2023-01-06 21:08:04 +00:00
|
|
|
# Copyright (C) 1995-2023 Free Software Foundation, Inc.
|
gmon: fix memory corruption issues [BZ# 30101]
V2 of this patch fixes an issue in V1, where the state was changed to ON not
OFF at end of _mcleanup. I hadn't noticed that (counterintuitively) ON=0 and
OFF=3, hence zeroing the buffer turned it back on. So set the state to OFF
after the memset.
1. Prevent double free, and reads from unallocated memory, when
_mcleanup is (incorrectly) called two or more times in a row,
without an intervening call to __monstartup; with this patch, the
second and subsequent calls effectively become no-ops instead.
While setting tos=NULL is minimal fix, safest action is to zero the
whole gmonparam buffer.
2. Prevent memory leak when __monstartup is (incorrectly) called two
or more times in a row, without an intervening call to _mcleanup;
with this patch, the second and subsequent calls effectively become
no-ops instead.
3. After _mcleanup, treat __moncontrol(1) as __moncontrol(0) instead.
With zeroing of gmonparam buffer in _mcleanup, this stops the
state incorrectly being changed to GMON_PROF_ON despite profiling
actually being off. If we'd just done the minimal fix to _mcleanup
of setting tos=NULL, there is risk of far worse memory corruption:
kcount would point to deallocated memory, and the __profil syscall
would make the kernel write profiling data into that memory,
which could have since been reallocated to something unrelated.
4. Ensure __moncontrol(0) still turns off profiling even in error
state. Otherwise, if mcount overflows and sets state to
GMON_PROF_ERROR, when _mcleanup calls __moncontrol(0), the __profil
syscall to disable profiling will not be invoked. _mcleanup will
free the buffer, but the kernel will still be writing profiling
data into it, potentially corrupted arbitrary memory.
Also adds a test case for (1). Issues (2)-(4) are not feasible to test.
Signed-off-by: Simon Kissane <skissane@gmail.com>
Reviewed-by: DJ Delorie <dj@redhat.com>
2023-02-10 21:58:02 +00:00
|
|
|
# Copyright The GNU Toolchain Authors.
|
1995-09-26 20:59:38 +00:00
|
|
|
# This file is part of the GNU C Library.
|
|
|
|
|
|
|
|
# The GNU C Library is free software; you can redistribute it and/or
|
2001-07-06 04:58:11 +00:00
|
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
|
|
# License as published by the Free Software Foundation; either
|
|
|
|
# version 2.1 of the License, or (at your option) any later version.
|
1995-09-26 20:59:38 +00:00
|
|
|
|
|
|
|
# The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
2001-07-06 04:58:11 +00:00
|
|
|
# Lesser General Public License for more details.
|
1995-09-26 20:59:38 +00:00
|
|
|
|
2001-07-06 04:58:11 +00:00
|
|
|
# You should have received a copy of the GNU Lesser General Public
|
2012-02-09 23:18:22 +00:00
|
|
|
# License along with the GNU C Library; if not, see
|
Prefer https to http for gnu.org and fsf.org URLs
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
$(find $(git ls-files) -prune -type f \
! -name '*.po' \
! -name 'ChangeLog*' \
! -path COPYING ! -path COPYING.LIB \
! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
! -path manual/texinfo.tex ! -path scripts/config.guess \
! -path scripts/config.sub ! -path scripts/install-sh \
! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
! -path INSTALL ! -path locale/programs/charmap-kw.h \
! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
! '(' -name configure \
-execdir test -f configure.ac -o -f configure.in ';' ')' \
! '(' -name preconfigure \
-execdir test -f preconfigure.ac ';' ')' \
-print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
chmod a+x sysdeps/unix/sysv/linux/riscv/configure
# Omit irrelevant whitespace and comment-only changes,
# perhaps from a slightly-different Autoconf version.
git checkout -f \
sysdeps/csky/configure \
sysdeps/hppa/configure \
sysdeps/riscv/configure \
sysdeps/unix/sysv/linux/csky/configure
# Omit changes that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
git checkout -f \
sysdeps/powerpc/powerpc64/ppc-mcount.S \
sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
# Omit change that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 05:40:42 +00:00
|
|
|
# <https://www.gnu.org/licenses/>.
|
1995-09-26 20:59:38 +00:00
|
|
|
|
|
|
|
#
|
|
|
|
# Sub-makefile for gmon portion of the library.
|
|
|
|
#
|
|
|
|
subdir := gmon
|
|
|
|
|
2014-02-26 23:12:03 +00:00
|
|
|
include ../Makeconfig
|
|
|
|
|
2001-03-27 06:01:17 +00:00
|
|
|
headers := sys/gmon.h sys/gmon_out.h sys/profil.h
|
2017-08-20 13:39:10 +00:00
|
|
|
routines := gmon mcount profil sprofil prof-freq
|
2002-03-11 10:26:47 +00:00
|
|
|
|
gmon: fix memory corruption issues [BZ# 30101]
V2 of this patch fixes an issue in V1, where the state was changed to ON not
OFF at end of _mcleanup. I hadn't noticed that (counterintuitively) ON=0 and
OFF=3, hence zeroing the buffer turned it back on. So set the state to OFF
after the memset.
1. Prevent double free, and reads from unallocated memory, when
_mcleanup is (incorrectly) called two or more times in a row,
without an intervening call to __monstartup; with this patch, the
second and subsequent calls effectively become no-ops instead.
While setting tos=NULL is minimal fix, safest action is to zero the
whole gmonparam buffer.
2. Prevent memory leak when __monstartup is (incorrectly) called two
or more times in a row, without an intervening call to _mcleanup;
with this patch, the second and subsequent calls effectively become
no-ops instead.
3. After _mcleanup, treat __moncontrol(1) as __moncontrol(0) instead.
With zeroing of gmonparam buffer in _mcleanup, this stops the
state incorrectly being changed to GMON_PROF_ON despite profiling
actually being off. If we'd just done the minimal fix to _mcleanup
of setting tos=NULL, there is risk of far worse memory corruption:
kcount would point to deallocated memory, and the __profil syscall
would make the kernel write profiling data into that memory,
which could have since been reallocated to something unrelated.
4. Ensure __moncontrol(0) still turns off profiling even in error
state. Otherwise, if mcount overflows and sets state to
GMON_PROF_ERROR, when _mcleanup calls __moncontrol(0), the __profil
syscall to disable profiling will not be invoked. _mcleanup will
free the buffer, but the kernel will still be writing profiling
data into it, potentially corrupted arbitrary memory.
Also adds a test case for (1). Issues (2)-(4) are not feasible to test.
Signed-off-by: Simon Kissane <skissane@gmail.com>
Reviewed-by: DJ Delorie <dj@redhat.com>
2023-02-10 21:58:02 +00:00
|
|
|
tests = tst-sprofil tst-gmon tst-mcount-overflow tst-mcleanup
|
2005-07-07 02:39:45 +00:00
|
|
|
ifeq ($(build-profile),yes)
|
|
|
|
tests += tst-profile-static
|
|
|
|
tests-static += tst-profile-static
|
|
|
|
|
|
|
|
LDFLAGS-tst-profile-static = -profile
|
|
|
|
endif
|
1995-09-26 20:59:38 +00:00
|
|
|
|
2017-10-14 19:58:40 +00:00
|
|
|
tests += tst-gmon-static
|
|
|
|
tests-static += tst-gmon-static
|
|
|
|
|
2017-10-12 10:45:55 +00:00
|
|
|
ifeq (yesyes,$(have-fpie)$(build-shared))
|
|
|
|
tests += tst-gmon-pie
|
|
|
|
tests-pie += tst-gmon-pie
|
Add --enable-static-pie configure option to build static PIE [BZ #19574]
Static PIE extends address space layout randomization to static
executables. It provides additional security hardening benefits at
the cost of some memory and performance.
Dynamic linker, ld.so, is a standalone program which can be loaded at
any address. This patch adds a configure option, --enable-static-pie,
to embed the part of ld.so in static executable to create static position
independent executable (static PIE). A static PIE is similar to static
executable, but can be loaded at any address without help from a dynamic
linker. When --enable-static-pie is used to configure glibc, libc.a is
built as PIE and all static executables, including tests, are built as
static PIE. The resulting libc.a can be used together with GCC 8 or
above to build static PIE with the compiler option, -static-pie. But
GCC 8 isn't required to build glibc with --enable-static-pie. Only GCC
with PIE support is needed. When an older GCC is used to build glibc
with --enable-static-pie, proper input files are passed to linker to
create static executables as static PIE, together with "-z text" to
prevent dynamic relocations in read-only segments, which are not allowed
in static PIE.
The following changes are made for static PIE:
1. Add a new function, _dl_relocate_static_pie, to:
a. Get the run-time load address.
b. Read the dynamic section.
c. Perform dynamic relocations.
Dynamic linker also performs these steps. But static PIE doesn't load
any shared objects.
2. Call _dl_relocate_static_pie at entrance of LIBC_START_MAIN in
libc.a. crt1.o, which is used to create dynamic and non-PIE static
executables, is updated to include a dummy _dl_relocate_static_pie.
rcrt1.o is added to create static PIE, which will link in the real
_dl_relocate_static_pie. grcrt1.o is also added to create static PIE
with -pg. GCC 8 has been updated to support rcrt1.o and grcrt1.o for
static PIE.
Static PIE can work on all architectures which support PIE, provided:
1. Target must support accessing of local functions without dynamic
relocations, which is needed in start.S to call __libc_start_main with
function addresses of __libc_csu_init, __libc_csu_fini and main. All
functions in static PIE are local functions. If PIE start.S can't reach
main () defined in a shared object, the code sequence:
pass address of local_main to __libc_start_main
...
local_main:
tail call to main via PLT
can be used.
2. start.S is updated to check PIC instead SHARED for PIC code path and
avoid dynamic relocation, when PIC is defined and SHARED isn't defined,
to support static PIE.
3. All assembly codes are updated check PIC instead SHARED for PIC code
path to avoid dynamic relocations in read-only sections.
4. All assembly codes are updated check SHARED instead PIC for static
symbol name.
5. elf_machine_load_address in dl-machine.h are updated to support static
PIE.
6. __brk works without TLS nor dynamic relocations in read-only section
so that it can be used by __libc_setup_tls to initializes TLS in static
PIE.
