glibc/linuxthreads/sysdeps/pthread/timer_routines.c

583 lines
15 KiB
C
Raw Normal View History

/* Helper code for POSIX timer implementation on LinuxThreads.
Copyright (C) 2000 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Kaz Kylheku <kaz@ashi.footprints.net>.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <sysdep.h>
#include <time.h>
#include <unistd.h>
#include <sys/syscall.h>
#include "posix-timer.h"
/* Number of threads used. */
#define THREAD_MAXNODES 16
/* Array containing the descriptors for the used threads. */
static struct thread_node thread_array[THREAD_MAXNODES];
/* Static array with the structures for all the timers. */
struct timer_node __timer_array[TIMER_MAX];
/* Global lock to protect operation on the lists. */
pthread_mutex_t __timer_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Variable to protext initialization. */
pthread_once_t __timer_init_once_control = PTHREAD_ONCE_INIT;
/* Nonzero if initialization of timer implementation failed. */
int __timer_init_failed;
/* Node for the thread used to deliver signals. */
struct thread_node __timer_signal_thread_rclk;
#ifdef _POSIX_CPUTIME
struct thread_node __timer_signal_thread_pclk;
#endif
#ifdef _POSIX_THREAD_CPUTIME
struct thread_node __timer_signal_thread_tclk;
#endif
/* Lists to keep free and used timers and threads. */
struct list_links timer_free_list;
struct list_links thread_free_list;
struct list_links thread_active_list;
#ifdef __NR_rt_sigqueueinfo
extern int __syscall_rt_sigqueueinfo (int, int, siginfo_t *);
#endif
/* List handling functions. */
static inline void
list_init (struct list_links *list)
{
list->next = list->prev = list;
}
static inline void
list_append (struct list_links *list, struct list_links *newp)
{
newp->prev = list->prev;
newp->next = list;
list->prev->next = newp;
list->prev = newp;
}
static inline void
list_insbefore (struct list_links *list, struct list_links *newp)
{
list_append (list, newp);
}
Update. 2000-06-13 Kaz Kylheku <kaz@ashi.footprints.net> A few optimizations. Got rid of unnecessary wakeups of timer threads, tightened up some critical regions and micro-optimized some list manipulation code. * sysdeps/pthread/timer_routines.c (__timer_thread_queue_timer): Returns int value now to indicate whether timer was queued at head. * sysdeps/pthread/posix-timer.h: Likewise. * sysdeps/pthread/timer_settime.c (timer_settime): Takes advantage of new return value from __timer_thread_queue_timer to avoid waking up timer thread unnecessarily. * sysdeps/pthread/posix-timer.h (timer_id2ptr): No longer checks inuse flag, because this requires mutex to be held. Callers updated to do the check when they have the mutex. * sysdeps/pthread/timer_getoverr.c: Add check for inuse here. * sysdeps/pthread/timer_settime.c (timer_settime): Tighter critical regions: avoids making system calls while holding timer mutex, and a few computations were moved outside of the mutex as well. * sysdeps/pthread/timer_gettime.c (timer_gettime): Likewise. * sysdeps/pthread/posix-timer.h (list_unlink_ip): Function name changed to list_unlink_ip, meaning idempotent. Pointer manipulation changed to get better better code out of gcc. * sysdeps/pthread/timer_routines.c (list_unlink): Non-idempotent version of list_unlink added here. * sysdeps/pthread/timer_delete.c: Use appropriate list unlink function in all places: idempotent one for timers, non-idempotent one for thread nodes. * sysdeps/pthread/timer_settime: Likewise. * sysdeps/pthread/timer_routines.c: Likewise.
2000-06-14 06:13:45 +00:00
/*
* Like list_unlink_ip, except that calling it on a node that
* is already unlinked is disastrous rather than a noop.
