glibc/sysdeps/arm/libm-test-ulps

1218 lines
16 KiB
Plaintext
Raw Normal View History

# Begin of automatic generation
# Maximal error of functions:
Function: "acos":
2021-03-04 19:12:42 +00:00
double: 1
float: 1
2012-05-30 21:16:52 +00:00
Function: "acos_downward":
double: 1
2012-05-30 21:16:52 +00:00
float: 1
2012-05-30 21:16:52 +00:00
Function: "acos_towardzero":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "acos_upward":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "acosh":
double: 2
float: 2
2014-01-01 16:46:17 +00:00
Function: "acosh_downward":
double: 2
float: 2
Function: "acosh_towardzero":
double: 2
float: 2
Function: "acosh_upward":
double: 2
float: 2
Function: "asin":
2021-03-04 19:12:42 +00:00
double: 1
float: 1
2012-05-30 21:16:52 +00:00
Function: "asin_downward":
double: 1
float: 1
2012-05-30 21:16:52 +00:00
Function: "asin_towardzero":
double: 1
float: 1
2012-05-30 21:16:52 +00:00
Function: "asin_upward":
double: 2
2014-01-01 16:46:17 +00:00
float: 1
Function: "asinh":
2021-01-18 20:22:51 +00:00
double: 2
2020-04-08 11:50:27 +00:00
float: 2
2012-05-30 21:16:52 +00:00
Function: "asinh_downward":
double: 3
float: 3
Function: "asinh_towardzero":
double: 2
float: 2
2012-05-30 21:16:52 +00:00
Function: "asinh_upward":
double: 3
float: 3
Function: "atan":
double: 1
2012-05-30 21:16:52 +00:00
float: 1
Function: "atan2":
2021-03-04 19:12:42 +00:00
float: 2
Function: "atan2_downward":
2013-07-02 20:34:19 +00:00
double: 1
float: 2
Function: "atan2_towardzero":
double: 1
2013-07-02 20:34:19 +00:00
float: 2
Function: "atan2_upward":
double: 1
Fix ulps regeneration for *-finite tests. On running tests after from-scratch ulps regeneration, I found that some libm tests failed with ulps in excess of those recorded in the from-scratch regeneration, which should never happen unless those ulps exceed the limit on ulps that can go in libm-test-ulps files. Failure: Test: atan2_upward (inf, -inf) Result: is: 2.35619498e+00 0x1.2d97ccp+1 should be: 2.35619450e+00 0x1.2d97c8p+1 difference: 4.76837159e-07 0x1.000000p-21 ulp : 2.0000 max.ulp : 1.0000 Maximal error of `atan2_upward' is : 2 ulp accepted: 1 ulp Failure: Test: carg_upward (-inf + inf i) Result: is: 2.35619498e+00 0x1.2d97ccp+1 should be: 2.35619450e+00 0x1.2d97c8p+1 difference: 4.76837159e-07 0x1.000000p-21 ulp : 2.0000 max.ulp : 1.0000 Maximal error of `carg_upward' is : 2 ulp accepted: 1 ulp The problem comes from the addition of tests for the finite-math-only versions of libm functions. Those tests share ulps with the default function variants. make regen-ulps runs the default tests before the finite-math-only tests, concatenating the resulting ulps before feeding them to gen-libm-test.pl to generate a new libm-test-ulps file. But gen-libm-test.pl always takes the last ulps value given for any (function, type) pair. So, if the largest ulps for a function come from non-finite inputs, a from-scratch regeneration loses those ulps. This patch fixes gen-libm-test.pl, in the case where there are multiple ulps values for a (function, type) pair - which can only happen as part of a regeneration - to take the largest ulps value rather than the last one. Tested for ARM / MIPS / powerpc-nofpu. * math/gen-libm-test.pl (parse_ulps): Do not reduce already-recorded ulps. * sysdeps/arm/libm-test-ulps: Regenerated. * sysdeps/mips/mips32/libm-test-ulps: Likewise. * sysdeps/mips/mips64/libm-test-ulps: Likewise. * sysdeps/powerpc/nofpu/libm-test-ulps: Likewise.