NB: When glibc is built with GCC defaulted to PIE, libc.a is compiled
with -fPIE, regardless if --enable-static-pie is used to configure glibc.
When glibc is configured with --enable-static-pie, libc.a is compiled
with -fPIE, regardless whether GCC defaults to PIE or not. The same
libc.a can be used to build both static executable and static PIE.
There is no need for separate PIE copy of libc.a.
On x86-64, the normal static sln:
text data bss dec hex filename
625425 8284 5456 639165 9c0bd elf/sln
the static PIE sln:
text data bss dec hex filename
657626 20636 5392 683654 a6e86 elf/sln
The code size is increased by 5% and the binary size is increased by 7%.
Linker requirements to build glibc with --enable-static-pie:
1. Linker supports --no-dynamic-linker to remove PT_INTERP segment from
static PIE.
2. Linker can create working static PIE. The x86-64 linker needs the
fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21782
The i386 linker needs to be able to convert "movl main@GOT(%ebx), %eax"
to "leal main@GOTOFF(%ebx), %eax" if main is defined locally.
Binutils 2.29 or above are OK for i686 and x86-64. But linker status for
other targets need to be verified.
3. Linker should resolve undefined weak symbols to 0 in static PIE:
https://sourceware.org/bugzilla/show_bug.cgi?id=22269
4. Many ELF backend linkers incorrectly check bfd_link_pic for TLS
relocations, which should check bfd_link_executable instead:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Tested on aarch64, i686 and x86-64.
Using GCC 7 and binutils master branch, build-many-glibcs.py with
--enable-static-pie with all patches for static PIE applied have the
following build successes:
PASS: glibcs-aarch64_be-linux-gnu build
PASS: glibcs-aarch64-linux-gnu build
PASS: glibcs-armeb-linux-gnueabi-be8 build
PASS: glibcs-armeb-linux-gnueabi build
PASS: glibcs-armeb-linux-gnueabihf-be8 build
PASS: glibcs-armeb-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabi build
PASS: glibcs-arm-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabihf-v7a build
PASS: glibcs-arm-linux-gnueabihf-v7a-disable-multi-arch build
PASS: glibcs-m68k-linux-gnu build
PASS: glibcs-microblazeel-linux-gnu build
PASS: glibcs-microblaze-linux-gnu build
PASS: glibcs-mips64el-linux-gnu-n32 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n32-soft build
PASS: glibcs-mips64el-linux-gnu-n64 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n64-soft build
PASS: glibcs-mips64-linux-gnu-n32 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n32-soft build
PASS: glibcs-mips64-linux-gnu-n64 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n64-soft build
PASS: glibcs-mipsel-linux-gnu build
PASS: glibcs-mipsel-linux-gnu-nan2008 build
PASS: glibcs-mipsel-linux-gnu-nan2008-soft build
PASS: glibcs-mipsel-linux-gnu-soft build
PASS: glibcs-mips-linux-gnu build
PASS: glibcs-mips-linux-gnu-nan2008 build
PASS: glibcs-mips-linux-gnu-nan2008-soft build
PASS: glibcs-mips-linux-gnu-soft build
PASS: glibcs-nios2-linux-gnu build
PASS: glibcs-powerpc64le-linux-gnu build
PASS: glibcs-powerpc64-linux-gnu build
PASS: glibcs-tilegxbe-linux-gnu-32 build
PASS: glibcs-tilegxbe-linux-gnu build
PASS: glibcs-tilegx-linux-gnu-32 build
PASS: glibcs-tilegx-linux-gnu build
PASS: glibcs-tilepro-linux-gnu build
and the following build failures:
FAIL: glibcs-alpha-linux-gnu build
elf/sln is failed to link due to:
assertion fail bfd/elf64-alpha.c:4125
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-hppa-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
https://sourceware.org/bugzilla/show_bug.cgi?id=22537
FAIL: glibcs-ia64-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
FAIL: glibcs-powerpc-linux-gnu build
FAIL: glibcs-powerpc-linux-gnu-soft build
FAIL: glibcs-powerpc-linux-gnuspe build
FAIL: glibcs-powerpc-linux-gnuspe-e500v1 build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22264
FAIL: glibcs-powerpc-linux-gnu-power4 build
elf/sln is failed to link due to:
findlocale.c:96:(.text+0x22c): @local call to ifunc memchr
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-s390-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault], core dumped
assertion fail bfd/elflink.c:14299
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-sh3eb-linux-gnu build
FAIL: glibcs-sh3-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu-soft build
FAIL: glibcs-sh4-linux-gnu build
FAIL: glibcs-sh4-linux-gnu-soft build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Also TLS code sequence in SH assembly syscalls in glibc doesn't match TLS
code sequence expected by ld:
https://sourceware.org/bugzilla/show_bug.cgi?id=22270
FAIL: glibcs-sparc64-linux-gnu build
FAIL: glibcs-sparcv9-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu-32 build
FAIL: glibcs-tilegx-linux-gnu build
FAIL: glibcs-tilegx-linux-gnu-32 build
FAIL: glibcs-tilepro-linux-gnu build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
[BZ #19574]
* INSTALL: Regenerated.
* Makeconfig (real-static-start-installed-name): New.
(pic-default): Updated for --enable-static-pie.
(pie-default): New for --enable-static-pie.
(default-pie-ldflag): Likewise.
(+link-static-before-libc): Replace $(DEFAULT-LDFLAGS-$(@F))
with $(if $($(@F)-no-pie),$(no-pie-ldflag),$(default-pie-ldflag)).
Replace $(static-start-installed-name) with
$(real-static-start-installed-name).
(+prectorT): Updated for --enable-static-pie.
(+postctorT): Likewise.
(CFLAGS-.o): Add $(pie-default).
(CFLAGS-.op): Likewise.
* NEWS: Mention --enable-static-pie.
* config.h.in (ENABLE_STATIC_PIE): New.
* configure.ac (--enable-static-pie): New configure option.
(have-no-dynamic-linker): New LIBC_CONFIG_VAR.
(have-static-pie): Likewise.
Enable static PIE if linker supports --no-dynamic-linker.
(ENABLE_STATIC_PIE): New AC_DEFINE.
(enable-static-pie): New LIBC_CONFIG_VAR.
* configure: Regenerated.
* csu/Makefile (omit-deps): Add r$(start-installed-name) and
gr$(start-installed-name) for --enable-static-pie.
(extra-objs): Likewise.
(install-lib): Likewise.
(extra-objs): Add static-reloc.o and static-reloc.os
($(objpfx)$(start-installed-name)): Also depend on
$(objpfx)static-reloc.o.
($(objpfx)r$(start-installed-name)): New.
($(objpfx)g$(start-installed-name)): Also depend on
$(objpfx)static-reloc.os.
($(objpfx)gr$(start-installed-name)): New.
* csu/libc-start.c (LIBC_START_MAIN): Call _dl_relocate_static_pie
in libc.a.
* csu/libc-tls.c (__libc_setup_tls): Add main_map->l_addr to
initimage.
* csu/static-reloc.c: New file.
* elf/Makefile (routines): Add dl-reloc-static-pie.
(elide-routines.os): Likewise.
(DEFAULT-LDFLAGS-tst-tls1-static-non-pie): Removed.
(tst-tls1-static-non-pie-no-pie): New.
* elf/dl-reloc-static-pie.c: New file.
* elf/dl-support.c (_dl_get_dl_main_map): New function.
* elf/dynamic-link.h (ELF_DURING_STARTUP): Also check
STATIC_PIE_BOOTSTRAP.
* elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise.
* gmon/Makefile (tests): Add tst-gmon-static-pie.
(tests-static): Likewise.
(DEFAULT-LDFLAGS-tst-gmon-static): Removed.
(tst-gmon-static-no-pie): New.
(CFLAGS-tst-gmon-static-pie.c): Likewise.
(CRT-tst-gmon-static-pie): Likewise.
(tst-gmon-static-pie-ENV): Likewise.
(tests-special): Likewise.
($(objpfx)tst-gmon-static-pie.out): Likewise.
(clean-tst-gmon-static-pie-data): Likewise.
($(objpfx)tst-gmon-static-pie-gprof.out): Likewise.
* gmon/tst-gmon-static-pie.c: New file.
* manual/install.texi: Document --enable-static-pie.
* sysdeps/generic/ldsodefs.h (_dl_relocate_static_pie): New.
(_dl_get_dl_main_map): Likewise.
* sysdeps/i386/configure.ac: Check if linker supports static PIE.
* sysdeps/x86_64/configure.ac: Likewise.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure: Likewise.
* sysdeps/mips/Makefile (ASFLAGS-.o): Add $(pie-default).
(ASFLAGS-.op): Likewise.
2017-12-16 00:59:33 +00:00
|
|
|
ifeq (yes,$(enable-static-pie))
|
|
|
|
tests += tst-gmon-static-pie
|
|
|
|
tests-static += tst-gmon-static-pie
|
|
|
|
endif
|
2017-10-12 10:45:55 +00:00
|
|
|
endif
|
|
|
|
|
1996-01-17 02:11:06 +00:00
|
|
|
# The mcount code won't work without a frame pointer.
|
|
|
|
CFLAGS-mcount.c := -fno-omit-frame-pointer
|
|
|
|
|
2017-10-05 12:34:26 +00:00
|
|
|
CFLAGS-tst-gmon.c := -fno-omit-frame-pointer -pg
|
2017-12-19 21:53:00 +00:00
|
|
|
tst-gmon-no-pie = yes
|
2021-12-11 23:41:38 +00:00
|
|
|
CRT-tst-gmon := $(csu-objpfx)g$(start-installed-name)
|
2017-08-15 13:49:40 +00:00
|
|
|
tst-gmon-ENV := GMON_OUT_PREFIX=$(objpfx)tst-gmon.data
|
2017-08-15 16:35:42 +00:00
|
|
|
ifeq ($(run-built-tests),yes)
|
2017-08-15 13:49:40 +00:00
|
|
|
tests-special += $(objpfx)tst-gmon-gprof.out
|
2017-08-15 16:35:42 +00:00
|
|
|
endif
|
2017-08-15 13:49:40 +00:00
|
|
|
|
gmon: improve mcount overflow handling [BZ# 27576]
When mcount overflows, no gmon.out file is generated, but no message is printed
to the user, leaving the user with no idea why, and thinking maybe there is
some bug - which is how BZ 27576 ended up being logged. Print a message to
stderr in this case so the user knows what is going on.