*/
static inline void
list_unlink (struct list_links *list)
{
struct list_links *lnext = list->next, *lprev = list->prev;
lnext->prev = lprev;
lprev->next = lnext;
}
static inline struct list_links *
list_first (struct list_links *list)
{
return list->next;
}
static inline struct list_links *
list_null (struct list_links *list)
{
return list;
}
static inline struct list_links *
list_next (struct list_links *list)
{
return list->next;
}
static inline int
list_isempty (struct list_links *list)
{
return list->next == list;
}
/* Functions build on top of the list functions. */
static inline struct thread_node *
thread_links2ptr (struct list_links *list)
{
return (struct thread_node *) ((char *) list
- offsetof (struct thread_node, links));
}
static inline struct timer_node *
timer_links2ptr (struct list_links *list)
{
return (struct timer_node *) ((char *) list
- offsetof (struct timer_node, links));
}
/* Initialize a newly allocated thread structure. */
static void
thread_init (struct thread_node *thread, const pthread_attr_t *attr, clockid_t clock_id)
{
if (attr != NULL)
thread->attr = *attr;
else
{
pthread_attr_init (&thread->attr);
pthread_attr_setdetachstate (&thread->attr, PTHREAD_CREATE_DETACHED);
}
thread->exists = 0;
list_init (&thread->timer_queue);
pthread_cond_init (&thread->cond, 0);
thread->current_timer = 0;
thread->captured = pthread_self ();
thread->clock_id = clock_id;
}
/* Initialize the global lists, and acquire global resources. Error
reporting is done by storing a non-zero value to the global variable
timer_init_failed. */
static void
init_module (void)
{
int i;
list_init (&timer_free_list);
list_init (&thread_free_list);
list_init (&thread_active_list);
for (i = 0; i < TIMER_MAX; ++i)
{
list_append (&timer_free_list, &__timer_array[i].links);
__timer_array[i].inuse = TIMER_FREE;
}
for (i = 0; i < THREAD_MAXNODES; ++i)
list_append (&thread_free_list, &thread_array[i].links);
thread_init (&__timer_signal_thread_rclk, 0, CLOCK_REALTIME);
#ifdef _POSIX_CPUTIME
thread_init (&__timer_signal_thread_pclk, 0, CLOCK_PROCESS_CPUTIME_ID);
#endif
#ifdef _POSIX_THREAD_CPUTIME
thread_init (&__timer_signal_thread_tclk, 0, CLOCK_THREAD_CPUTIME_ID);
#endif
}
/* This is a handler executed in a child process after a fork()
occurs. It reinitializes the module, resetting all of the data
structures to their initial state. The mutex is initialized in
case it was locked in the parent process. */
static void
reinit_after_fork (void)
{
init_module ();
pthread_mutex_init (&__timer_mutex, 0);
}
/* Called once form pthread_once in timer_init. This initializes the
module and ensures that reinit_after_fork will be executed in any
child process. */
void
__timer_init_once (void)
{
init_module ();
pthread_atfork (0, 0, reinit_after_fork);
}
/* Deinitialize a thread that is about to be deallocated. */
static void
thread_deinit (struct thread_node *thread)
{
assert (list_isempty (&thread->timer_queue));
pthread_cond_destroy (&thread->cond);
}
/* Allocate a thread structure from the global free list. Global
mutex lock must be held by caller. The thread is moved to
the active list. */
struct thread_node *
__timer_thread_alloc (const pthread_attr_t *desired_attr, clockid_t clock_id)
{
struct list_links *node = list_first (&thread_free_list);
if (node != list_null (&thread_free_list))
{
struct thread_node *thread = thread_links2ptr (node);
list_unlink (node);
thread_init (thread, desired_attr, clock_id);
list_append (&thread_active_list, node);
return thread;
}
return 0;
}
/* Return a thread structure to the global free list. Global lock
must be held by caller. */
void
__timer_thread_dealloc (struct thread_node *thread)
{
thread_deinit (thread);
list_unlink (&thread->links);
list_append (&thread_free_list, &thread->links);
}
/* Each of our threads which terminates executes this cleanup
handler. We never terminate threads ourselves; if a thread gets here
it means that the evil application has killed it. If the thread has
timers, these require servicing and so we must hire a replacement
thread right away. We must also unblock another thread that may
have been waiting for this thread to finish servicing a timer (see
timer_delete()). */
static void
thread_cleanup (void *val)
{
if (val != NULL)
{
struct thread_node *thread = val;
/* How did the signal thread get killed? */
assert (thread != &__timer_signal_thread_rclk);
#ifdef _POSIX_CPUTIME
assert (thread != &__timer_signal_thread_pclk);
#endif
#ifdef _POSIX_THREAD_CPUTIME
