const _Float128 RD10[NRD10 + 1] =
{
L(-5.502645997581822567468347817182347679552E13),
L(-1.970266640239849804162284805400136473801E13),
L(-2.819677689615038489384974042561531409392E12),
L(-2.056105863694742752589691183194061265094E11),
L(-8.053670086493258693186307810815819662078E9),
L(-1.632090155573373286153427982504851867131E8),
L(-1.483575879240631280658077826889223634921E6),
L(-4.002806669713232271615885826373550502510E3)
/* 1.0E0L */
};
/* log gamma(x+9) = log gamma(9) + x P(x)/Q(x)
-0.5 <= x <= 0.5
8.5 <= x+9 <= 9.5
Peak relative error 3.6e-36 */
static const _Float128 lgam9a = L(1.06045989990234375E1);
static const _Float128 lgam9b = L(3.9037218127284172274007216547549861681400E-6);
#define NRN9 7
static const _Float128 RN9[NRN9 + 1] =
{
L(-4.936332264202687973364500998984608306189E13),
L(-2.101372682623700967335206138517766274855E13),
L(-3.615893404644823888655732817505129444195E12),
L(-3.217104993800878891194322691860075472926E11),
L(-1.568465330337375725685439173603032921399E10),
L(-4.073317518162025744377629219101510217761E8),
L(-4.983232096406156139324846656819246974500E6),
L(-2.036280038903695980912289722995505277253E4)
};
#define NRD9 7
static const _Float128 RD9[NRD9 + 1] =
{
L(-2.306006080437656357167128541231915480393E13),
L(-9.183606842453274924895648863832233799950E12),
L(-1.461857965935942962087907301194381010380E12),
L(-1.185728254682789754150068652663124298303E11),
L(-5.166285094703468567389566085480783070037E9),
L(-1.164573656694603024184768200787835094317E8),
L(-1.177343939483908678474886454113163527909E6),
L(-3.529391059783109732159524500029157638736E3)
/* 1.0E0L */
};
/* log gamma(x+8) = log gamma(8) + x P(x)/Q(x)
-0.5 <= x <= 0.5
7.5 <= x+8 <= 8.5
Peak relative error 2.4e-37 */
static const _Float128 lgam8a = L(8.525146484375E0);
static const _Float128 lgam8b = L(1.4876690414300165531036347125050759667737E-5);
#define NRN8 8
static const _Float128 RN8[NRN8 + 1] =
{
L(6.600775438203423546565361176829139703289E11),
L(3.406361267593790705240802723914281025800E11),
L(7.222460928505293914746983300555538432830E10),
L(8.102984106025088123058747466840656458342E9),
L(5.157620015986282905232150979772409345927E8),
L(1.851445288272645829028129389609068641517E7),
L(3.489261702223124354745894067468953756656E5),
L(2.892095396706665774434217489775617756014E3),
L(6.596977510622195827183948478627058738034E0)
};
#define NRD8 7
static const _Float128 RD8[NRD8 + 1] =
{
L(3.274776546520735414638114828622673016920E11),
L(1.581811207929065544043963828487733970107E11),
L(3.108725655667825188135393076860104546416E10),
L(3.193055010502912617128480163681842165730E9),
L(1.830871482669835106357529710116211541839E8),
L(5.790862854275238129848491555068073485086E6),
L(9.305213264307921522842678835618803553589E4),
L(6.216974105861848386918949336819572333622E2)
/* 1.0E0L */
};
/* log gamma(x+7) = log gamma(7) + x P(x)/Q(x)
-0.5 <= x <= 0.5
6.5 <= x+7 <= 7.5
Peak relative error 3.2e-36 */
static const _Float128 lgam7a = L(6.5792388916015625E0);
static const _Float128 lgam7b = L(1.2320408538495060178292903945321122583007E-5);
#define NRN7 8
static const _Float128 RN7[NRN7 + 1] =
{
L(2.065019306969459407636744543358209942213E11),
L(1.226919919023736909889724951708796532847E11),
L(2.996157990374348596472241776917953749106E10),
L(3.873001919306801037344727168434909521030E9),
L(2.841575255593761593270885753992732145094E8),
L(1.176342515359431913664715324652399565551E7),
L(2.558097039684188723597519300356028511547E5),
L(2.448525238332609439023786244782810774702E3),
L(6.460280377802030953041566617300902020435E0)
};
#define NRD7 7
static const _Float128 RD7[NRD7 + 1] =
{
L(1.102646614598516998880874785339049304483E11),
L(6.099297512712715445879759589407189290040E10),
L(1.372898136289611312713283201112060238351E10),
L(1.615306270420293159907951633566635172343E9),