As a comment in sys/gmon.h acknowledges, the hardcoded MAXARCS value is too
small for some large applications, including the test case in that BZ. Rather
than increase it, add tunables to enable MINARCS and MAXARCS to be overridden
at runtime (glibc.gmon.minarcs and glibc.gmon.maxarcs). So if a user gets the
mcount overflow error, they can try increasing maxarcs (they might need to
increase minarcs too if the heuristic is wrong in their case.)
Note setting minarcs/maxarcs too large can cause monstartup to fail with an
out of memory error. If you set them large enough, it can cause an integer
overflow in calculating the buffer size. I haven't done anything to defend
against that - it would not generally be a security vulnerability, since these
tunables will be ignored in suid/sgid programs (due to the SXID_ERASE default),
and if you can set GLIBC_TUNABLES in the environment of a process, you can take
it over anyway (LD_PRELOAD, LD_LIBRARY_PATH, etc). I thought about modifying
the code of monstartup to defend against integer overflows, but doing so is
complicated, and I realise the existing code is susceptible to them even prior
to this change (e.g. try passing a pathologically large highpc argument to
monstartup), so I decided just to leave that possibility in-place.
Add a test case which demonstrates mcount overflow and the tunables.
Document the new tunables in the manual.
Signed-off-by: Simon Kissane <skissane@gmail.com>
Reviewed-by: DJ Delorie <dj@redhat.com>
2023-02-11 09:12:13 +00:00
|
|
|
CFLAGS-tst-mcount-overflow.c := -fno-omit-frame-pointer -pg
|
|
|
|
tst-mcount-overflow-no-pie = yes
|
|
|
|
CRT-tst-mcount-overflow := $(csu-objpfx)g$(start-installed-name)
|
|
|
|
# Intentionally use invalid config where maxarcs<minarcs to check warning is printed
|
|
|
|
tst-mcount-overflow-ENV := GMON_OUT_PREFIX=$(objpfx)tst-mcount-overflow.data \
|
|
|
|
GLIBC_TUNABLES=glibc.gmon.minarcs=51:glibc.gmon.maxarcs=50
|
|
|
|
# Send stderr into output file because we make sure expected messages are printed
|
|
|
|
tst-mcount-overflow-ARGS := 2>&1 1>/dev/null | cat
|
|
|
|
ifeq ($(run-built-tests),yes)
|
|
|
|
tests-special += $(objpfx)tst-mcount-overflow-check.out
|
|
|
|
endif
|
|
|
|
|
gmon: fix memory corruption issues [BZ# 30101]
V2 of this patch fixes an issue in V1, where the state was changed to ON not
OFF at end of _mcleanup. I hadn't noticed that (counterintuitively) ON=0 and
OFF=3, hence zeroing the buffer turned it back on. So set the state to OFF
after the memset.
1. Prevent double free, and reads from unallocated memory, when
_mcleanup is (incorrectly) called two or more times in a row,
without an intervening call to __monstartup; with this patch, the
second and subsequent calls effectively become no-ops instead.
While setting tos=NULL is minimal fix, safest action is to zero the
whole gmonparam buffer.
2. Prevent memory leak when __monstartup is (incorrectly) called two
or more times in a row, without an intervening call to _mcleanup;
with this patch, the second and subsequent calls effectively become
no-ops instead.
3. After _mcleanup, treat __moncontrol(1) as __moncontrol(0) instead.
With zeroing of gmonparam buffer in _mcleanup, this stops the
state incorrectly being changed to GMON_PROF_ON despite profiling
actually being off. If we'd just done the minimal fix to _mcleanup
of setting tos=NULL, there is risk of far worse memory corruption:
kcount would point to deallocated memory, and the __profil syscall
would make the kernel write profiling data into that memory,
which could have since been reallocated to something unrelated.
4. Ensure __moncontrol(0) still turns off profiling even in error
state. Otherwise, if mcount overflows and sets state to
GMON_PROF_ERROR, when _mcleanup calls __moncontrol(0), the __profil
syscall to disable profiling will not be invoked. _mcleanup will
free the buffer, but the kernel will still be writing profiling
data into it, potentially corrupted arbitrary memory.
Also adds a test case for (1). Issues (2)-(4) are not feasible to test.
Signed-off-by: Simon Kissane <skissane@gmail.com>
Reviewed-by: DJ Delorie <dj@redhat.com>
2023-02-10 21:58:02 +00:00
|
|
|
CFLAGS-tst-mcleanup.c := -fno-omit-frame-pointer -pg
|
|
|
|
tst-mcleanup-no-pie = yes
|
|
|
|
CRT-tst-mcleanup := $(csu-objpfx)g$(start-installed-name)
|
|
|
|
tst-mcleanup-ENV := GMON_OUT_PREFIX=$(objpfx)tst-mcleanup.data
|
|
|
|
ifeq ($(run-built-tests),yes)
|
|
|
|
tests-special += $(objpfx)tst-mcleanup.out
|
|
|
|
endif
|
|
|
|
|
2017-10-14 19:58:40 +00:00
|
|
|
CFLAGS-tst-gmon-static.c := $(PIE-ccflag) -fno-omit-frame-pointer -pg
|
2021-12-11 23:41:38 +00:00
|
|
|
CRT-tst-gmon-static := $(csu-objpfx)g$(static-start-installed-name)
|
Add --enable-static-pie configure option to build static PIE [BZ #19574]
Static PIE extends address space layout randomization to static
executables. It provides additional security hardening benefits at
the cost of some memory and performance.
Dynamic linker, ld.so, is a standalone program which can be loaded at
any address. This patch adds a configure option, --enable-static-pie,
to embed the part of ld.so in static executable to create static position
independent executable (static PIE). A static PIE is similar to static
executable, but can be loaded at any address without help from a dynamic
linker. When --enable-static-pie is used to configure glibc, libc.a is
built as PIE and all static executables, including tests, are built as
static PIE. The resulting libc.a can be used together with GCC 8 or
above to build static PIE with the compiler option, -static-pie. But
GCC 8 isn't required to build glibc with --enable-static-pie. Only GCC
with PIE support is needed. When an older GCC is used to build glibc
with --enable-static-pie, proper input files are passed to linker to
create static executables as static PIE, together with "-z text" to
prevent dynamic relocations in read-only segments, which are not allowed
in static PIE.
The following changes are made for static PIE:
1. Add a new function, _dl_relocate_static_pie, to:
a. Get the run-time load address.
b. Read the dynamic section.
c. Perform dynamic relocations.
Dynamic linker also performs these steps. But static PIE doesn't load
any shared objects.
2. Call _dl_relocate_static_pie at entrance of LIBC_START_MAIN in
libc.a. crt1.o, which is used to create dynamic and non-PIE static
executables, is updated to include a dummy _dl_relocate_static_pie.
rcrt1.o is added to create static PIE, which will link in the real
_dl_relocate_static_pie. grcrt1.o is also added to create static PIE
with -pg. GCC 8 has been updated to support rcrt1.o and grcrt1.o for
static PIE.
Static PIE can work on all architectures which support PIE, provided:
1. Target must support accessing of local functions without dynamic
relocations, which is needed in start.S to call __libc_start_main with
function addresses of __libc_csu_init, __libc_csu_fini and main. All
functions in static PIE are local functions. If PIE start.S can't reach
main () defined in a shared object, the code sequence:
pass address of local_main to __libc_start_main
...
local_main:
tail call to main via PLT
can be used.
2. start.S is updated to check PIC instead SHARED for PIC code path and
avoid dynamic relocation, when PIC is defined and SHARED isn't defined,
to support static PIE.
3. All assembly codes are updated check PIC instead SHARED for PIC code
path to avoid dynamic relocations in read-only sections.
4. All assembly codes are updated check SHARED instead PIC for static
symbol name.
5. elf_machine_load_address in dl-machine.h are updated to support static
PIE.
6. __brk works without TLS nor dynamic relocations in read-only section
so that it can be used by __libc_setup_tls to initializes TLS in static
PIE.
NB: When glibc is built with GCC defaulted to PIE, libc.a is compiled
with -fPIE, regardless if --enable-static-pie is used to configure glibc.
When glibc is configured with --enable-static-pie, libc.a is compiled
with -fPIE, regardless whether GCC defaults to PIE or not. The same
libc.a can be used to build both static executable and static PIE.
There is no need for separate PIE copy of libc.a.
On x86-64, the normal static sln:
text data bss dec hex filename
625425 8284 5456 639165 9c0bd elf/sln
the static PIE sln:
text data bss dec hex filename
657626 20636 5392 683654 a6e86 elf/sln
The code size is increased by 5% and the binary size is increased by 7%.
Linker requirements to build glibc with --enable-static-pie:
1. Linker supports --no-dynamic-linker to remove PT_INTERP segment from
static PIE.
2. Linker can create working static PIE. The x86-64 linker needs the
fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21782
The i386 linker needs to be able to convert "movl main@GOT(%ebx), %eax"
to "leal main@GOTOFF(%ebx), %eax" if main is defined locally.
Binutils 2.29 or above are OK for i686 and x86-64. But linker status for
other targets need to be verified.
3. Linker should resolve undefined weak symbols to 0 in static PIE:
https://sourceware.org/bugzilla/show_bug.cgi?id=22269
4. Many ELF backend linkers incorrectly check bfd_link_pic for TLS
relocations, which should check bfd_link_executable instead:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Tested on aarch64, i686 and x86-64.