assert (thread != &__timer_signal_thread_tclk);
#endif
pthread_mutex_lock (&__timer_mutex);
thread->exists = 0;
/* We are no longer processing a timer event. */
thread->current_timer = 0;
if (list_isempty (&thread->timer_queue))
__timer_thread_dealloc (thread);
else
(void) __timer_thread_start (thread);
pthread_mutex_unlock (&__timer_mutex);
/* Unblock potentially blocked timer_delete(). */
pthread_cond_broadcast (&thread->cond);
}
}
/* Handle a timer which is supposed to go off now. */
static void
thread_expire_timer (struct thread_node *self, struct timer_node *timer)
{
self->current_timer = timer; /* Lets timer_delete know timer is running. */
pthread_mutex_unlock (&__timer_mutex);
switch (__builtin_expect (timer->event.sigev_notify, SIGEV_SIGNAL))
{
case SIGEV_NONE:
assert (! "timer_create should never have created such a timer");
break;
case SIGEV_SIGNAL:
#ifdef __NR_rt_sigqueueinfo
{
siginfo_t info;
/* First, clear the siginfo_t structure, so that we don't pass our
stack content to other tasks. */
memset (&info, 0, sizeof (siginfo_t));
/* We must pass the information about the data in a siginfo_t
value. */
info.si_signo = timer->event.sigev_signo;
info.si_code = SI_TIMER;
info.si_pid = timer->creator_pid;
info.si_uid = getuid ();
info.si_value = timer->event.sigev_value;
INLINE_SYSCALL (rt_sigqueueinfo, 3, info.si_pid, info.si_signo, &info);
}
#else
if (pthread_kill (self->captured, timer->event.sigev_signo) != 0)
{
if (pthread_kill (self->id, timer->event.sigev_signo) != 0)
abort ();
}
#endif
break;
case SIGEV_THREAD:
timer->event.sigev_notify_function (timer->event.sigev_value);
break;
default:
assert (! "unknown event");
break;
}
pthread_mutex_lock (&__timer_mutex);
self->current_timer = 0;
pthread_cond_broadcast (&self->cond);
}
/* Thread function; executed by each timer thread. The job of this
function is to wait on the thread's timer queue and expire the
timers in chronological order as close to their scheduled time as
possible. */
static void *
thread_func (void *arg)
{
struct thread_node *self = arg;
/* Register cleanup handler, in case rogue application terminates
this thread. (This cannot happen to __timer_signal_thread, which
doesn't invoke application callbacks). */
pthread_cleanup_push (thread_cleanup, self);
pthread_mutex_lock (&__timer_mutex);
while (1)
{
struct list_links *first;
struct timer_node *timer = NULL;
/* While the timer queue is not empty, inspect the first node. */
first = list_first (&self->timer_queue);
if (first != list_null (&self->timer_queue))
{
struct timespec now;
timer = timer_links2ptr (first);
/* This assumes that the elements of the list of one thread
are all for the same clock. */
clock_gettime (timer->clock, &now);
while (1)
{
/* If the timer is due or overdue, remove it from the queue.
If it's a periodic timer, re-compute its new time and
requeue it. Either way, perform the timer expiry. */
if (timespec_compare (&now, &timer->expirytime) < 0)
break;
Update. 2000-06-13 Kaz Kylheku <kaz@ashi.footprints.net> A few optimizations. Got rid of unnecessary wakeups of timer threads, tightened up some critical regions and micro-optimized some list manipulation code. * sysdeps/pthread/timer_routines.c (__timer_thread_queue_timer): Returns int value now to indicate whether timer was queued at head. * sysdeps/pthread/posix-timer.h: Likewise. * sysdeps/pthread/timer_settime.c (timer_settime): Takes advantage of new return value from __timer_thread_queue_timer to avoid waking up timer thread unnecessarily. * sysdeps/pthread/posix-timer.h (timer_id2ptr): No longer checks inuse flag, because this requires mutex to be held. Callers updated to do the check when they have the mutex. * sysdeps/pthread/timer_getoverr.c: Add check for inuse here. * sysdeps/pthread/timer_settime.c (timer_settime): Tighter critical regions: avoids making system calls while holding timer mutex, and a few computations were moved outside of the mutex as well. * sysdeps/pthread/timer_gettime.c (timer_gettime): Likewise. * sysdeps/pthread/posix-timer.h (list_unlink_ip): Function name changed to list_unlink_ip, meaning idempotent. Pointer manipulation changed to get better better code out of gcc. * sysdeps/pthread/timer_routines.c (list_unlink): Non-idempotent version of list_unlink added here. * sysdeps/pthread/timer_delete.c: Use appropriate list unlink function in all places: idempotent one for timers, non-idempotent one for thread nodes. * sysdeps/pthread/timer_settime: Likewise. * sysdeps/pthread/timer_routines.c: Likewise.