L(1.061114435798489135996614242842561967459E8),
L(3.845638971184305248268608902030718674691E6),
L(7.081730675423444975703917836972720495507E4),
L(5.423122582741398226693137276201344096370E2)
/* 1.0E0L */
};
/* log gamma(x+6) = log gamma(6) + x P(x)/Q(x)
-0.5 <= x <= 0.5
5.5 <= x+6 <= 6.5
Peak relative error 6.2e-37 */
static const _Float128 lgam6a = L(4.7874908447265625E0);
static const _Float128 lgam6b = L(8.9805548349424770093452324304839959231517E-7);
#define NRN6 8
static const _Float128 RN6[NRN6 + 1] =
{
L(-3.538412754670746879119162116819571823643E13),
L(-2.613432593406849155765698121483394257148E13),
L(-8.020670732770461579558867891923784753062E12),
L(-1.322227822931250045347591780332435433420E12),
L(-1.262809382777272476572558806855377129513E11),
L(-7.015006277027660872284922325741197022467E9),
L(-2.149320689089020841076532186783055727299E8),
L(-3.167210585700002703820077565539658995316E6),
L(-1.576834867378554185210279285358586385266E4)
};
#define NRD6 8
static const _Float128 RD6[NRD6 + 1] =
{
L(-2.073955870771283609792355579558899389085E13),
L(-1.421592856111673959642750863283919318175E13),
L(-4.012134994918353924219048850264207074949E12),
L(-6.013361045800992316498238470888523722431E11),
L(-5.145382510136622274784240527039643430628E10),
L(-2.510575820013409711678540476918249524123E9),
L(-6.564058379709759600836745035871373240904E7),
L(-7.861511116647120540275354855221373571536E5),
L(-2.821943442729620524365661338459579270561E3)
/* 1.0E0L */
};
/* log gamma(x+5) = log gamma(5) + x P(x)/Q(x)
-0.5 <= x <= 0.5
4.5 <= x+5 <= 5.5
Peak relative error 3.4e-37 */
static const _Float128 lgam5a = L(3.17803955078125E0);
static const _Float128 lgam5b = L(1.4279566695619646941601297055408873990961E-5);
#define NRN5 9
static const _Float128 RN5[NRN5 + 1] =
{
L(2.010952885441805899580403215533972172098E11),
L(1.916132681242540921354921906708215338584E11),
L(7.679102403710581712903937970163206882492E10),
L(1.680514903671382470108010973615268125169E10),
L(2.181011222911537259440775283277711588410E9),
L(1.705361119398837808244780667539728356096E8),
L(7.792391565652481864976147945997033946360E6),
L(1.910741381027985291688667214472560023819E5),
L(2.088138241893612679762260077783794329559E3),
L(6.330318119566998299106803922739066556550E0)
};
#define NRD5 8
static const _Float128 RD5[NRD5 + 1] =
{
L(1.335189758138651840605141370223112376176E11),
L(1.174130445739492885895466097516530211283E11),
L(4.308006619274572338118732154886328519910E10),
L(8.547402888692578655814445003283720677468E9),
L(9.934628078575618309542580800421370730906E8),
L(6.847107420092173812998096295422311820672E7),
L(2.698552646016599923609773122139463150403E6),
L(5.526516251532464176412113632726150253215E4),
L(4.772343321713697385780533022595450486932E2)
/* 1.0E0L */
};
/* log gamma(x+4) = log gamma(4) + x P(x)/Q(x)
-0.5 <= x <= 0.5
3.5 <= x+4 <= 4.5
Peak relative error 6.7e-37 */
static const _Float128 lgam4a = L(1.791748046875E0);
static const _Float128 lgam4b = L(1.1422353055000812477358380702272722990692E-5);
#define NRN4 9
static const _Float128 RN4[NRN4 + 1] =
{
L(-1.026583408246155508572442242188887829208E13),
L(-1.306476685384622809290193031208776258809E13),
L(-7.051088602207062164232806511992978915508E12),
L(-2.100849457735620004967624442027793656108E12),
L(-3.767473790774546963588549871673843260569E11),
L(-4.156387497364909963498394522336575984206E10),
L(-2.764021460668011732047778992419118757746E9),
L(-1.036617204107109779944986471142938641399E8),
L(-1.895730886640349026257780896972598305443E6),
L(-1.180509051468390914200720003907727988201E4)
};
#define NRD4 9
static const _Float128 RD4[NRD4 + 1] =
{
L(-8.172669122056002077809119378047536240889E12),
L(-9.477592426087986751343695251801814226960E12),
L(-4.629448850139318158743900253637212801682E12),
L(-1.237965465892012573255370078308035272942E12),