Using GCC 7 and binutils master branch, build-many-glibcs.py with
--enable-static-pie with all patches for static PIE applied have the
following build successes:
PASS: glibcs-aarch64_be-linux-gnu build
PASS: glibcs-aarch64-linux-gnu build
PASS: glibcs-armeb-linux-gnueabi-be8 build
PASS: glibcs-armeb-linux-gnueabi build
PASS: glibcs-armeb-linux-gnueabihf-be8 build
PASS: glibcs-armeb-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabi build
PASS: glibcs-arm-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabihf-v7a build
PASS: glibcs-arm-linux-gnueabihf-v7a-disable-multi-arch build
PASS: glibcs-m68k-linux-gnu build
PASS: glibcs-microblazeel-linux-gnu build
PASS: glibcs-microblaze-linux-gnu build
PASS: glibcs-mips64el-linux-gnu-n32 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n32-soft build
PASS: glibcs-mips64el-linux-gnu-n64 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n64-soft build
PASS: glibcs-mips64-linux-gnu-n32 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n32-soft build
PASS: glibcs-mips64-linux-gnu-n64 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n64-soft build
PASS: glibcs-mipsel-linux-gnu build
PASS: glibcs-mipsel-linux-gnu-nan2008 build
PASS: glibcs-mipsel-linux-gnu-nan2008-soft build
PASS: glibcs-mipsel-linux-gnu-soft build
PASS: glibcs-mips-linux-gnu build
PASS: glibcs-mips-linux-gnu-nan2008 build
PASS: glibcs-mips-linux-gnu-nan2008-soft build
PASS: glibcs-mips-linux-gnu-soft build
PASS: glibcs-nios2-linux-gnu build
PASS: glibcs-powerpc64le-linux-gnu build
PASS: glibcs-powerpc64-linux-gnu build
PASS: glibcs-tilegxbe-linux-gnu-32 build
PASS: glibcs-tilegxbe-linux-gnu build
PASS: glibcs-tilegx-linux-gnu-32 build
PASS: glibcs-tilegx-linux-gnu build
PASS: glibcs-tilepro-linux-gnu build
and the following build failures:
FAIL: glibcs-alpha-linux-gnu build
elf/sln is failed to link due to:
assertion fail bfd/elf64-alpha.c:4125
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-hppa-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
https://sourceware.org/bugzilla/show_bug.cgi?id=22537
FAIL: glibcs-ia64-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
FAIL: glibcs-powerpc-linux-gnu build
FAIL: glibcs-powerpc-linux-gnu-soft build
FAIL: glibcs-powerpc-linux-gnuspe build
FAIL: glibcs-powerpc-linux-gnuspe-e500v1 build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22264
FAIL: glibcs-powerpc-linux-gnu-power4 build
elf/sln is failed to link due to:
findlocale.c:96:(.text+0x22c): @local call to ifunc memchr
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-s390-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault], core dumped
assertion fail bfd/elflink.c:14299
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-sh3eb-linux-gnu build
FAIL: glibcs-sh3-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu-soft build
FAIL: glibcs-sh4-linux-gnu build
FAIL: glibcs-sh4-linux-gnu-soft build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Also TLS code sequence in SH assembly syscalls in glibc doesn't match TLS
code sequence expected by ld:
https://sourceware.org/bugzilla/show_bug.cgi?id=22270
FAIL: glibcs-sparc64-linux-gnu build
FAIL: glibcs-sparcv9-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu-32 build
FAIL: glibcs-tilegx-linux-gnu build
FAIL: glibcs-tilegx-linux-gnu-32 build
FAIL: glibcs-tilepro-linux-gnu build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
[BZ #19574]
* INSTALL: Regenerated.
* Makeconfig (real-static-start-installed-name): New.
(pic-default): Updated for --enable-static-pie.
(pie-default): New for --enable-static-pie.
(default-pie-ldflag): Likewise.
(+link-static-before-libc): Replace $(DEFAULT-LDFLAGS-$(@F))
with $(if $($(@F)-no-pie),$(no-pie-ldflag),$(default-pie-ldflag)).
Replace $(static-start-installed-name) with
$(real-static-start-installed-name).
(+prectorT): Updated for --enable-static-pie.
(+postctorT): Likewise.
(CFLAGS-.o): Add $(pie-default).
(CFLAGS-.op): Likewise.
* NEWS: Mention --enable-static-pie.
* config.h.in (ENABLE_STATIC_PIE): New.
* configure.ac (--enable-static-pie): New configure option.
(have-no-dynamic-linker): New LIBC_CONFIG_VAR.
(have-static-pie): Likewise.
Enable static PIE if linker supports --no-dynamic-linker.
(ENABLE_STATIC_PIE): New AC_DEFINE.
(enable-static-pie): New LIBC_CONFIG_VAR.
* configure: Regenerated.
* csu/Makefile (omit-deps): Add r$(start-installed-name) and
gr$(start-installed-name) for --enable-static-pie.
(extra-objs): Likewise.
(install-lib): Likewise.
(extra-objs): Add static-reloc.o and static-reloc.os
($(objpfx)$(start-installed-name)): Also depend on
$(objpfx)static-reloc.o.
($(objpfx)r$(start-installed-name)): New.
($(objpfx)g$(start-installed-name)): Also depend on
$(objpfx)static-reloc.os.
($(objpfx)gr$(start-installed-name)): New.
* csu/libc-start.c (LIBC_START_MAIN): Call _dl_relocate_static_pie
in libc.a.
* csu/libc-tls.c (__libc_setup_tls): Add main_map->l_addr to
initimage.
* csu/static-reloc.c: New file.
* elf/Makefile (routines): Add dl-reloc-static-pie.
(elide-routines.os): Likewise.
(DEFAULT-LDFLAGS-tst-tls1-static-non-pie): Removed.
(tst-tls1-static-non-pie-no-pie): New.
* elf/dl-reloc-static-pie.c: New file.
* elf/dl-support.c (_dl_get_dl_main_map): New function.
* elf/dynamic-link.h (ELF_DURING_STARTUP): Also check
STATIC_PIE_BOOTSTRAP.
* elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise.
* gmon/Makefile (tests): Add tst-gmon-static-pie.
(tests-static): Likewise.
(DEFAULT-LDFLAGS-tst-gmon-static): Removed.
(tst-gmon-static-no-pie): New.
(CFLAGS-tst-gmon-static-pie.c): Likewise.
(CRT-tst-gmon-static-pie): Likewise.
(tst-gmon-static-pie-ENV): Likewise.
(tests-special): Likewise.
($(objpfx)tst-gmon-static-pie.out): Likewise.
(clean-tst-gmon-static-pie-data): Likewise.
($(objpfx)tst-gmon-static-pie-gprof.out): Likewise.
* gmon/tst-gmon-static-pie.c: New file.
* manual/install.texi: Document --enable-static-pie.
* sysdeps/generic/ldsodefs.h (_dl_relocate_static_pie): New.
(_dl_get_dl_main_map): Likewise.
* sysdeps/i386/configure.ac: Check if linker supports static PIE.
* sysdeps/x86_64/configure.ac: Likewise.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure: Likewise.
* sysdeps/mips/Makefile (ASFLAGS-.o): Add $(pie-default).
(ASFLAGS-.op): Likewise.
2017-12-16 00:59:33 +00:00
|
|
|
tst-gmon-static-no-pie = yes
|
2017-10-14 19:58:40 +00:00
|
|
|
tst-gmon-static-ENV := GMON_OUT_PREFIX=$(objpfx)tst-gmon-static.data
|
|
|
|
ifeq ($(run-built-tests),yes)
|
|
|
|
tests-special += $(objpfx)tst-gmon-static-gprof.out
|
|
|
|
endif
|
|
|
|
|
2017-10-12 10:45:55 +00:00
|
|
|
CFLAGS-tst-gmon-pie.c := $(PIE-ccflag) -fno-omit-frame-pointer -pg
|
2021-12-11 23:41:38 +00:00
|
|
|
CRT-tst-gmon-pie := $(csu-objpfx)g$(start-installed-name)
|
2017-10-12 10:45:55 +00:00
|
|
|
tst-gmon-pie-ENV := GMON_OUT_PREFIX=$(objpfx)tst-gmon-pie.data
|
|
|
|
ifeq ($(run-built-tests),yes)
|
|
|
|
tests-special += $(objpfx)tst-gmon-pie-gprof.out
|
|
|
|
endif
|
|
|
|
|
Add --enable-static-pie configure option to build static PIE [BZ #19574]
Static PIE extends address space layout randomization to static
executables. It provides additional security hardening benefits at
the cost of some memory and performance.
Dynamic linker, ld.so, is a standalone program which can be loaded at
any address. This patch adds a configure option, --enable-static-pie,
to embed the part of ld.so in static executable to create static position
independent executable (static PIE). A static PIE is similar to static
executable, but can be loaded at any address without help from a dynamic
linker. When --enable-static-pie is used to configure glibc, libc.a is
built as PIE and all static executables, including tests, are built as
static PIE. The resulting libc.a can be used together with GCC 8 or
above to build static PIE with the compiler option, -static-pie. But
GCC 8 isn't required to build glibc with --enable-static-pie. Only GCC
with PIE support is needed. When an older GCC is used to build glibc
with --enable-static-pie, proper input files are passed to linker to
create static executables as static PIE, together with "-z text" to
prevent dynamic relocations in read-only segments, which are not allowed
in static PIE.
The following changes are made for static PIE:
1. Add a new function, _dl_relocate_static_pie, to:
a. Get the run-time load address.
b. Read the dynamic section.
c. Perform dynamic relocations.
Dynamic linker also performs these steps. But static PIE doesn't load
any shared objects.
2. Call _dl_relocate_static_pie at entrance of LIBC_START_MAIN in
libc.a. crt1.o, which is used to create dynamic and non-PIE static
executables, is updated to include a dummy _dl_relocate_static_pie.
rcrt1.o is added to create static PIE, which will link in the real
_dl_relocate_static_pie. grcrt1.o is also added to create static PIE
with -pg. GCC 8 has been updated to support rcrt1.o and grcrt1.o for
static PIE.
Static PIE can work on all architectures which support PIE, provided:
1. Target must support accessing of local functions without dynamic
relocations, which is needed in start.S to call __libc_start_main with
function addresses of __libc_csu_init, __libc_csu_fini and main. All
functions in static PIE are local functions. If PIE start.S can't reach
main () defined in a shared object, the code sequence:
pass address of local_main to __libc_start_main
...
local_main:
tail call to main via PLT
can be used.
2. start.S is updated to check PIC instead SHARED for PIC code path and
avoid dynamic relocation, when PIC is defined and SHARED isn't defined,
to support static PIE.
3. All assembly codes are updated check PIC instead SHARED for PIC code
path to avoid dynamic relocations in read-only sections.
4. All assembly codes are updated check SHARED instead PIC for static
symbol name.
5. elf_machine_load_address in dl-machine.h are updated to support static
PIE.
6. __brk works without TLS nor dynamic relocations in read-only section
so that it can be used by __libc_setup_tls to initializes TLS in static
PIE.
NB: When glibc is built with GCC defaulted to PIE, libc.a is compiled
with -fPIE, regardless if --enable-static-pie is used to configure glibc.
When glibc is configured with --enable-static-pie, libc.a is compiled
with -fPIE, regardless whether GCC defaults to PIE or not. The same
libc.a can be used to build both static executable and static PIE.