2016-01-19 21:42:58 +00:00
float: 2
Function: "atan_downward":
2012-05-30 21:16:52 +00:00
double: 1
float: 2
Function: "atan_towardzero":
2013-07-02 20:34:19 +00:00
double: 1
float: 1
Function: "atan_upward":
double: 1
float: 2
Function: "atanh":
double: 2
float: 2
Function: "atanh_downward":
double: 3
float: 3
2013-07-02 20:34:19 +00:00
Function: "atanh_towardzero":
double: 2
float: 2
Function: "atanh_upward":
double: 3
float: 3
Function: "cabs":
double: 1
Function: "cabs_downward":
double: 1
Function: "cabs_towardzero":
double: 1
Function: "cabs_upward":
double: 1
Function: Real part of "cacos":
double: 1
float: 2
Function: Imaginary part of "cacos":
double: 2
float: 2
Function: Real part of "cacos_downward":
double: 3
float: 2
Function: Imaginary part of "cacos_downward":
double: 5
float: 3
Function: Real part of "cacos_towardzero":
double: 3
float: 2
Function: Imaginary part of "cacos_towardzero":
double: 5
float: 3
Function: Real part of "cacos_upward":
2012-05-30 21:16:52 +00:00
double: 2
float: 2
Function: Imaginary part of "cacos_upward":
double: 5
float: 7
Function: Real part of "cacosh":
double: 2
2012-05-30 21:16:52 +00:00
float: 2
Function: Imaginary part of "cacosh":
double: 1
float: 2
Function: Real part of "cacosh_downward":
double: 5
float: 3
Function: Imaginary part of "cacosh_downward":
double: 3
float: 3
Function: Real part of "cacosh_towardzero":
double: 5
float: 3
Function: Imaginary part of "cacosh_towardzero":
double: 3
float: 2
Function: Real part of "cacosh_upward":
double: 4
float: 4
Function: Imaginary part of "cacosh_upward":
double: 3
2012-11-30 20:41:26 +00:00
float: 2
Function: "carg":
float: 1
Function: "carg_downward":
double: 1
float: 2
Function: "carg_towardzero":
double: 1
float: 2
Function: "carg_upward":
2014-01-01 16:46:17 +00:00
double: 1
Fix ulps regeneration for *-finite tests. On running tests after from-scratch ulps regeneration, I found that some libm tests failed with ulps in excess of those recorded in the from-scratch regeneration, which should never happen unless those ulps exceed the limit on ulps that can go in libm-test-ulps files. Failure: Test: atan2_upward (inf, -inf) Result: is: 2.35619498e+00 0x1.2d97ccp+1 should be: 2.35619450e+00 0x1.2d97c8p+1 difference: 4.76837159e-07 0x1.000000p-21 ulp : 2.0000 max.ulp : 1.0000 Maximal error of `atan2_upward' is : 2 ulp accepted: 1 ulp Failure: Test: carg_upward (-inf + inf i) Result: is: 2.35619498e+00 0x1.2d97ccp+1 should be: 2.35619450e+00 0x1.2d97c8p+1 difference: 4.76837159e-07 0x1.000000p-21 ulp : 2.0000 max.ulp : 1.0000 Maximal error of `carg_upward' is : 2 ulp accepted: 1 ulp The problem comes from the addition of tests for the finite-math-only versions of libm functions. Those tests share ulps with the default function variants. make regen-ulps runs the default tests before the finite-math-only tests, concatenating the resulting ulps before feeding them to gen-libm-test.pl to generate a new libm-test-ulps file. But gen-libm-test.pl always takes the last ulps value given for any (function, type) pair. So, if the largest ulps for a function come from non-finite inputs, a from-scratch regeneration loses those ulps. This patch fixes gen-libm-test.pl, in the case where there are multiple ulps values for a (function, type) pair - which can only happen as part of a regeneration - to take the largest ulps value rather than the last one. Tested for ARM / MIPS / powerpc-nofpu. * math/gen-libm-test.pl (parse_ulps): Do not reduce already-recorded ulps. * sysdeps/arm/libm-test-ulps: Regenerated. * sysdeps/mips/mips32/libm-test-ulps: Likewise. * sysdeps/mips/mips64/libm-test-ulps: Likewise. * sysdeps/powerpc/nofpu/libm-test-ulps: Likewise.