2000-06-14 06:13:45 +00:00
list_unlink_ip (first);
if (__builtin_expect (timer->value.it_interval.tv_sec, 0) != 0
|| timer->value.it_interval.tv_nsec != 0)
{
timespec_add (&timer->expirytime, &now,
&timer->value.it_interval);
__timer_thread_queue_timer (self, timer);
}
thread_expire_timer (self, timer);
first = list_first (&self->timer_queue);
if (first == list_null (&self->timer_queue))
break;
timer = timer_links2ptr (first);
}
}
/* If the queue is not empty, wait until the expiry time of the
first node. Otherwise wait indefinitely. Insertions at the
head of the queue must wake up the thread by broadcasting
this condition variable. */
if (timer != NULL)
pthread_cond_timedwait (&self->cond, &__timer_mutex,
&timer->expirytime);
else
pthread_cond_wait (&self->cond, &__timer_mutex);
}
pthread_mutex_unlock (&__timer_mutex);
pthread_cleanup_pop (1);
return NULL;
}
/* Enqueue a timer in wakeup order in the thread's timer queue.
Update. 2000-06-13 Kaz Kylheku <kaz@ashi.footprints.net> A few optimizations. Got rid of unnecessary wakeups of timer threads, tightened up some critical regions and micro-optimized some list manipulation code. * sysdeps/pthread/timer_routines.c (__timer_thread_queue_timer): Returns int value now to indicate whether timer was queued at head. * sysdeps/pthread/posix-timer.h: Likewise. * sysdeps/pthread/timer_settime.c (timer_settime): Takes advantage of new return value from __timer_thread_queue_timer to avoid waking up timer thread unnecessarily. * sysdeps/pthread/posix-timer.h (timer_id2ptr): No longer checks inuse flag, because this requires mutex to be held. Callers updated to do the check when they have the mutex. * sysdeps/pthread/timer_getoverr.c: Add check for inuse here. * sysdeps/pthread/timer_settime.c (timer_settime): Tighter critical regions: avoids making system calls while holding timer mutex, and a few computations were moved outside of the mutex as well. * sysdeps/pthread/timer_gettime.c (timer_gettime): Likewise. * sysdeps/pthread/posix-timer.h (list_unlink_ip): Function name changed to list_unlink_ip, meaning idempotent. Pointer manipulation changed to get better better code out of gcc. * sysdeps/pthread/timer_routines.c (list_unlink): Non-idempotent version of list_unlink added here. * sysdeps/pthread/timer_delete.c: Use appropriate list unlink function in all places: idempotent one for timers, non-idempotent one for thread nodes. * sysdeps/pthread/timer_settime: Likewise. * sysdeps/pthread/timer_routines.c: Likewise.
2000-06-14 06:13:45 +00:00
Returns 1 if the timer was inserted at the head of the queue,
causing the queue's next wakeup time to change. */
int
__timer_thread_queue_timer (struct thread_node *thread,
struct timer_node *insert)
{
struct list_links *iter;
Update. 2000-06-13 Kaz Kylheku <kaz@ashi.footprints.net> A few optimizations. Got rid of unnecessary wakeups of timer threads, tightened up some critical regions and micro-optimized some list manipulation code. * sysdeps/pthread/timer_routines.c (__timer_thread_queue_timer): Returns int value now to indicate whether timer was queued at head. * sysdeps/pthread/posix-timer.h: Likewise. * sysdeps/pthread/timer_settime.c (timer_settime): Takes advantage of new return value from __timer_thread_queue_timer to avoid waking up timer thread unnecessarily. * sysdeps/pthread/posix-timer.h (timer_id2ptr): No longer checks inuse flag, because this requires mutex to be held. Callers updated to do the check when they have the mutex. * sysdeps/pthread/timer_getoverr.c: Add check for inuse here. * sysdeps/pthread/timer_settime.c (timer_settime): Tighter critical regions: avoids making system calls while holding timer mutex, and a few computations were moved outside of the mutex as well. * sysdeps/pthread/timer_gettime.c (timer_gettime): Likewise. * sysdeps/pthread/posix-timer.h (list_unlink_ip): Function name changed to list_unlink_ip, meaning idempotent. Pointer manipulation changed to get better better code out of gcc. * sysdeps/pthread/timer_routines.c (list_unlink): Non-idempotent version of list_unlink added here. * sysdeps/pthread/timer_delete.c: Use appropriate list unlink function in all places: idempotent one for timers, non-idempotent one for thread nodes. * sysdeps/pthread/timer_settime: Likewise. * sysdeps/pthread/timer_routines.c: Likewise.