L(-1.971624313506929845158062177061297598956E11),
L(-1.905434843346570533229942397763361493610E10),
L(-1.089409357680461419743730978512856675984E9),
L(-3.416703082301143192939774401370222822430E7),
L(-4.981791914177103793218433195857635265295E5),
L(-2.192507743896742751483055798411231453733E3)
/* 1.0E0L */
};
/* log gamma(x+3) = log gamma(3) + x P(x)/Q(x)
-0.25 <= x <= 0.5
2.75 <= x+3 <= 3.5
Peak relative error 6.0e-37 */
static const _Float128 lgam3a = L(6.93145751953125E-1);
static const _Float128 lgam3b = L(1.4286068203094172321214581765680755001344E-6);
#define NRN3 9
static const _Float128 RN3[NRN3 + 1] =
{
L(-4.813901815114776281494823863935820876670E11),
L(-8.425592975288250400493910291066881992620E11),
L(-6.228685507402467503655405482985516909157E11),
L(-2.531972054436786351403749276956707260499E11),
L(-6.170200796658926701311867484296426831687E10),
L(-9.211477458528156048231908798456365081135E9),
L(-8.251806236175037114064561038908691305583E8),
L(-4.147886355917831049939930101151160447495E7),
L(-1.010851868928346082547075956946476932162E6),
L(-8.333374463411801009783402800801201603736E3)
};
#define NRD3 9
static const _Float128 RD3[NRD3 + 1] =
{
L(-5.216713843111675050627304523368029262450E11),
L(-8.014292925418308759369583419234079164391E11),
L(-5.180106858220030014546267824392678611990E11),
L(-1.830406975497439003897734969120997840011E11),
L(-3.845274631904879621945745960119924118925E10),
L(-4.891033385370523863288908070309417710903E9),
L(-3.670172254411328640353855768698287474282E8),
L(-1.505316381525727713026364396635522516989E7),
L(-2.856327162923716881454613540575964890347E5),
L(-1.622140448015769906847567212766206894547E3)
/* 1.0E0L */
};
/* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x)
-0.125 <= x <= 0.25
2.375 <= x+2.5 <= 2.75 */
static const _Float128 lgam2r5a = L(2.8466796875E-1);
static const _Float128 lgam2r5b = L(1.4901722919159632494669682701924320137696E-5);
#define NRN2r5 8
static const _Float128 RN2r5[NRN2r5 + 1] =
{
L(-4.676454313888335499356699817678862233205E9),
L(-9.361888347911187924389905984624216340639E9),
L(-7.695353600835685037920815799526540237703E9),
L(-3.364370100981509060441853085968900734521E9),
L(-8.449902011848163568670361316804900559863E8),
L(-1.225249050950801905108001246436783022179E8),
L(-9.732972931077110161639900388121650470926E6),
L(-3.695711763932153505623248207576425983573E5),
L(-4.717341584067827676530426007495274711306E3)
};
#define NRD2r5 8
static const _Float128 RD2r5[NRD2r5 + 1] =
{
L(-6.650657966618993679456019224416926875619E9),
L(-1.099511409330635807899718829033488771623E10),
L(-7.482546968307837168164311101447116903148E9),
L(-2.702967190056506495988922973755870557217E9),
L(-5.570008176482922704972943389590409280950E8),
L(-6.536934032192792470926310043166993233231E7),
L(-4.101991193844953082400035444146067511725E6),
L(-1.174082735875715802334430481065526664020E5),
L(-9.932840389994157592102947657277692978511E2)
/* 1.0E0L */
};
/* log gamma(x+2) = x P(x)/Q(x)
-0.125 <= x <= +0.375
1.875 <= x+2 <= 2.375
Peak relative error 4.6e-36 */
#define NRN2 9
static const _Float128 RN2[NRN2 + 1] =
{
L(-3.716661929737318153526921358113793421524E9),
L(-1.138816715030710406922819131397532331321E10),
L(-1.421017419363526524544402598734013569950E10),
L(-9.510432842542519665483662502132010331451E9),
L(-3.747528562099410197957514973274474767329E9),
L(-8.923565763363912474488712255317033616626E8),
L(-1.261396653700237624185350402781338231697E8),
L(-9.918402520255661797735331317081425749014E6),
L(-3.753996255897143855113273724233104768831E5),
L(-4.778761333044147141559311805999540765612E3)
};
#define NRD2 9
static const _Float128 RD2[NRD2 + 1] =
{
L(-8.790916836764308497770359421351673950111E9),
L(-2.023108608053212516399197678553737477486E10),
L(-1.958067901852022239294231785363504458367E10),
L(-1.035515043621003101254252481625188704529E10),