2016-01-19 21:42:58 +00:00
float: 2
2012-05-30 21:16:52 +00:00
Function: Real part of "casin":
2014-01-01 16:46:17 +00:00
double: 1
2012-05-30 21:16:52 +00:00
float: 1
Function: Imaginary part of "casin":
double: 2
2012-05-30 21:16:52 +00:00
float: 2
Function: Real part of "casin_downward":
double: 3
float: 2
2014-01-01 16:46:17 +00:00
Function: Imaginary part of "casin_downward":
double: 5
float: 3
2014-01-01 16:46:17 +00:00
Function: Real part of "casin_towardzero":
double: 3
2012-05-30 21:16:52 +00:00
float: 1
Function: Imaginary part of "casin_towardzero":
double: 5
float: 3
Function: Real part of "casin_upward":
double: 3
float: 2
2012-05-30 21:16:52 +00:00
Function: Imaginary part of "casin_upward":
double: 5
float: 7
Function: Real part of "casinh":
double: 2
2014-01-01 16:46:17 +00:00
float: 2
Function: Imaginary part of "casinh":
2012-05-30 21:16:52 +00:00
double: 1
float: 1
Function: Real part of "casinh_downward":
double: 5
float: 3
Function: Imaginary part of "casinh_downward":
double: 3
float: 2
Function: Real part of "casinh_towardzero":
double: 5
float: 3
Function: Imaginary part of "casinh_towardzero":
double: 3
float: 1
Function: Real part of "casinh_upward":
double: 5
float: 7
Function: Imaginary part of "casinh_upward":
double: 3
float: 2
Function: Real part of "catan":
double: 1
float: 1
Function: Imaginary part of "catan":
double: 1
float: 1
Function: Real part of "catan_downward":
2012-05-30 21:16:52 +00:00
double: 1
float: 2
Function: Imaginary part of "catan_downward":
double: 2
float: 2
Function: Real part of "catan_towardzero":
double: 1
float: 2
Function: Imaginary part of "catan_towardzero":
2012-11-30 20:41:26 +00:00
double: 2
float: 2
2012-11-30 20:41:26 +00:00
Function: Real part of "catan_upward":
double: 1
2012-11-30 20:41:26 +00:00
float: 1
Function: Imaginary part of "catan_upward":
double: 3
float: 3
Function: Real part of "catanh":
2014-01-01 16:46:17 +00:00
double: 1
2012-11-30 20:41:26 +00:00
float: 1
Function: Imaginary part of "catanh":
double: 1
2012-11-30 20:41:26 +00:00
float: 1
Function: Real part of "catanh_downward":
2014-01-01 16:46:17 +00:00
double: 2
float: 2
2012-11-30 20:41:26 +00:00
Function: Imaginary part of "catanh_downward":
double: 1
float: 2
2012-11-30 20:41:26 +00:00
Function: Real part of "catanh_towardzero":
double: 2
float: 2
Function: Imaginary part of "catanh_towardzero":
double: 1
float: 2
Function: Real part of "catanh_upward":
double: 4
float: 4
Function: Imaginary part of "catanh_upward":
double: 1
float: 1
Function: "cbrt":
2021-01-18 20:22:51 +00:00
double: 4
float: 1
Function: "cbrt_downward":
double: 4
float: 1
Function: "cbrt_towardzero":
double: 3
float: 1
Function: "cbrt_upward":
double: 5
float: 1
Function: Real part of "ccos":
double: 1
float: 1
Function: Imaginary part of "ccos":
double: 1
float: 1
Function: Real part of "ccos_downward":
double: 1
float: 1
Function: Imaginary part of "ccos_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
2014-01-01 16:46:17 +00:00
float: 3
2012-11-30 20:41:26 +00:00
Function: Real part of "ccos_towardzero":
double: 1
float: 2
Function: Imaginary part of "ccos_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Real part of "ccos_upward":
double: 1
float: 2
Function: Imaginary part of "ccos_upward":
double: 2
float: 2
Function: Real part of "ccosh":
double: 1
float: 1
Function: Imaginary part of "ccosh":
double: 1
float: 1
Function: Real part of "ccosh_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 2
float: 3
Function: Imaginary part of "ccosh_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Real part of "ccosh_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 2
float: 3
Function: Imaginary part of "ccosh_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Real part of "ccosh_upward":
double: 1
float: 2
Function: Imaginary part of "ccosh_upward":
double: 2
float: 2
Function: Real part of "cexp":
double: 2
float: 1
Function: Imaginary part of "cexp":
double: 1
float: 2
Function: Real part of "cexp_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 2
float: 2
Function: Imaginary part of "cexp_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Real part of "cexp_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 2
float: 2
