mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-20 03:50:07 +00:00
124 lines
3.0 KiB
C
124 lines
3.0 KiB
C
|
/* s_cbrtl.c -- long double version of s_cbrt.c.
|
||
|
* Conversion to long double by Ulrich Drepper,
|
||
|
* Cygnus Support, drepper@cygnus.com.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
|
||
|
#if defined(LIBM_SCCS) && !defined(lint)
|
||
|
static char rcsid[] = "$NetBSD: $";
|
||
|
#endif
|
||
|
|
||
|
#include "math.h"
|
||
|
#include "math_private.h"
|
||
|
|
||
|
/* cbrtl(x)
|
||
|
* Return cube root of x
|
||
|
*/
|
||
|
#ifdef __STDC__
|
||
|
static const u_int32_t
|
||
|
#else
|
||
|
static u_int32_t
|
||
|
#endif
|
||
|
B1_EXP = 10921, /* = Int(B1) */
|
||
|
B1_MANT = 0x7bc4b064, /* = Int(1.0-0.03306235651)*2**31 */
|
||
|
|
||
|
B2_EXP = 10900,
|
||
|
B2_MANT = 0x7bc4b064; /* = Int(1.0-0.03306235651)*2**31 */
|
||
|
|
||
|
#ifdef __STDC__
|
||
|
static const long double
|
||
|
#else
|
||
|
static long double
|
||
|
#endif
|
||
|
C = 5.42857142857142815906e-01L, /* 19/35 */
|
||
|
D = -7.05306122448979611050e-01L, /* -864/1225 */
|
||
|
E = 1.41428571428571436819e+00L, /* 99/70 */
|
||
|
F = 1.60714285714285720630e+00L, /* 45/28 */
|
||
|
G = 3.57142857142857150787e-01L; /* 5/14 */
|
||
|
|
||
|
#ifdef __STDC__
|
||
|
long double __cbrtl(long double x)
|
||
|
#else
|
||
|
long double __cbrtl(x)
|
||
|
long double x;
|
||
|
#endif
|
||
|
{
|
||
|
int32_t hx;
|
||
|
long double r,s,t=0.0,w;
|
||
|
u_int32_t sign, se, x0, x1;
|
||
|
|
||
|
GET_LDOUBLE_WORDS(se,x0,x1,x);
|
||
|
sign=se&0x8000; /* sign= sign(x) */
|
||
|
se ^= sign;
|
||
|
if(se==0x7fff) return(x+x); /* cbrt(NaN,INF) is itself */
|
||
|
if((se|x0|x1)==0)
|
||
|
return(x); /* cbrt(0) is itself */
|
||
|
|
||
|
SET_LDOUBLE_EXP(x,se); /* x <- |x| */
|
||
|
|
||
|
/* XXX I don't know whether the numbers for correct are correct. The
|
||
|
precalculation is extended from 20 bits to 32 bits. This hopefully
|
||
|
gives us the needed bits to get us still along with one iteration
|
||
|
step. */
|
||
|
|
||
|
/* rough cbrt to 5 bits */
|
||
|
if(se==0) /* subnormal number */
|
||
|
{
|
||
|
u_int64_t xxl;
|
||
|
u_int32_t set,t0,t1;
|
||
|
SET_LDOUBLE_EXP(t,0x4035); /* set t= 2**54 */
|
||
|
SET_LDOUBLE_MSW(t,0x80000000);
|
||
|
t*=x;
|
||
|
GET_LDOUBLE_WORDS(set,t0,t1,t);
|
||
|
xxl = ((u_int64_t) set) << 32 | t0;
|
||
|
xxl /= 3;
|
||
|
xxl += B2_EXP << 16 | B2_MANT;
|
||
|
t0 = xxl & 0xffffffffu;
|
||
|
set = xxl >> 32;
|
||
|
SET_LDOUBLE_WORDS(t,set,t0,t1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
u_int64_t xxl = ((u_int64_t) se) << 32 | x0;
|
||
|
xxl /= 3;
|
||
|
xxl += B1_EXP << 16 | B1_MANT;
|
||
|
SET_LDOUBLE_MSW(t,xxl&0xffffffffu);
|
||
|
xxl >>= 32;
|
||
|
SET_LDOUBLE_EXP(t,xxl);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* new cbrt to 23 bits, may be implemented in single precision */
|
||
|
r=t*t/x;
|
||
|
s=C+r*t;
|
||
|
t*=G+F/(s+E+D/s);
|
||
|
|
||
|
/* chopped to 32 bits and make it larger than cbrt(x) */
|
||
|
GET_LDOUBLE_WORDS(se,x0,x1,t);
|
||
|
SET_LDOUBLE_WORDS(t,se,x0+1,0);
|
||
|
|
||
|
|
||
|
/* one step newton iteration to 53 bits with error less than 0.667 ulps */
|
||
|
s=t*t; /* t*t is exact */
|
||
|
r=x/s;
|
||
|
w=t+t;
|
||
|
r=(r-t)/(w+r); /* r-s is exact */
|
||
|
t=t+t*r;
|
||
|
|
||
|
/* retore the sign bit */
|
||
|
GET_LDOUBLE_EXP(se,t);
|
||
|
SET_LDOUBLE_EXP(t,se|sign);
|
||
|
return(t);
|
||
|
}
|
||
|
weak_alias (__cbrtl, cbrtl)
|