There is no need for separate PIE copy of libc.a.
On x86-64, the normal static sln:
text data bss dec hex filename
625425 8284 5456 639165 9c0bd elf/sln
the static PIE sln:
text data bss dec hex filename
657626 20636 5392 683654 a6e86 elf/sln
The code size is increased by 5% and the binary size is increased by 7%.
Linker requirements to build glibc with --enable-static-pie:
1. Linker supports --no-dynamic-linker to remove PT_INTERP segment from
static PIE.
2. Linker can create working static PIE. The x86-64 linker needs the
fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21782
The i386 linker needs to be able to convert "movl main@GOT(%ebx), %eax"
to "leal main@GOTOFF(%ebx), %eax" if main is defined locally.
Binutils 2.29 or above are OK for i686 and x86-64. But linker status for
other targets need to be verified.
3. Linker should resolve undefined weak symbols to 0 in static PIE:
https://sourceware.org/bugzilla/show_bug.cgi?id=22269
4. Many ELF backend linkers incorrectly check bfd_link_pic for TLS
relocations, which should check bfd_link_executable instead:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Tested on aarch64, i686 and x86-64.
Using GCC 7 and binutils master branch, build-many-glibcs.py with
--enable-static-pie with all patches for static PIE applied have the
following build successes:
PASS: glibcs-aarch64_be-linux-gnu build
PASS: glibcs-aarch64-linux-gnu build
PASS: glibcs-armeb-linux-gnueabi-be8 build
PASS: glibcs-armeb-linux-gnueabi build
PASS: glibcs-armeb-linux-gnueabihf-be8 build
PASS: glibcs-armeb-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabi build
PASS: glibcs-arm-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabihf-v7a build
PASS: glibcs-arm-linux-gnueabihf-v7a-disable-multi-arch build
PASS: glibcs-m68k-linux-gnu build
PASS: glibcs-microblazeel-linux-gnu build
PASS: glibcs-microblaze-linux-gnu build
PASS: glibcs-mips64el-linux-gnu-n32 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n32-soft build
PASS: glibcs-mips64el-linux-gnu-n64 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n64-soft build
PASS: glibcs-mips64-linux-gnu-n32 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n32-soft build
PASS: glibcs-mips64-linux-gnu-n64 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n64-soft build
PASS: glibcs-mipsel-linux-gnu build
PASS: glibcs-mipsel-linux-gnu-nan2008 build
PASS: glibcs-mipsel-linux-gnu-nan2008-soft build
PASS: glibcs-mipsel-linux-gnu-soft build
PASS: glibcs-mips-linux-gnu build
PASS: glibcs-mips-linux-gnu-nan2008 build
PASS: glibcs-mips-linux-gnu-nan2008-soft build
PASS: glibcs-mips-linux-gnu-soft build
PASS: glibcs-nios2-linux-gnu build
PASS: glibcs-powerpc64le-linux-gnu build
PASS: glibcs-powerpc64-linux-gnu build
PASS: glibcs-tilegxbe-linux-gnu-32 build
PASS: glibcs-tilegxbe-linux-gnu build
PASS: glibcs-tilegx-linux-gnu-32 build
PASS: glibcs-tilegx-linux-gnu build
PASS: glibcs-tilepro-linux-gnu build
and the following build failures:
FAIL: glibcs-alpha-linux-gnu build
elf/sln is failed to link due to:
assertion fail bfd/elf64-alpha.c:4125
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-hppa-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
https://sourceware.org/bugzilla/show_bug.cgi?id=22537
FAIL: glibcs-ia64-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
FAIL: glibcs-powerpc-linux-gnu build
FAIL: glibcs-powerpc-linux-gnu-soft build
FAIL: glibcs-powerpc-linux-gnuspe build
FAIL: glibcs-powerpc-linux-gnuspe-e500v1 build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22264
FAIL: glibcs-powerpc-linux-gnu-power4 build
elf/sln is failed to link due to:
findlocale.c:96:(.text+0x22c): @local call to ifunc memchr
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-s390-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault], core dumped
assertion fail bfd/elflink.c:14299
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-sh3eb-linux-gnu build
FAIL: glibcs-sh3-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu-soft build
FAIL: glibcs-sh4-linux-gnu build
FAIL: glibcs-sh4-linux-gnu-soft build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Also TLS code sequence in SH assembly syscalls in glibc doesn't match TLS
code sequence expected by ld:
https://sourceware.org/bugzilla/show_bug.cgi?id=22270
FAIL: glibcs-sparc64-linux-gnu build
FAIL: glibcs-sparcv9-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu-32 build
FAIL: glibcs-tilegx-linux-gnu build
FAIL: glibcs-tilegx-linux-gnu-32 build
FAIL: glibcs-tilepro-linux-gnu build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
[BZ #19574]
* INSTALL: Regenerated.
* Makeconfig (real-static-start-installed-name): New.
(pic-default): Updated for --enable-static-pie.
(pie-default): New for --enable-static-pie.
(default-pie-ldflag): Likewise.
(+link-static-before-libc): Replace $(DEFAULT-LDFLAGS-$(@F))
with $(if $($(@F)-no-pie),$(no-pie-ldflag),$(default-pie-ldflag)).
Replace $(static-start-installed-name) with
$(real-static-start-installed-name).
(+prectorT): Updated for --enable-static-pie.
(+postctorT): Likewise.
(CFLAGS-.o): Add $(pie-default).
(CFLAGS-.op): Likewise.
* NEWS: Mention --enable-static-pie.
* config.h.in (ENABLE_STATIC_PIE): New.
* configure.ac (--enable-static-pie): New configure option.
(have-no-dynamic-linker): New LIBC_CONFIG_VAR.
(have-static-pie): Likewise.
Enable static PIE if linker supports --no-dynamic-linker.
(ENABLE_STATIC_PIE): New AC_DEFINE.
(enable-static-pie): New LIBC_CONFIG_VAR.
* configure: Regenerated.
* csu/Makefile (omit-deps): Add r$(start-installed-name) and
gr$(start-installed-name) for --enable-static-pie.
(extra-objs): Likewise.
(install-lib): Likewise.
(extra-objs): Add static-reloc.o and static-reloc.os
($(objpfx)$(start-installed-name)): Also depend on
$(objpfx)static-reloc.o.
($(objpfx)r$(start-installed-name)): New.
($(objpfx)g$(start-installed-name)): Also depend on
$(objpfx)static-reloc.os.
($(objpfx)gr$(start-installed-name)): New.
* csu/libc-start.c (LIBC_START_MAIN): Call _dl_relocate_static_pie
in libc.a.
* csu/libc-tls.c (__libc_setup_tls): Add main_map->l_addr to
initimage.
* csu/static-reloc.c: New file.
* elf/Makefile (routines): Add dl-reloc-static-pie.
(elide-routines.os): Likewise.
(DEFAULT-LDFLAGS-tst-tls1-static-non-pie): Removed.
(tst-tls1-static-non-pie-no-pie): New.
* elf/dl-reloc-static-pie.c: New file.
* elf/dl-support.c (_dl_get_dl_main_map): New function.
* elf/dynamic-link.h (ELF_DURING_STARTUP): Also check
STATIC_PIE_BOOTSTRAP.
* elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise.
* gmon/Makefile (tests): Add tst-gmon-static-pie.
(tests-static): Likewise.
(DEFAULT-LDFLAGS-tst-gmon-static): Removed.
(tst-gmon-static-no-pie): New.
(CFLAGS-tst-gmon-static-pie.c): Likewise.
(CRT-tst-gmon-static-pie): Likewise.
(tst-gmon-static-pie-ENV): Likewise.
(tests-special): Likewise.
($(objpfx)tst-gmon-static-pie.out): Likewise.
(clean-tst-gmon-static-pie-data): Likewise.
($(objpfx)tst-gmon-static-pie-gprof.out): Likewise.
* gmon/tst-gmon-static-pie.c: New file.
* manual/install.texi: Document --enable-static-pie.
* sysdeps/generic/ldsodefs.h (_dl_relocate_static_pie): New.
(_dl_get_dl_main_map): Likewise.
* sysdeps/i386/configure.ac: Check if linker supports static PIE.
* sysdeps/x86_64/configure.ac: Likewise.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure: Likewise.
* sysdeps/mips/Makefile (ASFLAGS-.o): Add $(pie-default).
(ASFLAGS-.op): Likewise.
2017-12-16 00:59:33 +00:00
|
|
|
ifeq (yes,$(enable-static-pie))
|
|
|
|
CFLAGS-tst-gmon-static-pie.c := $(PIE-ccflag) -fno-omit-frame-pointer -pg
|
2021-12-11 23:41:38 +00:00
|
|
|
CRT-tst-gmon-static-pie := $(csu-objpfx)gr$(static-start-installed-name)
|
Add --enable-static-pie configure option to build static PIE [BZ #19574]
Static PIE extends address space layout randomization to static
executables. It provides additional security hardening benefits at
the cost of some memory and performance.
Dynamic linker, ld.so, is a standalone program which can be loaded at
any address. This patch adds a configure option, --enable-static-pie,
to embed the part of ld.so in static executable to create static position
independent executable (static PIE). A static PIE is similar to static
executable, but can be loaded at any address without help from a dynamic
linker. When --enable-static-pie is used to configure glibc, libc.a is
built as PIE and all static executables, including tests, are built as
static PIE. The resulting libc.a can be used together with GCC 8 or
above to build static PIE with the compiler option, -static-pie. But
GCC 8 isn't required to build glibc with --enable-static-pie. Only GCC
with PIE support is needed. When an older GCC is used to build glibc
with --enable-static-pie, proper input files are passed to linker to
create static executables as static PIE, together with "-z text" to
prevent dynamic relocations in read-only segments, which are not allowed
in static PIE.
The following changes are made for static PIE:
1. Add a new function, _dl_relocate_static_pie, to:
a. Get the run-time load address.
b. Read the dynamic section.
c. Perform dynamic relocations.
Dynamic linker also performs these steps. But static PIE doesn't load
any shared objects.
2. Call _dl_relocate_static_pie at entrance of LIBC_START_MAIN in
libc.a. crt1.o, which is used to create dynamic and non-PIE static
executables, is updated to include a dummy _dl_relocate_static_pie.
rcrt1.o is added to create static PIE, which will link in the real
_dl_relocate_static_pie. grcrt1.o is also added to create static PIE
with -pg. GCC 8 has been updated to support rcrt1.o and grcrt1.o for
static PIE.