L(-3.253884432621336737640841276619272224476E9),
L(-6.186383531162456814954947669274235815544E8),
L(-6.932557847749518463038934953605969951466E7),
L(-4.240731768287359608773351626528479703758E6),
L(-1.197343995089189188078944689846348116630E5),
L(-1.004622911670588064824904487064114090920E3)
/* 1.0E0 */
};
/* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x)
-0.125 <= x <= +0.125
1.625 <= x+1.75 <= 1.875
Peak relative error 9.2e-37 */
static const _Float128 lgam1r75a = L(-8.441162109375E-2);
static const _Float128 lgam1r75b = L(1.0500073264444042213965868602268256157604E-5);
#define NRN1r75 8
static const _Float128 RN1r75[NRN1r75 + 1] =
{
L(-5.221061693929833937710891646275798251513E7),
L(-2.052466337474314812817883030472496436993E8),
L(-2.952718275974940270675670705084125640069E8),
L(-2.132294039648116684922965964126389017840E8),
L(-8.554103077186505960591321962207519908489E7),
L(-1.940250901348870867323943119132071960050E7),
L(-2.379394147112756860769336400290402208435E6),
L(-1.384060879999526222029386539622255797389E5),
L(-2.698453601378319296159355612094598695530E3)
};
#define NRD1r75 8
static const _Float128 RD1r75[NRD1r75 + 1] =
{
L(-2.109754689501705828789976311354395393605E8),
L(-5.036651829232895725959911504899241062286E8),
L(-4.954234699418689764943486770327295098084E8),
L(-2.589558042412676610775157783898195339410E8),
L(-7.731476117252958268044969614034776883031E7),
L(-1.316721702252481296030801191240867486965E7),
L(-1.201296501404876774861190604303728810836E6),
L(-5.007966406976106636109459072523610273928E4),
L(-6.155817990560743422008969155276229018209E2)
/* 1.0E0L */
};
/* log gamma(x+x0) = y0 + x^2 P(x)/Q(x)
-0.0867 <= x <= +0.1634
1.374932... <= x+x0 <= 1.625032...
Peak relative error 4.0e-36 */
static const _Float128 x0a = L(1.4616241455078125);
static const _Float128 x0b = L(7.9994605498412626595423257213002588621246E-6);
static const _Float128 y0a = L(-1.21490478515625E-1);
static const _Float128 y0b = L(4.1879797753919044854428223084178486438269E-6);
#define NRN1r5 8
static const _Float128 RN1r5[NRN1r5 + 1] =
{
L(6.827103657233705798067415468881313128066E5),
L(1.910041815932269464714909706705242148108E6),
L(2.194344176925978377083808566251427771951E6),
L(1.332921400100891472195055269688876427962E6),
L(4.589080973377307211815655093824787123508E5),
L(8.900334161263456942727083580232613796141E4),
L(9.053840838306019753209127312097612455236E3),
L(4.053367147553353374151852319743594873771E2),
L(5.040631576303952022968949605613514584950E0)
};
#define NRD1r5 8
static const _Float128 RD1r5[NRD1r5 + 1] =
{
L(1.411036368843183477558773688484699813355E6),
L(4.378121767236251950226362443134306184849E6),
L(5.682322855631723455425929877581697918168E6),
L(3.999065731556977782435009349967042222375E6),
L(1.653651390456781293163585493620758410333E6),
L(4.067774359067489605179546964969435858311E5),
L(5.741463295366557346748361781768833633256E4),
L(4.226404539738182992856094681115746692030E3),
L(1.316980975410327975566999780608618774469E2),
/* 1.0E0L */
};
/* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x)
-.125 <= x <= +.125
1.125 <= x+1.25 <= 1.375
Peak relative error = 4.9e-36 */
static const _Float128 lgam1r25a = L(-9.82818603515625E-2);
static const _Float128 lgam1r25b = L(1.0023929749338536146197303364159774377296E-5);
#define NRN1r25 9
static const _Float128 RN1r25[NRN1r25 + 1] =
{
L(-9.054787275312026472896002240379580536760E4),
L(-8.685076892989927640126560802094680794471E4),
L(2.797898965448019916967849727279076547109E5),
L(6.175520827134342734546868356396008898299E5),
L(5.179626599589134831538516906517372619641E5),
L(2.253076616239043944538380039205558242161E5),
L(5.312653119599957228630544772499197307195E4),
L(6.434329437514083776052669599834938898255E3),
L(3.385414416983114598582554037612347549220E2),
L(4.907821957946273805080625052510832015792E0)