2000-06-14 06:13:45 +00:00
int athead = 1;
for (iter = list_first (&thread->timer_queue);
iter != list_null (&thread->timer_queue);
iter = list_next (iter))
{
struct timer_node *timer = timer_links2ptr (iter);
if (timespec_compare (&insert->expirytime, &timer->expirytime) < 0)
break;
Update. 2000-06-13 Kaz Kylheku <kaz@ashi.footprints.net> A few optimizations. Got rid of unnecessary wakeups of timer threads, tightened up some critical regions and micro-optimized some list manipulation code. * sysdeps/pthread/timer_routines.c (__timer_thread_queue_timer): Returns int value now to indicate whether timer was queued at head. * sysdeps/pthread/posix-timer.h: Likewise. * sysdeps/pthread/timer_settime.c (timer_settime): Takes advantage of new return value from __timer_thread_queue_timer to avoid waking up timer thread unnecessarily. * sysdeps/pthread/posix-timer.h (timer_id2ptr): No longer checks inuse flag, because this requires mutex to be held. Callers updated to do the check when they have the mutex. * sysdeps/pthread/timer_getoverr.c: Add check for inuse here. * sysdeps/pthread/timer_settime.c (timer_settime): Tighter critical regions: avoids making system calls while holding timer mutex, and a few computations were moved outside of the mutex as well. * sysdeps/pthread/timer_gettime.c (timer_gettime): Likewise. * sysdeps/pthread/posix-timer.h (list_unlink_ip): Function name changed to list_unlink_ip, meaning idempotent. Pointer manipulation changed to get better better code out of gcc. * sysdeps/pthread/timer_routines.c (list_unlink): Non-idempotent version of list_unlink added here. * sysdeps/pthread/timer_delete.c: Use appropriate list unlink function in all places: idempotent one for timers, non-idempotent one for thread nodes. * sysdeps/pthread/timer_settime: Likewise. * sysdeps/pthread/timer_routines.c: Likewise.
2000-06-14 06:13:45 +00:00
athead = 0;
}
list_insbefore (iter, &insert->links);
Update. 2000-06-13 Kaz Kylheku <kaz@ashi.footprints.net> A few optimizations. Got rid of unnecessary wakeups of timer threads, tightened up some critical regions and micro-optimized some list manipulation code. * sysdeps/pthread/timer_routines.c (__timer_thread_queue_timer): Returns int value now to indicate whether timer was queued at head. * sysdeps/pthread/posix-timer.h: Likewise. * sysdeps/pthread/timer_settime.c (timer_settime): Takes advantage of new return value from __timer_thread_queue_timer to avoid waking up timer thread unnecessarily. * sysdeps/pthread/posix-timer.h (timer_id2ptr): No longer checks inuse flag, because this requires mutex to be held. Callers updated to do the check when they have the mutex. * sysdeps/pthread/timer_getoverr.c: Add check for inuse here. * sysdeps/pthread/timer_settime.c (timer_settime): Tighter critical regions: avoids making system calls while holding timer mutex, and a few computations were moved outside of the mutex as well. * sysdeps/pthread/timer_gettime.c (timer_gettime): Likewise. * sysdeps/pthread/posix-timer.h (list_unlink_ip): Function name changed to list_unlink_ip, meaning idempotent. Pointer manipulation changed to get better better code out of gcc. * sysdeps/pthread/timer_routines.c (list_unlink): Non-idempotent version of list_unlink added here. * sysdeps/pthread/timer_delete.c: Use appropriate list unlink function in all places: idempotent one for timers, non-idempotent one for thread nodes. * sysdeps/pthread/timer_settime: Likewise. * sysdeps/pthread/timer_routines.c: Likewise.