Static PIE can work on all architectures which support PIE, provided:
1. Target must support accessing of local functions without dynamic
relocations, which is needed in start.S to call __libc_start_main with
function addresses of __libc_csu_init, __libc_csu_fini and main. All
functions in static PIE are local functions. If PIE start.S can't reach
main () defined in a shared object, the code sequence:
pass address of local_main to __libc_start_main
...
local_main:
tail call to main via PLT
can be used.
2. start.S is updated to check PIC instead SHARED for PIC code path and
avoid dynamic relocation, when PIC is defined and SHARED isn't defined,
to support static PIE.
3. All assembly codes are updated check PIC instead SHARED for PIC code
path to avoid dynamic relocations in read-only sections.
4. All assembly codes are updated check SHARED instead PIC for static
symbol name.
5. elf_machine_load_address in dl-machine.h are updated to support static
PIE.
6. __brk works without TLS nor dynamic relocations in read-only section
so that it can be used by __libc_setup_tls to initializes TLS in static
PIE.
NB: When glibc is built with GCC defaulted to PIE, libc.a is compiled
with -fPIE, regardless if --enable-static-pie is used to configure glibc.
When glibc is configured with --enable-static-pie, libc.a is compiled
with -fPIE, regardless whether GCC defaults to PIE or not. The same
libc.a can be used to build both static executable and static PIE.
There is no need for separate PIE copy of libc.a.
On x86-64, the normal static sln:
text data bss dec hex filename
625425 8284 5456 639165 9c0bd elf/sln
the static PIE sln:
text data bss dec hex filename
657626 20636 5392 683654 a6e86 elf/sln
The code size is increased by 5% and the binary size is increased by 7%.
Linker requirements to build glibc with --enable-static-pie:
1. Linker supports --no-dynamic-linker to remove PT_INTERP segment from
static PIE.
2. Linker can create working static PIE. The x86-64 linker needs the
fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21782
The i386 linker needs to be able to convert "movl main@GOT(%ebx), %eax"
to "leal main@GOTOFF(%ebx), %eax" if main is defined locally.
Binutils 2.29 or above are OK for i686 and x86-64. But linker status for
other targets need to be verified.
3. Linker should resolve undefined weak symbols to 0 in static PIE:
https://sourceware.org/bugzilla/show_bug.cgi?id=22269
4. Many ELF backend linkers incorrectly check bfd_link_pic for TLS
relocations, which should check bfd_link_executable instead:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Tested on aarch64, i686 and x86-64.
Using GCC 7 and binutils master branch, build-many-glibcs.py with
--enable-static-pie with all patches for static PIE applied have the
following build successes:
PASS: glibcs-aarch64_be-linux-gnu build
PASS: glibcs-aarch64-linux-gnu build
PASS: glibcs-armeb-linux-gnueabi-be8 build
PASS: glibcs-armeb-linux-gnueabi build
PASS: glibcs-armeb-linux-gnueabihf-be8 build
PASS: glibcs-armeb-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabi build
PASS: glibcs-arm-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabihf-v7a build
PASS: glibcs-arm-linux-gnueabihf-v7a-disable-multi-arch build
PASS: glibcs-m68k-linux-gnu build
PASS: glibcs-microblazeel-linux-gnu build
PASS: glibcs-microblaze-linux-gnu build
PASS: glibcs-mips64el-linux-gnu-n32 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n32-soft build
PASS: glibcs-mips64el-linux-gnu-n64 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n64-soft build
PASS: glibcs-mips64-linux-gnu-n32 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n32-soft build
PASS: glibcs-mips64-linux-gnu-n64 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n64-soft build
PASS: glibcs-mipsel-linux-gnu build
PASS: glibcs-mipsel-linux-gnu-nan2008 build
PASS: glibcs-mipsel-linux-gnu-nan2008-soft build
PASS: glibcs-mipsel-linux-gnu-soft build
PASS: glibcs-mips-linux-gnu build
PASS: glibcs-mips-linux-gnu-nan2008 build
PASS: glibcs-mips-linux-gnu-nan2008-soft build
PASS: glibcs-mips-linux-gnu-soft build
PASS: glibcs-nios2-linux-gnu build
PASS: glibcs-powerpc64le-linux-gnu build
PASS: glibcs-powerpc64-linux-gnu build
PASS: glibcs-tilegxbe-linux-gnu-32 build
PASS: glibcs-tilegxbe-linux-gnu build
PASS: glibcs-tilegx-linux-gnu-32 build
PASS: glibcs-tilegx-linux-gnu build
PASS: glibcs-tilepro-linux-gnu build
and the following build failures:
FAIL: glibcs-alpha-linux-gnu build
elf/sln is failed to link due to:
assertion fail bfd/elf64-alpha.c:4125
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-hppa-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
https://sourceware.org/bugzilla/show_bug.cgi?id=22537
FAIL: glibcs-ia64-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
FAIL: glibcs-powerpc-linux-gnu build
FAIL: glibcs-powerpc-linux-gnu-soft build
FAIL: glibcs-powerpc-linux-gnuspe build
FAIL: glibcs-powerpc-linux-gnuspe-e500v1 build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22264
FAIL: glibcs-powerpc-linux-gnu-power4 build
elf/sln is failed to link due to:
findlocale.c:96:(.text+0x22c): @local call to ifunc memchr
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-s390-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault], core dumped
assertion fail bfd/elflink.c:14299
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-sh3eb-linux-gnu build
FAIL: glibcs-sh3-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu-soft build
FAIL: glibcs-sh4-linux-gnu build
FAIL: glibcs-sh4-linux-gnu-soft build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Also TLS code sequence in SH assembly syscalls in glibc doesn't match TLS
code sequence expected by ld:
https://sourceware.org/bugzilla/show_bug.cgi?id=22270
FAIL: glibcs-sparc64-linux-gnu build
FAIL: glibcs-sparcv9-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu-32 build
FAIL: glibcs-tilegx-linux-gnu build
FAIL: glibcs-tilegx-linux-gnu-32 build
FAIL: glibcs-tilepro-linux-gnu build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
[BZ #19574]
* INSTALL: Regenerated.
* Makeconfig (real-static-start-installed-name): New.
(pic-default): Updated for --enable-static-pie.
(pie-default): New for --enable-static-pie.
(default-pie-ldflag): Likewise.
(+link-static-before-libc): Replace $(DEFAULT-LDFLAGS-$(@F))
with $(if $($(@F)-no-pie),$(no-pie-ldflag),$(default-pie-ldflag)).
Replace $(static-start-installed-name) with
$(real-static-start-installed-name).
(+prectorT): Updated for --enable-static-pie.
(+postctorT): Likewise.
(CFLAGS-.o): Add $(pie-default).
(CFLAGS-.op): Likewise.
* NEWS: Mention --enable-static-pie.
* config.h.in (ENABLE_STATIC_PIE): New.
* configure.ac (--enable-static-pie): New configure option.
(have-no-dynamic-linker): New LIBC_CONFIG_VAR.
(have-static-pie): Likewise.
Enable static PIE if linker supports --no-dynamic-linker.
(ENABLE_STATIC_PIE): New AC_DEFINE.
(enable-static-pie): New LIBC_CONFIG_VAR.
* configure: Regenerated.
* csu/Makefile (omit-deps): Add r$(start-installed-name) and
gr$(start-installed-name) for --enable-static-pie.
(extra-objs): Likewise.
(install-lib): Likewise.
(extra-objs): Add static-reloc.o and static-reloc.os
($(objpfx)$(start-installed-name)): Also depend on
$(objpfx)static-reloc.o.
($(objpfx)r$(start-installed-name)): New.
($(objpfx)g$(start-installed-name)): Also depend on
$(objpfx)static-reloc.os.
($(objpfx)gr$(start-installed-name)): New.
* csu/libc-start.c (LIBC_START_MAIN): Call _dl_relocate_static_pie
in libc.a.
* csu/libc-tls.c (__libc_setup_tls): Add main_map->l_addr to
initimage.
* csu/static-reloc.c: New file.
* elf/Makefile (routines): Add dl-reloc-static-pie.
(elide-routines.os): Likewise.
(DEFAULT-LDFLAGS-tst-tls1-static-non-pie): Removed.
(tst-tls1-static-non-pie-no-pie): New.
* elf/dl-reloc-static-pie.c: New file.
* elf/dl-support.c (_dl_get_dl_main_map): New function.
* elf/dynamic-link.h (ELF_DURING_STARTUP): Also check
STATIC_PIE_BOOTSTRAP.
* elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise.
* gmon/Makefile (tests): Add tst-gmon-static-pie.
(tests-static): Likewise.
(DEFAULT-LDFLAGS-tst-gmon-static): Removed.
(tst-gmon-static-no-pie): New.
(CFLAGS-tst-gmon-static-pie.c): Likewise.
(CRT-tst-gmon-static-pie): Likewise.
(tst-gmon-static-pie-ENV): Likewise.
(tests-special): Likewise.
($(objpfx)tst-gmon-static-pie.out): Likewise.
(clean-tst-gmon-static-pie-data): Likewise.
($(objpfx)tst-gmon-static-pie-gprof.out): Likewise.
* gmon/tst-gmon-static-pie.c: New file.
* manual/install.texi: Document --enable-static-pie.
* sysdeps/generic/ldsodefs.h (_dl_relocate_static_pie): New.
(_dl_get_dl_main_map): Likewise.
* sysdeps/i386/configure.ac: Check if linker supports static PIE.
* sysdeps/x86_64/configure.ac: Likewise.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure: Likewise.
* sysdeps/mips/Makefile (ASFLAGS-.o): Add $(pie-default).
(ASFLAGS-.op): Likewise.