Function: Imaginary part of "cexp_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Real part of "cexp_upward":
double: 1
float: 2
Function: Imaginary part of "cexp_upward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 2
Function: Real part of "clog":
double: 3
float: 3
Function: Imaginary part of "clog":
double: 1
float: 1
Function: Real part of "clog10":
double: 3
float: 4
Function: Imaginary part of "clog10":
double: 2
float: 2
Function: Real part of "clog10_downward":
double: 5
float: 5
Function: Imaginary part of "clog10_downward":
double: 2
float: 4
Function: Real part of "clog10_towardzero":
double: 5
float: 5
Function: Imaginary part of "clog10_towardzero":
double: 2
float: 4
Function: Real part of "clog10_upward":
double: 6
float: 5
Function: Imaginary part of "clog10_upward":
double: 2
float: 4
Function: Real part of "clog_downward":
double: 4
float: 3
Function: Imaginary part of "clog_downward":
double: 1
float: 2
Function: Real part of "clog_towardzero":
double: 4
float: 4
Function: Imaginary part of "clog_towardzero":
double: 1
float: 3
Function: Real part of "clog_upward":
double: 4
float: 3
Function: Imaginary part of "clog_upward":
double: 1
float: 2
Function: "cos":
double: 1
float: 1
Function: "cos_downward":
double: 1
float: 2
Function: "cos_towardzero":
double: 1
float: 1
Function: "cos_upward":
double: 1
float: 2
Function: "cosh":
2021-01-18 20:22:51 +00:00
double: 2
2020-04-08 11:50:27 +00:00
float: 2
Function: "cosh_downward":
2021-01-18 20:22:51 +00:00
double: 3
float: 1
Function: "cosh_towardzero":
2021-01-18 20:22:51 +00:00
double: 3
float: 1
Function: "cosh_upward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 2
float: 2
Function: Real part of "cpow":
double: 2
float: 5
Function: Imaginary part of "cpow":
float: 2
Function: Real part of "cpow_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 5
float: 8
Function: Imaginary part of "cpow_downward":
double: 1
float: 2
Function: Real part of "cpow_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 5
float: 8
Function: Imaginary part of "cpow_towardzero":
double: 1
float: 2
Function: Real part of "cpow_upward":
double: 4
float: 1
Function: Imaginary part of "cpow_upward":
double: 1
float: 2
Function: Real part of "csin":
double: 1
float: 1
Function: Real part of "csin_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Imaginary part of "csin_downward":
double: 1
float: 1
Function: Real part of "csin_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Imaginary part of "csin_towardzero":
double: 1
float: 1
Function: Real part of "csin_upward":
double: 2
float: 2
Function: Imaginary part of "csin_upward":
double: 1
float: 2
Function: Real part of "csinh":
float: 1
Function: Imaginary part of "csinh":
double: 1
float: 1
Function: Real part of "csinh_downward":
double: 2
float: 2
Function: Imaginary part of "csinh_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Real part of "csinh_towardzero":
double: 2
float: 2
Function: Imaginary part of "csinh_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 3
Function: Real part of "csinh_upward":
double: 1
float: 2
Function: Imaginary part of "csinh_upward":
double: 2
float: 2
Function: Real part of "csqrt":
double: 2
float: 2
Function: Imaginary part of "csqrt":
double: 2
float: 2
Function: Real part of "csqrt_downward":
double: 5
float: 4
Function: Imaginary part of "csqrt_downward":
double: 4
float: 3
Function: Real part of "csqrt_towardzero":
double: 4
float: 3
Function: Imaginary part of "csqrt_towardzero":
double: 4
float: 3
Function: Real part of "csqrt_upward":
double: 5
float: 4
Function: Imaginary part of "csqrt_upward":
double: 3
float: 3
Function: Real part of "ctan":
double: 1
float: 1
Function: Imaginary part of "ctan":
double: 2
float: 2
Function: Real part of "ctan_downward":
double: 6
float: 5
Function: Imaginary part of "ctan_downward":
double: 2
float: 2
Function: Real part of "ctan_towardzero":
double: 5
float: 3
Function: Imaginary part of "ctan_towardzero":
double: 2
float: 2
Function: Real part of "ctan_upward":
double: 2
float: 4
Function: Imaginary part of "ctan_upward":
double: 2
float: 3
Function: Real part of "ctanh":
double: 2
float: 2
2012-05-30 21:16:52 +00:00
Function: Imaginary part of "ctanh":
2014-01-01 16:46:17 +00:00
