2023-11-03 12:12:21 +00:00
|
|
|
/* Double-precision AdvSIMD inverse tan
|
|
|
|
|
2024-01-01 18:12:26 +00:00
|
|
|
Copyright (C) 2023-2024 Free Software Foundation, Inc.
|
2023-11-03 12:12:21 +00:00
|
|
|
This file is part of the GNU C Library.
|
|
|
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
|
|
License along with the GNU C Library; if not, see
|
|
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include "v_math.h"
|
|
|
|
#include "poly_advsimd_f64.h"
|
|
|
|
|
|
|
|
static const struct data
|
|
|
|
{
|
|
|
|
float64x2_t pi_over_2;
|
|
|
|
float64x2_t poly[20];
|
|
|
|
} data = {
|
|
|
|
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
|
|
|
[2**-1022, 1.0]. */
|
|
|
|
.poly = { V2 (-0x1.5555555555555p-2), V2 (0x1.99999999996c1p-3),
|
|
|
|
V2 (-0x1.2492492478f88p-3), V2 (0x1.c71c71bc3951cp-4),
|
|
|
|
V2 (-0x1.745d160a7e368p-4), V2 (0x1.3b139b6a88ba1p-4),
|
|
|
|
V2 (-0x1.11100ee084227p-4), V2 (0x1.e1d0f9696f63bp-5),
|
|
|
|
V2 (-0x1.aebfe7b418581p-5), V2 (0x1.842dbe9b0d916p-5),
|
|
|
|
V2 (-0x1.5d30140ae5e99p-5), V2 (0x1.338e31eb2fbbcp-5),
|
|
|
|
V2 (-0x1.00e6eece7de8p-5), V2 (0x1.860897b29e5efp-6),
|
|
|
|
V2 (-0x1.0051381722a59p-6), V2 (0x1.14e9dc19a4a4ep-7),
|
|
|
|
V2 (-0x1.d0062b42fe3bfp-9), V2 (0x1.17739e210171ap-10),
|
|
|
|
V2 (-0x1.ab24da7be7402p-13), V2 (0x1.358851160a528p-16), },
|
|
|
|
.pi_over_2 = V2 (0x1.921fb54442d18p+0),
|
|
|
|
};
|
|
|
|
|
|
|
|
#define SignMask v_u64 (0x8000000000000000)
|
|
|
|
#define TinyBound 0x3e10000000000000 /* asuint64(0x1p-30). */
|
|
|
|
#define BigBound 0x4340000000000000 /* asuint64(0x1p53). */
|
|
|
|
|
|
|
|
/* Fast implementation of vector atan.
|
|
|
|
Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
|
|
|
|
z=1/x and shift = pi/2. Maximum observed error is 2.27 ulps:
|
|
|
|
_ZGVnN2v_atan (0x1.0005af27c23e9p+0) got 0x1.9225645bdd7c1p-1
|
|
|
|
want 0x1.9225645bdd7c3p-1. */
|
|
|
|
float64x2_t VPCS_ATTR V_NAME_D1 (atan) (float64x2_t x)
|
|
|
|
{
|
|
|
|
const struct data *d = ptr_barrier (&data);
|
|
|
|
|
|
|
|
/* Small cases, infs and nans are supported by our approximation technique,
|
|
|
|
but do not set fenv flags correctly. Only trigger special case if we need
|
|
|
|
fenv. */
|
|
|
|
uint64x2_t ix = vreinterpretq_u64_f64 (x);
|
|
|
|
uint64x2_t sign = vandq_u64 (ix, SignMask);
|
|
|
|
|
|
|
|
#if WANT_SIMD_EXCEPT
|
|
|
|
uint64x2_t ia12 = vandq_u64 (ix, v_u64 (0x7ff0000000000000));
|
|
|
|
uint64x2_t special = vcgtq_u64 (vsubq_u64 (ia12, v_u64 (TinyBound)),
|
|
|
|
v_u64 (BigBound - TinyBound));
|
|
|
|
/* If any lane is special, fall back to the scalar routine for all lanes. */
|
|
|
|
if (__glibc_unlikely (v_any_u64 (special)))
|
|
|
|
return v_call_f64 (atan, x, v_f64 (0), v_u64 (-1));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Argument reduction:
|
|
|
|
y := arctan(x) for x < 1
|
|
|
|
y := pi/2 + arctan(-1/x) for x > 1
|
|
|
|
Hence, use z=-1/a if x>=1, otherwise z=a. */
|
|
|
|
uint64x2_t red = vcagtq_f64 (x, v_f64 (1.0));
|
|
|
|
/* Avoid dependency in abs(x) in division (and comparison). */
|
|
|
|
float64x2_t z = vbslq_f64 (red, vdivq_f64 (v_f64 (1.0), x), x);
|
|
|
|
float64x2_t shift = vreinterpretq_f64_u64 (
|
|
|
|
vandq_u64 (red, vreinterpretq_u64_f64 (d->pi_over_2)));
|
|
|
|
/* Use absolute value only when needed (odd powers of z). */
|
|
|
|
float64x2_t az = vbslq_f64 (
|
|
|
|
SignMask, vreinterpretq_f64_u64 (vandq_u64 (SignMask, red)), z);
|
|
|
|
|
|
|
|
/* Calculate the polynomial approximation.
|
|
|
|
Use split Estrin scheme for P(z^2) with deg(P)=19. Use split instead of
|
|
|
|
full scheme to avoid underflow in x^16.
|
|
|
|
The order 19 polynomial P approximates
|
|
|
|
(atan(sqrt(x))-sqrt(x))/x^(3/2). */
|
|
|
|
float64x2_t z2 = vmulq_f64 (z, z);
|
|
|
|
float64x2_t x2 = vmulq_f64 (z2, z2);
|
|
|
|
float64x2_t x4 = vmulq_f64 (x2, x2);
|
|
|
|
float64x2_t x8 = vmulq_f64 (x4, x4);
|
|
|
|
float64x2_t y
|
|
|
|
= vfmaq_f64 (v_estrin_7_f64 (z2, x2, x4, d->poly),
|
|
|
|
v_estrin_11_f64 (z2, x2, x4, x8, d->poly + 8), x8);
|
|
|
|
|
|
|
|
/* Finalize. y = shift + z + z^3 * P(z^2). */
|
|
|
|
y = vfmaq_f64 (az, y, vmulq_f64 (z2, az));
|
|
|
|
y = vaddq_f64 (y, shift);
|
|
|
|
|
|
|
|
/* y = atan(x) if x>0, -atan(-x) otherwise. */
|
|
|
|
y = vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), sign));
|
|
|
|
return y;
|
|
|
|
}
|