2017-12-16 00:59:33 +00:00
|
|
|
tst-gmon-static-pie-ENV := GMON_OUT_PREFIX=$(objpfx)tst-gmon-static-pie.data
|
|
|
|
ifeq ($(run-built-tests),yes)
|
|
|
|
tests-special += $(objpfx)tst-gmon-static-pie-gprof.out
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
|
2017-10-12 10:45:55 +00:00
|
|
|
|
2004-10-06 22:09:35 +00:00
|
|
|
include ../Rules
|
|
|
|
|
1996-01-17 02:11:06 +00:00
|
|
|
# We cannot compile mcount.c with -pg because that would
|
1996-12-20 01:39:50 +00:00
|
|
|
# create recursive calls. Just copy the normal static object.
|
1996-02-27 00:55:03 +00:00
|
|
|
# On systems where `profil' is not a system call, the same
|
|
|
|
# problem exists for the internal functions in profil.c.
|
|
|
|
|
2016-03-03 14:55:59 +00:00
|
|
|
noprof := mcount $(sysdep_noprof)
|
1996-02-27 00:55:03 +00:00
|
|
|
ifeq (,$(filter profil,$(unix-syscalls)))
|
2001-03-21 20:15:55 +00:00
|
|
|
noprof += profil sprofil
|
1996-02-27 00:55:03 +00:00
|
|
|
endif
|
|
|
|
|
1997-08-20 03:53:21 +00:00
|
|
|
$(noprof:%=$(objpfx)%.op): %.op: %.o
|
1996-01-17 02:11:06 +00:00
|
|
|
rm -f $@
|
|
|
|
ln $< $@
|
2017-08-15 13:49:40 +00:00
|
|
|
|
|
|
|
# GMON_OUTPUT_PREFIX only sets the output prefix. The actual file
|
|
|
|
# name contains the PID as well.
|
|
|
|
$(objpfx)tst-gmon.out: clean-tst-gmon-data
|
|
|
|
clean-tst-gmon-data:
|
|
|
|
rm -f $(objpfx)tst-gmon.data.*
|
|
|
|
|
gmon: improve mcount overflow handling [BZ# 27576]
When mcount overflows, no gmon.out file is generated, but no message is printed
to the user, leaving the user with no idea why, and thinking maybe there is
some bug - which is how BZ 27576 ended up being logged. Print a message to
stderr in this case so the user knows what is going on.
As a comment in sys/gmon.h acknowledges, the hardcoded MAXARCS value is too
small for some large applications, including the test case in that BZ. Rather
than increase it, add tunables to enable MINARCS and MAXARCS to be overridden
at runtime (glibc.gmon.minarcs and glibc.gmon.maxarcs). So if a user gets the
mcount overflow error, they can try increasing maxarcs (they might need to
increase minarcs too if the heuristic is wrong in their case.)
Note setting minarcs/maxarcs too large can cause monstartup to fail with an
out of memory error. If you set them large enough, it can cause an integer
overflow in calculating the buffer size. I haven't done anything to defend
against that - it would not generally be a security vulnerability, since these
tunables will be ignored in suid/sgid programs (due to the SXID_ERASE default),
and if you can set GLIBC_TUNABLES in the environment of a process, you can take
it over anyway (LD_PRELOAD, LD_LIBRARY_PATH, etc). I thought about modifying
the code of monstartup to defend against integer overflows, but doing so is
complicated, and I realise the existing code is susceptible to them even prior
to this change (e.g. try passing a pathologically large highpc argument to
monstartup), so I decided just to leave that possibility in-place.
Add a test case which demonstrates mcount overflow and the tunables.
Document the new tunables in the manual.
Signed-off-by: Simon Kissane <skissane@gmail.com>
Reviewed-by: DJ Delorie <dj@redhat.com>
2023-02-11 09:12:13 +00:00
|
|
|
$(objpfx)tst-mcount-overflow.o: clean-tst-mcount-overflow-data
|
|
|
|
clean-tst-mcount-overflow-data:
|
|
|
|
rm -f $(objpfx)tst-mcount-overflow.data.*
|
|
|
|
|
|
|
|
$(objpfx)tst-mcount-overflow-check.out: tst-mcount-overflow-check.sh $(objpfx)tst-mcount-overflow.out
|
|
|
|
$(SHELL) $< $(objpfx)tst-mcount-overflow > $@; \
|
|
|
|
$(evaluate-test)
|
|
|
|
|
gmon: fix memory corruption issues [BZ# 30101]
V2 of this patch fixes an issue in V1, where the state was changed to ON not
OFF at end of _mcleanup. I hadn't noticed that (counterintuitively) ON=0 and
OFF=3, hence zeroing the buffer turned it back on. So set the state to OFF
after the memset.
1. Prevent double free, and reads from unallocated memory, when
_mcleanup is (incorrectly) called two or more times in a row,
without an intervening call to __monstartup; with this patch, the
second and subsequent calls effectively become no-ops instead.
While setting tos=NULL is minimal fix, safest action is to zero the
whole gmonparam buffer.
2. Prevent memory leak when __monstartup is (incorrectly) called two
or more times in a row, without an intervening call to _mcleanup;
with this patch, the second and subsequent calls effectively become
no-ops instead.
3. After _mcleanup, treat __moncontrol(1) as __moncontrol(0) instead.
With zeroing of gmonparam buffer in _mcleanup, this stops the
state incorrectly being changed to GMON_PROF_ON despite profiling
actually being off. If we'd just done the minimal fix to _mcleanup
of setting tos=NULL, there is risk of far worse memory corruption:
kcount would point to deallocated memory, and the __profil syscall
would make the kernel write profiling data into that memory,
which could have since been reallocated to something unrelated.
4. Ensure __moncontrol(0) still turns off profiling even in error
state. Otherwise, if mcount overflows and sets state to
GMON_PROF_ERROR, when _mcleanup calls __moncontrol(0), the __profil
syscall to disable profiling will not be invoked. _mcleanup will
free the buffer, but the kernel will still be writing profiling
data into it, potentially corrupted arbitrary memory.
Also adds a test case for (1). Issues (2)-(4) are not feasible to test.
Signed-off-by: Simon Kissane <skissane@gmail.com>
Reviewed-by: DJ Delorie <dj@redhat.com>
2023-02-10 21:58:02 +00:00
|
|
|
$(objpfx)tst-mcleanup.out: clean-tst-mcleanup-data
|
|
|
|
clean-tst-mcleanup-data:
|
|
|
|
rm -f $(objpfx)tst-mcleanup.data.*
|
|
|
|
|
2017-08-15 13:49:40 +00:00
|
|
|
$(objpfx)tst-gmon-gprof.out: tst-gmon-gprof.sh $(objpfx)tst-gmon.out
|
|
|
|
$(SHELL) $< $(GPROF) $(objpfx)tst-gmon $(objpfx)tst-gmon.data.* > $@; \
|
|
|
|
$(evaluate-test)
|
2017-10-12 10:45:55 +00:00
|
|
|
|
2017-10-14 19:58:40 +00:00
|
|
|
$(objpfx)tst-gmon-static.out: clean-tst-gmon-static-data
|
|
|
|
clean-tst-gmon-static-data:
|
|
|
|
rm -f $(objpfx)tst-gmon-static.data.*
|
|
|
|
|
|
|
|
$(objpfx)tst-gmon-static-gprof.out: tst-gmon-static-gprof.sh \
|
|
|
|
$(objpfx)tst-gmon-static.out
|
|
|
|
$(SHELL) $< $(GPROF) $(objpfx)tst-gmon-static \
|
|
|
|
$(objpfx)tst-gmon-static.data.* > $@; \
|
|
|
|
$(evaluate-test)
|
|
|
|
|
2017-10-12 10:45:55 +00:00
|
|
|
$(objpfx)tst-gmon-pie.out: clean-tst-gmon-pie-data
|
|
|
|
clean-tst-gmon-pie-data:
|
|
|
|
rm -f $(objpfx)tst-gmon-pie.data.*
|
|
|
|
|
|
|
|
$(objpfx)tst-gmon-pie-gprof.out: tst-gmon-gprof.sh $(objpfx)tst-gmon-pie.out
|
|
|
|
$(SHELL) $< $(GPROF) $(objpfx)tst-gmon-pie $(objpfx)tst-gmon-pie.data.* > $@; \
|
|
|
|
$(evaluate-test)
|
Add --enable-static-pie configure option to build static PIE [BZ #19574]
Static PIE extends address space layout randomization to static
executables. It provides additional security hardening benefits at
the cost of some memory and performance.
Dynamic linker, ld.so, is a standalone program which can be loaded at
any address. This patch adds a configure option, --enable-static-pie,
to embed the part of ld.so in static executable to create static position
independent executable (static PIE). A static PIE is similar to static
executable, but can be loaded at any address without help from a dynamic
linker. When --enable-static-pie is used to configure glibc, libc.a is
built as PIE and all static executables, including tests, are built as
static PIE. The resulting libc.a can be used together with GCC 8 or
above to build static PIE with the compiler option, -static-pie. But
GCC 8 isn't required to build glibc with --enable-static-pie. Only GCC
with PIE support is needed. When an older GCC is used to build glibc
with --enable-static-pie, proper input files are passed to linker to
create static executables as static PIE, together with "-z text" to
prevent dynamic relocations in read-only segments, which are not allowed
in static PIE.
The following changes are made for static PIE:
1. Add a new function, _dl_relocate_static_pie, to:
a. Get the run-time load address.
b. Read the dynamic section.
c. Perform dynamic relocations.
Dynamic linker also performs these steps. But static PIE doesn't load
any shared objects.
2. Call _dl_relocate_static_pie at entrance of LIBC_START_MAIN in
libc.a. crt1.o, which is used to create dynamic and non-PIE static
executables, is updated to include a dummy _dl_relocate_static_pie.
rcrt1.o is added to create static PIE, which will link in the real
_dl_relocate_static_pie. grcrt1.o is also added to create static PIE
with -pg. GCC 8 has been updated to support rcrt1.o and grcrt1.o for
static PIE.
Static PIE can work on all architectures which support PIE, provided:
1. Target must support accessing of local functions without dynamic
relocations, which is needed in start.S to call __libc_start_main with
function addresses of __libc_csu_init, __libc_csu_fini and main. All
functions in static PIE are local functions. If PIE start.S can't reach
main () defined in a shared object, the code sequence:
pass address of local_main to __libc_start_main
...
local_main:
tail call to main via PLT
can be used.
2. start.S is updated to check PIC instead SHARED for PIC code path and
avoid dynamic relocation, when PIC is defined and SHARED isn't defined,
to support static PIE.
3. All assembly codes are updated check PIC instead SHARED for PIC code
path to avoid dynamic relocations in read-only sections.
4. All assembly codes are updated check SHARED instead PIC for static
symbol name.
5. elf_machine_load_address in dl-machine.h are updated to support static
PIE.
6. __brk works without TLS nor dynamic relocations in read-only section
so that it can be used by __libc_setup_tls to initializes TLS in static
PIE.