};
#define NRD1r25 8
static const _Float128 RD1r25[NRD1r25 + 1] =
{
L(3.980939377333448005389084785896660309000E5),
L(1.429634893085231519692365775184490465542E6),
L(2.145438946455476062850151428438668234336E6),
L(1.743786661358280837020848127465970357893E6),
L(8.316364251289743923178092656080441655273E5),
L(2.355732939106812496699621491135458324294E5),
L(3.822267399625696880571810137601310855419E4),
L(3.228463206479133236028576845538387620856E3),
L(1.152133170470059555646301189220117965514E2)
/* 1.0E0L */
};
/* log gamma(x + 1) = x P(x)/Q(x)
0.0 <= x <= +0.125
1.0 <= x+1 <= 1.125
Peak relative error 1.1e-35 */
#define NRN1 8
static const _Float128 RN1[NRN1 + 1] =
{
L(-9.987560186094800756471055681088744738818E3),
L(-2.506039379419574361949680225279376329742E4),
L(-1.386770737662176516403363873617457652991E4),
L(1.439445846078103202928677244188837130744E4),
L(2.159612048879650471489449668295139990693E4),
L(1.047439813638144485276023138173676047079E4),
L(2.250316398054332592560412486630769139961E3),
L(1.958510425467720733041971651126443864041E2),
L(4.516830313569454663374271993200291219855E0)
};
#define NRD1 7
static const _Float128 RD1[NRD1 + 1] =
{
L(1.730299573175751778863269333703788214547E4),
L(6.807080914851328611903744668028014678148E4),
L(1.090071629101496938655806063184092302439E5),
L(9.124354356415154289343303999616003884080E4),
L(4.262071638655772404431164427024003253954E4),
L(1.096981664067373953673982635805821283581E4),
L(1.431229503796575892151252708527595787588E3),
L(7.734110684303689320830401788262295992921E1)
/* 1.0E0 */
};
/* log gamma(x + 1) = x P(x)/Q(x)
-0.125 <= x <= 0
0.875 <= x+1 <= 1.0
Peak relative error 7.0e-37 */
#define NRNr9 8
static const _Float128 RNr9[NRNr9 + 1] =
{
L(4.441379198241760069548832023257571176884E5),
L(1.273072988367176540909122090089580368732E6),
L(9.732422305818501557502584486510048387724E5),
L(-5.040539994443998275271644292272870348684E5),
L(-1.208719055525609446357448132109723786736E6),
L(-7.434275365370936547146540554419058907156E5),
L(-2.075642969983377738209203358199008185741E5),
L(-2.565534860781128618589288075109372218042E4),
L(-1.032901669542994124131223797515913955938E3),
};
#define NRDr9 8
static const _Float128 RDr9[NRDr9 + 1] =
{
L(-7.694488331323118759486182246005193998007E5),
L(-3.301918855321234414232308938454112213751E6),
L(-5.856830900232338906742924836032279404702E6),
L(-5.540672519616151584486240871424021377540E6),
L(-3.006530901041386626148342989181721176919E6),
L(-9.350378280513062139466966374330795935163E5),
L(-1.566179100031063346901755685375732739511E5),
L(-1.205016539620260779274902967231510804992E4),
L(-2.724583156305709733221564484006088794284E2)
/* 1.0E0 */
};
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
static _Float128
neval (_Float128 x, const _Float128 *p, int n)
{
_Float128 y;
p += n;
y = *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
static _Float128
deval (_Float128 x, const _Float128 *p, int n)
{
_Float128 y;
p += n;
y = x + *p--;
do
{
y = y * x + *p--;
}
while (--n > 0);
return y;
}
_Float128
__ieee754_lgammal_r (_Float128 x, int *signgamp)
{
_Float128 p, q, w, z, nx;
int i, nn;
*signgamp = 1;
if (! isfinite (x))
return x * x;
if (x == 0)
{
if (signbit (x))
*signgamp = -1;
}
if (x < 0)
{
if (x < -2 && x > -50)