double: 2
float: 2
2012-11-30 20:41:26 +00:00
Function: Real part of "ctanh_downward":
2014-01-01 16:46:17 +00:00
double: 4
float: 2
2012-11-30 20:41:26 +00:00
Function: Imaginary part of "ctanh_downward":
2014-01-01 16:46:17 +00:00
double: 6
float: 5
2012-11-30 20:41:26 +00:00
Function: Real part of "ctanh_towardzero":
2014-01-01 16:46:17 +00:00
double: 2
float: 2
2012-11-30 20:41:26 +00:00
Function: Imaginary part of "ctanh_towardzero":
2014-01-01 16:46:17 +00:00
double: 5
float: 3
2012-11-30 20:41:26 +00:00
Function: Real part of "ctanh_upward":
2014-01-01 16:46:17 +00:00
double: 2
float: 3
2012-11-30 20:41:26 +00:00
Function: Imaginary part of "ctanh_upward":
double: 2
2014-01-01 16:46:17 +00:00
float: 3
2012-11-30 20:41:26 +00:00
Function: "erf":
double: 1
float: 1
Function: "erf_downward":
double: 1
float: 1
Function: "erf_towardzero":
double: 1
float: 1
Function: "erf_upward":
2012-05-30 21:16:52 +00:00
double: 1
float: 1
Function: "erfc":
2021-01-18 20:22:51 +00:00
double: 5
2020-04-08 11:50:27 +00:00
float: 3
Function: "erfc_downward":
double: 5
float: 6
2012-05-30 21:16:52 +00:00
Function: "erfc_towardzero":
double: 3
float: 4
Function: "erfc_upward":
double: 5
float: 6
Function: "exp":
2021-01-18 20:22:51 +00:00
double: 1
float: 1
Function: "exp10":
double: 2
2020-04-08 11:50:27 +00:00
float: 1
Function: "exp10_downward":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 1
Function: "exp10_towardzero":
Add new exp and exp2 implementations Optimized exp and exp2 implementations using a lookup table for fractional powers of 2. There are several variants, see e_exp_data.c, they can be selected by modifying math_config.h allowing different tradeoffs. The default selection should be acceptable as generic libm code. Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on aarch64 the rodata size is 2160 bytes, shared between exp and exp2. On aarch64 .text + .rodata size decreased by 24912 bytes. The non-nearest rounding error is less than 1 ULP even on targets without efficient round implementation (although the error rate is higher in that case). Targets with single instruction, rounding mode independent, to nearest integer rounding and conversion can use them by setting TOINT_INTRINSICS and adding the necessary code to their math_private.h. The __exp1 code uses the same algorithm, so the error bound of pow increased a bit. New double precision error handling code was added following the style of the single precision error handling code. Improvements on Cortex-A72 compared to current glibc master: exp thruput: 1.61x in [-9.9 9.9] exp latency: 1.53x in [-9.9 9.9] exp thruput: 1.13x in [0.5 1] exp latency: 1.30x in [0.5 1] exp2 thruput: 2.03x in [-9.9 9.9] exp2 latency: 1.64x in [-9.9 9.9] For small (< 1) inputs the current exp code uses a separate algorithm so the speed up there is less. Was tested on aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets, only non-nearest rounding ulp errors increase and they are within acceptable bounds (ulp updates are in separate patches). * NEWS: Mention exp and exp2 improvements. * math/Makefile (libm-support): Remove t_exp. (type-double-routines): Add math_err and e_exp_data. * sysdeps/aarch64/libm-test-ulps: Update. * sysdeps/arm/libm-test-ulps: Update. * sysdeps/i386/fpu/e_exp_data.c: New file. * sysdeps/i386/fpu/math_err.c: New file. * sysdeps/i386/fpu/t_exp.c: Remove. * sysdeps/ia64/fpu/e_exp_data.c: New file. * sysdeps/ia64/fpu/math_err.c: New file. * sysdeps/ia64/fpu/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/e_exp.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite. * sysdeps/ieee754/dbl-64/e_exp_data.c: New file. * sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound. * sysdeps/ieee754/dbl-64/eexp.tbl: Remove. * sysdeps/ieee754/dbl-64/math_config.h: New file. * sysdeps/ieee754/dbl-64/math_err.c: New file. * sysdeps/ieee754/dbl-64/t_exp.c: Remove. * sysdeps/ieee754/dbl-64/t_exp2.h: Remove. * sysdeps/ieee754/dbl-64/uexp.h: Remove. * sysdeps/ieee754/dbl-64/uexp.tbl: Remove. * sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file. * sysdeps/m68k/m680x0/fpu/math_err.c: New file. * sysdeps/m68k/m680x0/fpu/t_exp.c: Remove. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Update.
