glibc/sysdeps/x86_64/multiarch/memrchr-evex.S

337 lines
7.6 KiB
ArmAsm
Raw Normal View History

/* memrchr optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
# include <sysdep.h>
# include "x86-evex256-vecs.h"
# if VEC_SIZE != 32
# error "VEC_SIZE != 32 unimplemented"
# endif
# ifndef MEMRCHR
# define MEMRCHR __memrchr_evex
# endif
# define PAGE_SIZE 4096
# define VMMMATCH VMM(0)
.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN(MEMRCHR, 6)
# ifdef __ILP32__
/* Clear upper bits. */
and %RDX_LP, %RDX_LP
# else
test %RDX_LP, %RDX_LP
# endif
jz L(zero_0)
/* Get end pointer. Minus one for two reasons. 1) It is necessary for a
correct page cross check and 2) it correctly sets up end ptr to be
subtract by lzcnt aligned. */
leaq -1(%rdi, %rdx), %rax
vpbroadcastb %esi, %VMMMATCH
/* Check if we can load 1x VEC without cross a page. */
testl $(PAGE_SIZE - VEC_SIZE), %eax
jz L(page_cross)
/* Don't use rax for pointer here because EVEX has better encoding with
offset % VEC_SIZE == 0. */
vpcmpb $0, -(VEC_SIZE)(%rdi, %rdx), %VMMMATCH, %k0
kmovd %k0, %ecx
/* Fall through for rdx (len) <= VEC_SIZE (expect small sizes). */
cmpq $VEC_SIZE, %rdx
ja L(more_1x_vec)
L(ret_vec_x0_test):
/* If ecx is zero (no matches) lzcnt will set it 32 (VEC_SIZE) which
will guarantee edx (len) is less than it. */
lzcntl %ecx, %ecx
cmpl %ecx, %edx
jle L(zero_0)
subq %rcx, %rax
ret
/* Fits in aligning bytes of first cache line. */
L(zero_0):
xorl %eax, %eax
ret
.p2align 4,, 9
L(ret_vec_x0_dec):
decq %rax
L(ret_vec_x0):
lzcntl %ecx, %ecx
subq %rcx, %rax
ret
.p2align 4,, 10
L(more_1x_vec):
testl %ecx, %ecx
jnz L(ret_vec_x0)
/* Align rax (pointer to string). */
andq $-VEC_SIZE, %rax
/* Recompute length after aligning. */
movq %rax, %rdx
/* Need no matter what. */
vpcmpb $0, -(VEC_SIZE)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
subq %rdi, %rdx
cmpq $(VEC_SIZE * 2), %rdx
ja L(more_2x_vec)
L(last_2x_vec):
/* Must dec rax because L(ret_vec_x0_test) expects it. */
decq %rax
cmpl $VEC_SIZE, %edx
jbe L(ret_vec_x0_test)
testl %ecx, %ecx
jnz L(ret_vec_x0)
/* Don't use rax for pointer here because EVEX has better encoding with
offset % VEC_SIZE == 0. */
vpcmpb $0, -(VEC_SIZE * 2)(%rdi, %rdx), %VMMMATCH, %k0
kmovd %k0, %ecx
/* NB: 64-bit lzcnt. This will naturally add 32 to position. */
lzcntq %rcx, %rcx
cmpl %ecx, %edx
jle L(zero_0)
subq %rcx, %rax
ret
/* Inexpensive place to put this regarding code size / target alignments
/ ICache NLP. Necessary for 2-byte encoding of jump to page cross
case which in turn is necessary for hot path (len <= VEC_SIZE) to fit
in first cache line. */
L(page_cross):
movq %rax, %rsi
andq $-VEC_SIZE, %rsi
vpcmpb $0, (%rsi), %VMMMATCH, %k0
kmovd %k0, %r8d
/* Shift out negative alignment (because we are starting from endptr and
working backwards). */
movl %eax, %ecx
/* notl because eax already has endptr - 1. (-x = ~(x - 1)). */
notl %ecx
shlxl %ecx, %r8d, %ecx
cmpq %rdi, %rsi
ja L(more_1x_vec)
lzcntl %ecx, %ecx
cmpl %ecx, %edx
jle L(zero_1)
subq %rcx, %rax
ret
/* Continue creating zero labels that fit in aligning bytes and get
2-byte encoding / are in the same cache line as condition. */
L(zero_1):
xorl %eax, %eax
ret
.p2align 4,, 8
L(ret_vec_x1):
/* This will naturally add 32 to position. */
bsrl %ecx, %ecx
leaq -(VEC_SIZE * 2)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(more_2x_vec):
testl %ecx, %ecx