2000-06-14 06:13:45 +00:00
return athead;
}
/* Start a thread and associate it with the given thread node. Global
lock must be held by caller. */
int
__timer_thread_start (struct thread_node *thread)
{
int retval = 1;
assert (!thread->exists);
thread->exists = 1;
if (pthread_create (&thread->id, &thread->attr, thread_func, thread) != 0)
{
thread->exists = 0;
retval = -1;
}
return retval;
}
void
__timer_thread_wakeup (struct thread_node *thread)
{
pthread_cond_broadcast (&thread->cond);
}
/* Compare two pthread_attr_t thread attributes for exact equality.
Returns 1 if they are equal, otherwise zero if they are not equal or
contain illegal values. This version is LinuxThreads-specific for
performance reason. One could use the access functions to get the
values of all the fields of the attribute structure. */
static int
thread_attr_compare (const pthread_attr_t *left, const pthread_attr_t *right)
{
return (left->__detachstate == right->__detachstate
&& left->__schedpolicy == right->__schedpolicy
&& (left->__schedparam.sched_priority
== right->__schedparam.sched_priority)
&& left->__inheritsched == right->__inheritsched
&& left->__scope == right->__scope);
}
/* Search the list of active threads and find one which has matching
attributes. Global mutex lock must be held by caller. */
struct thread_node *
__timer_thread_find_matching (const pthread_attr_t *desired_attr,
clockid_t desired_clock_id)
{
struct list_links *iter = list_first (&thread_active_list);
while (iter != list_null (&thread_active_list))
{
struct thread_node *candidate = thread_links2ptr (iter);
if (thread_attr_compare (desired_attr, &candidate->attr)
&& desired_clock_id == candidate->clock_id)
{
list_unlink (iter);
return candidate;
}
iter = list_next (iter);
}
return NULL;
}
/* Grab a free timer structure from the global free list. The global
lock must be held by the caller. */
struct timer_node *
__timer_alloc (void)
{
struct list_links *node = list_first (&timer_free_list);
if (node != list_null (&timer_free_list))
{
struct timer_node *timer = timer_links2ptr (node);
Update. 2000-06-13 Kaz Kylheku <kaz@ashi.footprints.net> A few optimizations. Got rid of unnecessary wakeups of timer threads, tightened up some critical regions and micro-optimized some list manipulation code. * sysdeps/pthread/timer_routines.c (__timer_thread_queue_timer): Returns int value now to indicate whether timer was queued at head. * sysdeps/pthread/posix-timer.h: Likewise. * sysdeps/pthread/timer_settime.c (timer_settime): Takes advantage of new return value from __timer_thread_queue_timer to avoid waking up timer thread unnecessarily. * sysdeps/pthread/posix-timer.h (timer_id2ptr): No longer checks inuse flag, because this requires mutex to be held. Callers updated to do the check when they have the mutex. * sysdeps/pthread/timer_getoverr.c: Add check for inuse here. * sysdeps/pthread/timer_settime.c (timer_settime): Tighter critical regions: avoids making system calls while holding timer mutex, and a few computations were moved outside of the mutex as well. * sysdeps/pthread/timer_gettime.c (timer_gettime): Likewise. * sysdeps/pthread/posix-timer.h (list_unlink_ip): Function name changed to list_unlink_ip, meaning idempotent. Pointer manipulation changed to get better better code out of gcc. * sysdeps/pthread/timer_routines.c (list_unlink): Non-idempotent version of list_unlink added here. * sysdeps/pthread/timer_delete.c: Use appropriate list unlink function in all places: idempotent one for timers, non-idempotent one for thread nodes. * sysdeps/pthread/timer_settime: Likewise. * sysdeps/pthread/timer_routines.c: Likewise.
2000-06-14 06:13:45 +00:00
list_unlink_ip (node);
timer->inuse = TIMER_INUSE;
timer->refcount = 1;
return timer;
}
return NULL;
}
/* Return a timer structure to the global free list. The global lock
must be held by the caller. */
void
__timer_dealloc (struct timer_node *timer)
{
assert (timer->refcount == 0);
timer->thread = NULL; /* Break association between timer and thread. */
timer->inuse = TIMER_FREE;
list_append (&timer_free_list, &timer->links);
}
/* Thread cancellation handler which unlocks a mutex. */
void
__timer_mutex_cancel_handler (void *arg)
{
pthread_mutex_unlock (arg);
}