2018-02-12 18:16:03 +00:00
double: 3
float: 1
Function: "exp10_upward":
double: 2
float: 1
Function: "exp10m1":
double: 2
float: 1
Function: "exp10m1_downward":
double: 1
float: 1
Function: "exp10m1_towardzero":
double: 1
float: 1
Function: "exp10m1_upward":
double: 3
float: 1
Function: "exp2":
2014-01-01 16:46:17 +00:00
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "exp2_downward":
2014-01-01 16:46:17 +00:00
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "exp2_towardzero":
2014-01-01 16:46:17 +00:00
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "exp2_upward":
2014-01-01 16:46:17 +00:00
double: 1
2012-05-30 21:16:52 +00:00
float: 1
Function: "exp2m1":
double: 1
float: 1
Function: "exp2m1_downward":
double: 2
float: 1
Function: "exp2m1_towardzero":
double: 2
float: 1
Function: "exp2m1_upward":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "exp_downward":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
2012-05-30 21:16:52 +00:00
Function: "exp_towardzero":
2014-01-01 16:46:17 +00:00
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "exp_upward":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "expm1":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "expm1_downward":
double: 1
2012-05-30 21:16:52 +00:00
float: 1
Function: "expm1_towardzero":
double: 1
float: 2
Function: "expm1_upward":
2013-07-02 20:34:19 +00:00
double: 1
2014-01-01 16:46:17 +00:00
float: 1
2013-07-02 20:34:19 +00:00
Function: "gamma":
double: 4
2020-04-08 11:50:27 +00:00
float: 7
Function: "gamma_downward":
double: 5
2020-04-08 11:50:27 +00:00
float: 7
Function: "gamma_towardzero":
double: 5
2020-04-08 11:50:27 +00:00
float: 6
2012-05-30 21:16:52 +00:00
Function: "gamma_upward":
double: 5
2020-04-08 11:50:27 +00:00
float: 6
2014-01-01 16:46:17 +00:00
Function: "hypot":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "hypot_downward":
double: 1
Function: "hypot_towardzero":
double: 1
Function: "hypot_upward":
double: 1
Function: "j0":
double: 2
float: 9
Function: "j0_downward":
double: 5
float: 9
Function: "j0_towardzero":
double: 6
float: 9
Function: "j0_upward":
double: 9
float: 9
Function: "j1":
double: 4
2020-04-08 11:50:27 +00:00
float: 9
Function: "j1_downward":
double: 5
float: 8
Function: "j1_towardzero":
double: 4
float: 8
Function: "j1_upward":
double: 9
float: 9
Function: "jn":
2012-05-30 21:16:52 +00:00
double: 4
2014-01-01 16:46:17 +00:00
float: 4
Function: "jn_downward":
double: 5
float: 5
2014-01-01 16:46:17 +00:00
Function: "jn_towardzero":
double: 5
float: 5
Function: "jn_upward":
double: 5
float: 5
Function: "lgamma":
double: 4
2020-04-08 11:50:27 +00:00
float: 7
Function: "lgamma_downward":
double: 5
2020-04-08 11:50:27 +00:00
float: 7
Function: "lgamma_towardzero":
double: 5
2020-04-08 11:50:27 +00:00
float: 6
Function: "lgamma_upward":
double: 5
2020-04-08 11:50:27 +00:00
float: 6
2014-01-01 16:46:17 +00:00
Function: "log":
float: 1
Function: "log10":
double: 2
float: 2
Function: "log10_downward":
double: 2
float: 3
Function: "log10_towardzero":
double: 2
float: 2
Function: "log10_upward":
double: 2
float: 2
Function: "log10p1":
double: 1
float: 1
Function: "log10p1_downward":
double: 2
float: 1
Function: "log10p1_towardzero":
double: 2
float: 2
Function: "log10p1_upward":
double: 2
float: 1
Function: "log1p":
double: 1
float: 1
Function: "log1p_downward":
double: 2
float: 2
Function: "log1p_towardzero":