NB: When glibc is built with GCC defaulted to PIE, libc.a is compiled
with -fPIE, regardless if --enable-static-pie is used to configure glibc.
When glibc is configured with --enable-static-pie, libc.a is compiled
with -fPIE, regardless whether GCC defaults to PIE or not. The same
libc.a can be used to build both static executable and static PIE.
There is no need for separate PIE copy of libc.a.
On x86-64, the normal static sln:
text data bss dec hex filename
625425 8284 5456 639165 9c0bd elf/sln
the static PIE sln:
text data bss dec hex filename
657626 20636 5392 683654 a6e86 elf/sln
The code size is increased by 5% and the binary size is increased by 7%.
Linker requirements to build glibc with --enable-static-pie:
1. Linker supports --no-dynamic-linker to remove PT_INTERP segment from
static PIE.
2. Linker can create working static PIE. The x86-64 linker needs the
fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21782
The i386 linker needs to be able to convert "movl main@GOT(%ebx), %eax"
to "leal main@GOTOFF(%ebx), %eax" if main is defined locally.
Binutils 2.29 or above are OK for i686 and x86-64. But linker status for
other targets need to be verified.
3. Linker should resolve undefined weak symbols to 0 in static PIE:
https://sourceware.org/bugzilla/show_bug.cgi?id=22269
4. Many ELF backend linkers incorrectly check bfd_link_pic for TLS
relocations, which should check bfd_link_executable instead:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Tested on aarch64, i686 and x86-64.
Using GCC 7 and binutils master branch, build-many-glibcs.py with
--enable-static-pie with all patches for static PIE applied have the
following build successes:
PASS: glibcs-aarch64_be-linux-gnu build
PASS: glibcs-aarch64-linux-gnu build
PASS: glibcs-armeb-linux-gnueabi-be8 build
PASS: glibcs-armeb-linux-gnueabi build
PASS: glibcs-armeb-linux-gnueabihf-be8 build
PASS: glibcs-armeb-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabi build
PASS: glibcs-arm-linux-gnueabihf build
PASS: glibcs-arm-linux-gnueabihf-v7a build
PASS: glibcs-arm-linux-gnueabihf-v7a-disable-multi-arch build
PASS: glibcs-m68k-linux-gnu build
PASS: glibcs-microblazeel-linux-gnu build
PASS: glibcs-microblaze-linux-gnu build
PASS: glibcs-mips64el-linux-gnu-n32 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n32-soft build
PASS: glibcs-mips64el-linux-gnu-n64 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64el-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64el-linux-gnu-n64-soft build
PASS: glibcs-mips64-linux-gnu-n32 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008 build
PASS: glibcs-mips64-linux-gnu-n32-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n32-soft build
PASS: glibcs-mips64-linux-gnu-n64 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008 build
PASS: glibcs-mips64-linux-gnu-n64-nan2008-soft build
PASS: glibcs-mips64-linux-gnu-n64-soft build
PASS: glibcs-mipsel-linux-gnu build
PASS: glibcs-mipsel-linux-gnu-nan2008 build
PASS: glibcs-mipsel-linux-gnu-nan2008-soft build
PASS: glibcs-mipsel-linux-gnu-soft build
PASS: glibcs-mips-linux-gnu build
PASS: glibcs-mips-linux-gnu-nan2008 build
PASS: glibcs-mips-linux-gnu-nan2008-soft build
PASS: glibcs-mips-linux-gnu-soft build
PASS: glibcs-nios2-linux-gnu build
PASS: glibcs-powerpc64le-linux-gnu build
PASS: glibcs-powerpc64-linux-gnu build
PASS: glibcs-tilegxbe-linux-gnu-32 build
PASS: glibcs-tilegxbe-linux-gnu build
PASS: glibcs-tilegx-linux-gnu-32 build
PASS: glibcs-tilegx-linux-gnu build
PASS: glibcs-tilepro-linux-gnu build
and the following build failures:
FAIL: glibcs-alpha-linux-gnu build
elf/sln is failed to link due to:
assertion fail bfd/elf64-alpha.c:4125
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-hppa-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
https://sourceware.org/bugzilla/show_bug.cgi?id=22537
FAIL: glibcs-ia64-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault]
FAIL: glibcs-powerpc-linux-gnu build
FAIL: glibcs-powerpc-linux-gnu-soft build
FAIL: glibcs-powerpc-linux-gnuspe build
FAIL: glibcs-powerpc-linux-gnuspe-e500v1 build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22264
FAIL: glibcs-powerpc-linux-gnu-power4 build
elf/sln is failed to link due to:
findlocale.c:96:(.text+0x22c): @local call to ifunc memchr
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-s390-linux-gnu build
elf/sln is failed to link due to:
collect2: fatal error: ld terminated with signal 11 [Segmentation fault], core dumped
assertion fail bfd/elflink.c:14299
This is caused by linker bug and/or non-PIC code in PIE libc.a.
FAIL: glibcs-sh3eb-linux-gnu build
FAIL: glibcs-sh3-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu build
FAIL: glibcs-sh4eb-linux-gnu-soft build
FAIL: glibcs-sh4-linux-gnu build
FAIL: glibcs-sh4-linux-gnu-soft build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
Also TLS code sequence in SH assembly syscalls in glibc doesn't match TLS
code sequence expected by ld:
https://sourceware.org/bugzilla/show_bug.cgi?id=22270
FAIL: glibcs-sparc64-linux-gnu build
FAIL: glibcs-sparcv9-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu build
FAIL: glibcs-tilegxbe-linux-gnu-32 build
FAIL: glibcs-tilegx-linux-gnu build
FAIL: glibcs-tilegx-linux-gnu-32 build
FAIL: glibcs-tilepro-linux-gnu build
elf/sln is failed to link due to:
ld: read-only segment has dynamic relocations.
This is caused by linker bug and/or non-PIC code in PIE libc.a. See:
https://sourceware.org/bugzilla/show_bug.cgi?id=22263
[BZ #19574]
* INSTALL: Regenerated.
* Makeconfig (real-static-start-installed-name): New.
(pic-default): Updated for --enable-static-pie.
(pie-default): New for --enable-static-pie.
(default-pie-ldflag): Likewise.
(+link-static-before-libc): Replace $(DEFAULT-LDFLAGS-$(@F))
with $(if $($(@F)-no-pie),$(no-pie-ldflag),$(default-pie-ldflag)).
Replace $(static-start-installed-name) with
$(real-static-start-installed-name).
(+prectorT): Updated for --enable-static-pie.
(+postctorT): Likewise.
(CFLAGS-.o): Add $(pie-default).
(CFLAGS-.op): Likewise.
* NEWS: Mention --enable-static-pie.
* config.h.in (ENABLE_STATIC_PIE): New.
* configure.ac (--enable-static-pie): New configure option.
(have-no-dynamic-linker): New LIBC_CONFIG_VAR.
(have-static-pie): Likewise.
Enable static PIE if linker supports --no-dynamic-linker.
(ENABLE_STATIC_PIE): New AC_DEFINE.
(enable-static-pie): New LIBC_CONFIG_VAR.
* configure: Regenerated.
* csu/Makefile (omit-deps): Add r$(start-installed-name) and
gr$(start-installed-name) for --enable-static-pie.
(extra-objs): Likewise.
(install-lib): Likewise.
(extra-objs): Add static-reloc.o and static-reloc.os
($(objpfx)$(start-installed-name)): Also depend on
$(objpfx)static-reloc.o.
($(objpfx)r$(start-installed-name)): New.
($(objpfx)g$(start-installed-name)): Also depend on
$(objpfx)static-reloc.os.
($(objpfx)gr$(start-installed-name)): New.
* csu/libc-start.c (LIBC_START_MAIN): Call _dl_relocate_static_pie
in libc.a.
* csu/libc-tls.c (__libc_setup_tls): Add main_map->l_addr to
initimage.
* csu/static-reloc.c: New file.
* elf/Makefile (routines): Add dl-reloc-static-pie.
(elide-routines.os): Likewise.
(DEFAULT-LDFLAGS-tst-tls1-static-non-pie): Removed.
(tst-tls1-static-non-pie-no-pie): New.
* elf/dl-reloc-static-pie.c: New file.
* elf/dl-support.c (_dl_get_dl_main_map): New function.
* elf/dynamic-link.h (ELF_DURING_STARTUP): Also check
STATIC_PIE_BOOTSTRAP.
* elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise.
* gmon/Makefile (tests): Add tst-gmon-static-pie.
(tests-static): Likewise.
(DEFAULT-LDFLAGS-tst-gmon-static): Removed.
(tst-gmon-static-no-pie): New.
(CFLAGS-tst-gmon-static-pie.c): Likewise.
(CRT-tst-gmon-static-pie): Likewise.
(tst-gmon-static-pie-ENV): Likewise.
(tests-special): Likewise.
($(objpfx)tst-gmon-static-pie.out): Likewise.
(clean-tst-gmon-static-pie-data): Likewise.
($(objpfx)tst-gmon-static-pie-gprof.out): Likewise.
* gmon/tst-gmon-static-pie.c: New file.
* manual/install.texi: Document --enable-static-pie.
* sysdeps/generic/ldsodefs.h (_dl_relocate_static_pie): New.
(_dl_get_dl_main_map): Likewise.
* sysdeps/i386/configure.ac: Check if linker supports static PIE.
* sysdeps/x86_64/configure.ac: Likewise.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure: Likewise.
* sysdeps/mips/Makefile (ASFLAGS-.o): Add $(pie-default).
(ASFLAGS-.op): Likewise.
2017-12-16 00:59:33 +00:00
|
|
|
|
|
|
|
$(objpfx)tst-gmon-static-pie.out: clean-tst-gmon-static-pie-data
|
|
|
|
clean-tst-gmon-static-pie-data:
|
|
|
|
rm -f $(objpfx)tst-gmon-static-pie.data.*
|
|
|
|
|
|
|
|
$(objpfx)tst-gmon-static-pie-gprof.out: tst-gmon-static-gprof.sh \
|
|
|
|
$(objpfx)tst-gmon-static-pie.out
|
|
|
|
$(SHELL) $< $(GPROF) $(objpfx)tst-gmon-static-pie \
|
|
|
|
$(objpfx)tst-gmon-static-pie.data.* > $@; \
|
|
|
|
$(evaluate-test)
|