glibc/benchtests/bench-malloc-thread.c

298 lines
6.6 KiB
C
Raw Normal View History

/* Benchmark malloc and free functions.
Copyright (C) 2013-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <errno.h>
#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include "bench-timing.h"
#include "json-lib.h"
/* Benchmark duration in seconds. */
#define BENCHMARK_DURATION 10
#define RAND_SEED 88
#ifndef NUM_THREADS
# define NUM_THREADS 1
#endif
/* Maximum memory that can be allocated at any one time is:
NUM_THREADS * WORKING_SET_SIZE * MAX_ALLOCATION_SIZE
However due to the distribution of the random block sizes
the typical amount allocated will be much smaller. */
#define WORKING_SET_SIZE 1024
#define MIN_ALLOCATION_SIZE 4
#define MAX_ALLOCATION_SIZE 32768
/* Get a random block size with an inverse square distribution. */
static unsigned int
get_block_size (unsigned int rand_data)
{
/* Inverse square. */
const float exponent = -2;
/* Minimum value of distribution. */
const float dist_min = MIN_ALLOCATION_SIZE;
/* Maximum value of distribution. */
const float dist_max = MAX_ALLOCATION_SIZE;
float min_pow = powf (dist_min, exponent + 1);
float max_pow = powf (dist_max, exponent + 1);
float r = (float) rand_data / RAND_MAX;
return (unsigned int) powf ((max_pow - min_pow) * r + min_pow,
1 / (exponent + 1));
}
#define NUM_BLOCK_SIZES 8000
#define NUM_OFFSETS ((WORKING_SET_SIZE) * 4)
static unsigned int random_block_sizes[NUM_BLOCK_SIZES];
static unsigned int random_offsets[NUM_OFFSETS];
static void
init_random_values (void)
{
for (size_t i = 0; i < NUM_BLOCK_SIZES; i++)
random_block_sizes[i] = get_block_size (rand ());
for (size_t i = 0; i < NUM_OFFSETS; i++)
random_offsets[i] = rand () % WORKING_SET_SIZE;
}
static unsigned int
get_random_block_size (unsigned int *state)
{
unsigned int idx = *state;
if (idx >= NUM_BLOCK_SIZES - 1)
idx = 0;
else
idx++;
*state = idx;
return random_block_sizes[idx];
}
static unsigned int
get_random_offset (unsigned int *state)
{
unsigned int idx = *state;
if (idx >= NUM_OFFSETS - 1)
idx = 0;
else
idx++;
*state = idx;
return random_offsets[idx];
}
static volatile bool timeout;
static void
alarm_handler (int signum)
{
timeout = true;
}
/* Allocate and free blocks in a random order. */
static size_t
malloc_benchmark_loop (void **ptr_arr)
{
unsigned int offset_state = 0, block_state = 0;
size_t iters = 0;
while (!timeout)
{
unsigned int next_idx = get_random_offset (&offset_state);
unsigned int next_block = get_random_block_size (&block_state);
free (ptr_arr[next_idx]);
ptr_arr[next_idx] = malloc (next_block);
iters++;
}
return iters;
}
struct thread_args
{
size_t iters;
void **working_set;
timing_t elapsed;
};
static void *
benchmark_thread (void *arg)
{
struct thread_args *args = (struct thread_args *) arg;
size_t iters;
void *thread_set = args->working_set;
timing_t start, stop;
TIMING_NOW (start);
iters = malloc_benchmark_loop (thread_set);
TIMING_NOW (stop);
TIMING_DIFF (args->elapsed, start, stop);
args->iters = iters;
return NULL;
}
static timing_t
do_benchmark (size_t num_threads, size_t *iters)
{
timing_t elapsed = 0;
if (num_threads == 1)
{
timing_t start, stop;
void *working_set[WORKING_SET_SIZE];
memset (working_set, 0, sizeof (working_set));
TIMING_NOW (start);
*iters = malloc_benchmark_loop (working_set);
TIMING_NOW (stop);
TIMING_DIFF (elapsed, start, stop);
}
else
{
struct thread_args args[num_threads];
void *working_set[num_threads][WORKING_SET_SIZE];
pthread_t threads[num_threads];
memset (working_set, 0, sizeof (working_set));
*iters = 0;
for (size_t i = 0; i < num_threads; i++)
{
args[i].working_set = working_set[i];
pthread_create(&threads[i], NULL, benchmark_thread, &args[i]);
}
for (size_t i = 0; i < num_threads; i++)
{
pthread_join(threads[i], NULL);
TIMING_ACCUM (elapsed, args[i].elapsed);
*iters += args[i].iters;
}
}
return elapsed;
}
static void usage(const char *name)
{
fprintf (stderr, "%s: <num_threads>\n", name);
exit (1);
}
int
main (int argc, char **argv)
{
timing_t cur;
size_t iters = 0, num_threads = 1;
json_ctx_t json_ctx;
double d_total_s, d_total_i;
struct sigaction act;
if (argc == 1)
num_threads = 1;
else if (argc == 2)
{
long ret;
errno = 0;
ret = strtol(argv[1], NULL, 10);
if (errno || ret == 0)
usage(argv[0]);
num_threads = ret;
}
else
usage(argv[0]);
init_random_values ();
json_init (&json_ctx, 0, stdout);
json_document_begin (&json_ctx);
json_attr_string (&json_ctx, "timing_type", TIMING_TYPE);
json_attr_object_begin (&json_ctx, "functions");
json_attr_object_begin (&json_ctx, "malloc");
json_attr_object_begin (&json_ctx, "");
memset (&act, 0, sizeof (act));
act.sa_handler = &alarm_handler;
sigaction (SIGALRM, &act, NULL);
alarm (BENCHMARK_DURATION);
cur = do_benchmark (num_threads, &iters);
struct rusage usage;
getrusage(RUSAGE_SELF, &usage);
d_total_s = cur;
d_total_i = iters;
json_attr_double (&json_ctx, "duration", d_total_s);
json_attr_double (&json_ctx, "iterations", d_total_i);
json_attr_double (&json_ctx, "time_per_iteration", d_total_s / d_total_i);
json_attr_double (&json_ctx, "max_rss", usage.ru_maxrss);
json_attr_double (&json_ctx, "threads", num_threads);
json_attr_double (&json_ctx, "min_size", MIN_ALLOCATION_SIZE);
json_attr_double (&json_ctx, "max_size", MAX_ALLOCATION_SIZE);
json_attr_double (&json_ctx, "random_seed", RAND_SEED);
json_attr_object_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_document_end (&json_ctx);
return 0;
}