double: 2
float: 2
Function: "log1p_upward":
double: 2
float: 2
Function: "log2":
double: 2
float: 1
Function: "log2_downward":
double: 3
float: 3
Function: "log2_towardzero":
double: 2
float: 2
Function: "log2_upward":
double: 3
float: 3
Function: "log2p1":
double: 1
float: 1
Function: "log2p1_downward":
double: 2
float: 2
Function: "log2p1_towardzero":
double: 2
float: 2
Function: "log2p1_upward":
double: 1
float: 2
Function: "log_downward":
float: 2
Function: "log_towardzero":
float: 2
Function: "log_upward":
double: 1
float: 2
Function: "logp1":
double: 1
float: 1
Function: "logp1_downward":
double: 2
float: 2
Function: "logp1_towardzero":
double: 2
float: 2
Function: "logp1_upward":
double: 2
float: 2
2012-05-30 21:16:52 +00:00
Function: "pow":
double: 1
float: 1
2012-05-30 21:16:52 +00:00
Function: "pow_downward":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
2012-05-30 21:16:52 +00:00
Function: "pow_towardzero":
double: 1
float: 1
2012-05-30 21:16:52 +00:00
Function: "pow_upward":
double: 1
float: 1
2012-05-30 21:16:52 +00:00
2014-01-01 16:46:17 +00:00
Function: "sin":
double: 1
float: 1
2014-01-01 16:46:17 +00:00
Function: "sin_downward":
double: 1
float: 2
2012-05-30 21:16:52 +00:00
Function: "sin_towardzero":
2014-01-01 16:46:17 +00:00
double: 1
2012-05-30 21:16:52 +00:00
float: 1
Function: "sin_upward":
2014-01-01 16:46:17 +00:00
double: 1
2012-05-30 21:16:52 +00:00
float: 2
Function: "sincos":
double: 1
float: 1
Function: "sincos_downward":
double: 1
float: 2
Function: "sincos_towardzero":
double: 1
float: 1
Function: "sincos_upward":
double: 1
float: 2
Function: "sinh":
double: 2
float: 2
2012-05-30 21:16:52 +00:00
Function: "sinh_downward":
double: 3
float: 3
2012-05-30 21:16:52 +00:00
Function: "sinh_towardzero":
2021-01-18 20:22:51 +00:00
double: 3
float: 2
2012-05-30 21:16:52 +00:00
2014-01-01 16:46:17 +00:00
Function: "sinh_upward":
double: 3
float: 3
Function: "tan":
2012-05-30 21:16:52 +00:00
float: 1
2014-01-01 16:46:17 +00:00
Function: "tan_downward":
double: 1
float: 2
2012-05-30 21:16:52 +00:00
Function: "tan_towardzero":
2014-01-01 16:46:17 +00:00
double: 1
2012-05-30 21:16:52 +00:00
float: 1
Function: "tan_upward":
2014-01-01 16:46:17 +00:00
double: 1
2012-05-30 21:16:52 +00:00
float: 1
Function: "tanh":
double: 2
float: 2
Function: "tanh_downward":
double: 3
float: 3
Function: "tanh_towardzero":
double: 2
float: 2
Function: "tanh_upward":
double: 3
2013-07-02 20:34:19 +00:00
float: 3
Function: "tgamma":
2021-01-18 20:22:51 +00:00
double: 9
2020-04-08 11:50:27 +00:00
float: 8
Function: "tgamma_downward":
double: 9
2020-04-08 11:50:27 +00:00
float: 7
Function: "tgamma_towardzero":
2021-01-18 20:22:51 +00:00
double: 9
2020-04-08 11:50:27 +00:00
float: 7
Function: "tgamma_upward":
2021-01-18 20:22:51 +00:00
double: 9
2020-04-08 11:50:27 +00:00
float: 8
Function: "y0":
2020-04-08 11:50:27 +00:00
double: 3
float: 9
Function: "y0_downward":
double: 3
float: 9
Function: "y0_towardzero":
double: 4
float: 9
Function: "y0_upward":
double: 3
float: 9
Function: "y1":
double: 3
float: 9
Function: "y1_downward":
double: 6
float: 9
Function: "y1_towardzero":
double: 3
float: 9
Function: "y1_upward":
double: 7
float: 9
Function: "yn":
double: 3
float: 3
Function: "yn_downward":
double: 3
float: 4
Function: "yn_towardzero":
double: 3
float: 3
Function: "yn_upward":
double: 4
float: 5
# end of automatic generation