jnz L(ret_vec_x0_dec)
vpcmpb $0, -(VEC_SIZE * 2)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x1)
/* Need no matter what. */
vpcmpb $0, -(VEC_SIZE * 3)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
subq $(VEC_SIZE * 4), %rdx
ja L(more_4x_vec)
cmpl $(VEC_SIZE * -1), %edx
jle L(ret_vec_x2_test)
L(last_vec):
testl %ecx, %ecx
jnz L(ret_vec_x2)
/* Need no matter what. */
vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
lzcntl %ecx, %ecx
subq $(VEC_SIZE * 3 + 1), %rax
subq %rcx, %rax
cmpq %rax, %rdi
ja L(zero_1)
ret
.p2align 4,, 8
L(ret_vec_x2_test):
lzcntl %ecx, %ecx
subq $(VEC_SIZE * 2 + 1), %rax
subq %rcx, %rax
cmpq %rax, %rdi
ja L(zero_1)
ret
.p2align 4,, 8
L(ret_vec_x2):
bsrl %ecx, %ecx
leaq -(VEC_SIZE * 3)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(ret_vec_x3):
bsrl %ecx, %ecx
leaq -(VEC_SIZE * 4)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(more_4x_vec):
testl %ecx, %ecx
jnz L(ret_vec_x2)
vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x3)
/* Check if near end before re-aligning (otherwise might do an
unnecessary loop iteration). */
addq $-(VEC_SIZE * 4), %rax
cmpq $(VEC_SIZE * 4), %rdx
jbe L(last_4x_vec)
decq %rax
andq $-(VEC_SIZE * 4), %rax
movq %rdi, %rdx
/* Get endptr for loop in rdx. NB: Can't just do while rax > rdi because
lengths that overflow can be valid and break the comparison. */
andq $-(VEC_SIZE * 4), %rdx
.p2align 4
L(loop_4x_vec):
/* Store 1 were not-equals and 0 where equals in k1 (used to mask later
on). */
vpcmpb $4, (VEC_SIZE * 3)(%rax), %VMMMATCH, %k1
/* VEC(2/3) will have zero-byte where we found a CHAR. */
vpxorq (VEC_SIZE * 2)(%rax), %VMMMATCH, %VMM(2)
vpxorq (VEC_SIZE * 1)(%rax), %VMMMATCH, %VMM(3)
vpcmpb $0, (VEC_SIZE * 0)(%rax), %VMMMATCH, %k4
/* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit where
CHAR is found and VEC(2/3) have zero-byte where CHAR is found. */
vpminub %VMM(2), %VMM(3), %VMM(3){%k1}{z}
vptestnmb %VMM(3), %VMM(3), %k2
/* Any 1s and we found CHAR. */
kortestd %k2, %k4
jnz L(loop_end)
addq $-(VEC_SIZE * 4), %rax
cmpq %rdx, %rax
jne L(loop_4x_vec)
/* Need to re-adjust rdx / rax for L(last_4x_vec). */
subq $-(VEC_SIZE * 4), %rdx
movq %rdx, %rax
subl %edi, %edx
L(last_4x_vec):
/* Used no matter what. */
vpcmpb $0, (VEC_SIZE * -1)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
cmpl $(VEC_SIZE * 2), %edx
jbe L(last_2x_vec)
testl %ecx, %ecx
jnz L(ret_vec_x0_dec)
vpcmpb $0, (VEC_SIZE * -2)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x1)
/* Used no matter what. */
vpcmpb $0, (VEC_SIZE * -3)(%rax), %VMMMATCH, %k0
kmovd %k0, %ecx
cmpl $(VEC_SIZE * 3), %edx
ja L(last_vec)
lzcntl %ecx, %ecx
subq $(VEC_SIZE * 2 + 1), %rax
subq %rcx, %rax
cmpq %rax, %rdi
jbe L(ret_1)
xorl %eax, %eax
L(ret_1):
ret
.p2align 4,, 6
L(loop_end):
kmovd %k1, %ecx
notl %ecx
testl %ecx, %ecx
jnz L(ret_vec_x0_end)
vptestnmb %VMM(2), %VMM(2), %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x1_end)
kmovd %k2, %ecx
kmovd %k4, %esi
/* Combine last 2 VEC matches. If ecx (VEC3) is zero (no CHAR in VEC3)
then it won't affect the result in esi (VEC4). If ecx is non-zero
then CHAR in VEC3 and bsrq will use that position. */
salq $32, %rcx
orq %rsi, %rcx
bsrq %rcx, %rcx
addq %rcx, %rax
ret
.p2align 4,, 4
L(ret_vec_x0_end):
addq $(VEC_SIZE), %rax
L(ret_vec_x1_end):
bsrl %ecx, %ecx
leaq (VEC_SIZE * 2)(%rax, %rcx), %rax
ret
END(MEMRCHR)
#endif