Fix lgamma (negative) inaccuracy (bug 2542, bug 2543, bug 2558). The existing implementations of lgamma functions (except for the ia64 versions) use the reflection formula for negative arguments. This suffers large inaccuracy from cancellation near zeros of lgamma (near where the gamma function is +/- 1). This patch fixes this inaccuracy. For arguments above -2, there are no zeros and no large cancellation, while for sufficiently large negative arguments the zeros are so close to integers that even for integers +/- 1ulp the log(gamma(1-x)) term dominates and cancellation is not significant. Thus, it is only necessary to take special care about cancellation for arguments around a limited number of zeros. Accordingly, this patch uses precomputed tables of relevant zeros, expressed as the sum of two floating-point values. The log of the ratio of two sines can be computed accurately using log1p in cases where log would lose accuracy. The log of the ratio of two gamma(1-x) values can be computed using Stirling's approximation (the difference between two values of that approximation to lgamma being computable without computing the two values and then subtracting), with appropriate adjustments (which don't reduce accuracy too much) in cases where 1-x is too small to use Stirling's approximation directly. In the interval from -3 to -2, using the ratios of sines and of gamma(1-x) can still produce too much cancellation between those two parts of the computation (and that interval is also the worst interval for computing the ratio between gamma(1-x) values, which computation becomes more accurate, while being less critical for the final result, for larger 1-x). Because this can result in errors slightly above those accepted in glibc, this interval is instead dealt with by polynomial approximations. Separate polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0) are used for each interval of length 1/8 from -3 to -2, where n (-3 or -2) is the nearest integer to the 1/8-interval and x0 is the zero of lgamma in the relevant half-integer interval (-3 to -2.5 or -2.5 to -2). Together, the two approaches are intended to give sufficient accuracy for all negative arguments in the problem range. Outside that range, the previous implementation continues to be used. Tested for x86_64, x86, mips64 and powerpc. The mips64 and powerpc testing shows up pre-existing problems for ldbl-128 and ldbl-128ibm with large negative arguments giving spurious "invalid" exceptions (exposed by newly added tests for cases this patch doesn't affect the logic for); I'll address those problems separately. [BZ #2542] [BZ #2543] [BZ #2558] * sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r): Call __lgamma_neg for arguments from -28.0 to -2.0. * sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Call __lgamma_negf for arguments from -15.0 to -2.0. * sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r): Call __lgamma_negl for arguments from -48.0 or -50.0 to -2.0. * sysdeps/ieee754/ldbl-96/e_lgammal_r.c (__ieee754_lgammal_r): Call __lgamma_negl for arguments from -33.0 to -2.0. * sysdeps/ieee754/dbl-64/lgamma_neg.c: New file. * sysdeps/ieee754/dbl-64/lgamma_product.c: Likewise. * sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise. * sysdeps/ieee754/flt-32/lgamma_productf.c: Likewise. * sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise. * sysdeps/ieee754/ldbl-128/lgamma_productl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/lgamma_productl.c: Likewise. * sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise. * sysdeps/ieee754/ldbl-96/lgamma_product.c: Likewise. * sysdeps/ieee754/ldbl-96/lgamma_productl.c: Likewise. * sysdeps/generic/math_private.h (__lgamma_negf): New prototype. (__lgamma_neg): Likewise. (__lgamma_negl): Likewise. (__lgamma_product): Likewise. (__lgamma_productl): Likewise. * math/Makefile (libm-calls): Add lgamma_neg and lgamma_product. * math/auto-libm-test-in: Add more tests of lgamma. * math/auto-libm-test-out: Regenerated. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2015-09-10 22:27:58 +00:00
return __lgamma_negl (x, signgamp);
q = -x;
p = __floorl (q);
if (p == q)
return (one / __fabsl (p - p));
_Float128 halfp = p * L(0.5);
if (halfp == __floorl (halfp))
*signgamp = -1;
else
*signgamp = 1;
if (q < L(0x1p-120))
return -__logl (q);
z = q - p;
if (z > L(0.5))
{
p += 1;
z = p - q;
}
z = q * __sinl (PIL * z);
2002-07-11 05:55:13 +00:00
w = __ieee754_lgammal_r (q, &i);
z = __logl (PIL / z) - w;
return (z);
}
if (x < L(13.5))
{
p = 0;
nx = __floorl (x + L(0.5));
nn = nx;
switch (nn)
{
case 0:
/* log gamma (x + 1) = log(x) + log gamma(x) */
if (x < L(0x1p-120))
return -__logl (x);
else if (x <= 0.125)
{
p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1);
}
else if (x <= 0.375)
{
z = x - L(0.25);
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
p += lgam1r25b;
p += lgam1r25a;
}
else if (x <= 0.625)
{
z = x + (1 - x0a);
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
else if (x <= 0.875)
{
z = x - L(0.75);
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
p += lgam1r75b;
p += lgam1r75a;
}
else
{
z = x - 1;
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
}
p = p - __logl (x);
break;
case 1:
if (x < L(0.875))
{
if (x <= 0.625)
{
z = x + (1 - x0a);
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
else if (x <= 0.875)
{
z = x - L(0.75);
p = z * neval (z, RN1r75, NRN1r75)
/ deval (z, RD1r75, NRD1r75);
p += lgam1r75b;
p += lgam1r75a;
}
else
{
z = x - 1;
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
}
p = p - __logl (x);
}
else if (x < 1)
{
z = x - 1;
p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9);
}
else if (x == 1)
p = 0;
else if (x <= L(1.125))
{
z = x - 1;
p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1);
}
else if (x <= 1.375)
{
z = x - L(1.25);
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
p += lgam1r25b;
p += lgam1r25a;
}
else
{
/* 1.375 <= x+x0 <= 1.625 */
z = x - x0a;
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
break;
case 2:
if (x < L(1.625))
{
z = x - x0a;
z = z - x0b;
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
p = p * z * z;
p = p + y0b;
p = p + y0a;
}
else if (x < L(1.875))
{
z = x - L(1.75);
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
p += lgam1r75b;
p += lgam1r75a;
}
else if (x == 2)
p = 0;
else if (x < L(2.375))
{
z = x - 2;
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
}
else
{
z = x - L(2.5);
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
p += lgam2r5b;
p += lgam2r5a;
}
break;
case 3:
if (x < 2.75)
{
z = x - L(2.5);
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
p += lgam2r5b;
p += lgam2r5a;
}
else
{
z = x - 3;
p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3);
p += lgam3b;
p += lgam3a;
}
break;
case 4:
z = x - 4;
p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4);
p += lgam4b;
p += lgam4a;
break;
case 5:
z = x - 5;
p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5);
p += lgam5b;
p += lgam5a;
break;
case 6:
z = x - 6;
p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6);
p += lgam6b;
p += lgam6a;
break;
case 7:
z = x - 7;
p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7);
p += lgam7b;
p += lgam7a;
break;
case 8:
z = x - 8;
p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8);
p += lgam8b;
p += lgam8a;
break;
case 9:
z = x - 9;
p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9);
p += lgam9b;
p += lgam9a;
break;
case 10:
z = x - 10;
p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10);
p += lgam10b;
p += lgam10a;
break;
case 11:
z = x - 11;
p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11);
p += lgam11b;
p += lgam11a;
break;
case 12:
z = x - 12;
p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12);
p += lgam12b;
p += lgam12a;
break;
case 13:
z = x - 13;
p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13);
p += lgam13b;
p += lgam13a;
break;
}
return p;
}
if (x > MAXLGM)
return (*signgamp * huge * huge);
if (x > L(0x1p120))
return x * (__logl (x) - 1);
q = ls2pi - x;
q = (x - L(0.5)) * __logl (x) + q;
if (x > L(1.0e18))
return (q);
p = 1 / (x * x);
q += neval (p, RASY, NRASY) / x;
return (q);
}
strong_alias (__ieee754_lgammal_r, __lgammal_r_finite)