mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-01 23:40:22 +00:00
235 lines
5.8 KiB
Plaintext
235 lines
5.8 KiB
Plaintext
|
/*
|
||
|
* Division and remainder, from Appendix E of the Sparc Version 8
|
||
|
* Architecture Manual, with fixes from Gordon Irlam.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Input: dividend and divisor in %o0 and %o1 respectively.
|
||
|
*
|
||
|
* m4 parameters:
|
||
|
* NAME name of function to generate
|
||
|
* OP OP=div => %o0 / %o1; OP=rem => %o0 % %o1
|
||
|
* S S=true => signed; S=false => unsigned
|
||
|
*
|
||
|
* Algorithm parameters:
|
||
|
* N how many bits per iteration we try to get (4)
|
||
|
* WORDSIZE total number of bits (32)
|
||
|
*
|
||
|
* Derived constants:
|
||
|
* TOPBITS number of bits in the top `decade' of a number
|
||
|
*
|
||
|
* Important variables:
|
||
|
* Q the partial quotient under development (initially 0)
|
||
|
* R the remainder so far, initially the dividend
|
||
|
* ITER number of main division loop iterations required;
|
||
|
* equal to ceil(log2(quotient) / N). Note that this
|
||
|
* is the log base (2^N) of the quotient.
|
||
|
* V the current comparand, initially divisor*2^(ITER*N-1)
|
||
|
*
|
||
|
* Cost:
|
||
|
* Current estimate for non-large dividend is
|
||
|
* ceil(log2(quotient) / N) * (10 + 7N/2) + C
|
||
|
* A large dividend is one greater than 2^(31-TOPBITS) and takes a
|
||
|
* different path, as the upper bits of the quotient must be developed
|
||
|
* one bit at a time.
|
||
|
*/
|
||
|
|
||
|
define(N, `4')dnl
|
||
|
define(WORDSIZE, `32')dnl
|
||
|
define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))dnl
|
||
|
dnl
|
||
|
define(dividend, `%o0')dnl
|
||
|
define(divisor, `%o1')dnl
|
||
|
define(Q, `%o2')dnl
|
||
|
define(R, `%o3')dnl
|
||
|
define(ITER, `%o4')dnl
|
||
|
define(V, `%o5')dnl
|
||
|
dnl
|
||
|
dnl m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d
|
||
|
define(T, `%g1')dnl
|
||
|
define(SC, `%g7')dnl
|
||
|
ifelse(S, `true', `define(SIGN, `%g6')')dnl
|
||
|
|
||
|
dnl
|
||
|
dnl This is the recursive definition for developing quotient digits.
|
||
|
dnl
|
||
|
dnl Parameters:
|
||
|
dnl $1 the current depth, 1 <= $1 <= N
|
||
|
dnl $2 the current accumulation of quotient bits
|
||
|
dnl N max depth
|
||
|
dnl
|
||
|
dnl We add a new bit to $2 and either recurse or insert the bits in
|
||
|
dnl the quotient. R, Q, and V are inputs and outputs as defined above;
|
||
|
dnl the condition codes are expected to reflect the input R, and are
|
||
|
dnl modified to reflect the output R.
|
||
|
dnl
|
||
|
define(DEVELOP_QUOTIENT_BITS,
|
||
|
` ! depth $1, accumulated bits $2
|
||
|
bl L.$1.eval(2**N+$2)
|
||
|
srl V,1,V
|
||
|
! remainder is positive
|
||
|
subcc R,V,R
|
||
|
ifelse($1, N,
|
||
|
` b 9f
|
||
|
add Q, ($2*2+1), Q
|
||
|
', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
|
||
|
L.$1.eval(2**N+$2):
|
||
|
! remainder is negative
|
||
|
addcc R,V,R
|
||
|
ifelse($1, N,
|
||
|
` b 9f
|
||
|
add Q, ($2*2-1), Q
|
||
|
', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
|
||
|
ifelse($1, 1, `9:')')dnl
|
||
|
|
||
|
#include "DEFS.h"
|
||
|
#ifdef __svr4__
|
||
|
#include <sys/trap.h>
|
||
|
#else
|
||
|
#include <machine/trap.h>
|
||
|
#endif
|
||
|
|
||
|
FUNC(NAME)
|
||
|
ifelse(S, `true',
|
||
|
` ! compute sign of result; if neither is negative, no problem
|
||
|
orcc divisor, dividend, %g0 ! either negative?
|
||
|
bge 2f ! no, go do the divide
|
||
|
ifelse(OP, `div',
|
||
|
` xor divisor, dividend, SIGN ! compute sign in any case',
|
||
|
` mov dividend, SIGN ! sign of remainder matches dividend')
|
||
|
tst divisor
|
||
|
bge 1f
|
||
|
tst dividend
|
||
|
! divisor is definitely negative; dividend might also be negative
|
||
|
bge 2f ! if dividend not negative...
|
||
|
sub %g0, divisor, divisor ! in any case, make divisor nonneg
|
||
|
1: ! dividend is negative, divisor is nonnegative
|
||
|
sub %g0, dividend, dividend ! make dividend nonnegative
|
||
|
2:
|
||
|
')
|
||
|
! Ready to divide. Compute size of quotient; scale comparand.
|
||
|
orcc divisor, %g0, V
|
||
|
bne 1f
|
||
|
mov dividend, R
|
||
|
|
||
|
! Divide by zero trap. If it returns, return 0 (about as
|
||
|
! wrong as possible, but that is what SunOS does...).
|
||
|
ta ST_DIV0
|
||
|
retl
|
||
|
clr %o0
|
||
|
|
||
|
1:
|
||
|
cmp R, V ! if divisor exceeds dividend, done
|
||
|
blu Lgot_result ! (and algorithm fails otherwise)
|
||
|
clr Q
|
||
|
sethi %hi(1 << (WORDSIZE - TOPBITS - 1)), T
|
||
|
cmp R, T
|
||
|
blu Lnot_really_big
|
||
|
clr ITER
|
||
|
|
||
|
! `Here the dividend is >= 2**(31-N) or so. We must be careful here,
|
||
|
! as our usual N-at-a-shot divide step will cause overflow and havoc.
|
||
|
! The number of bits in the result here is N*ITER+SC, where SC <= N.
|
||
|
! Compute ITER in an unorthodox manner: know we need to shift V into
|
||
|
! the top decade: so do not even bother to compare to R.'
|
||
|
1:
|
||
|
cmp V, T
|
||
|
bgeu 3f
|
||
|
mov 1, SC
|
||
|
sll V, N, V
|
||
|
b 1b
|
||
|
add ITER, 1, ITER
|
||
|
|
||
|
! Now compute SC.
|
||
|
2: addcc V, V, V
|
||
|
bcc Lnot_too_big
|
||
|
add SC, 1, SC
|
||
|
|
||
|
! We get here if the divisor overflowed while shifting.
|
||
|
! This means that R has the high-order bit set.
|
||
|
! Restore V and subtract from R.
|
||
|
sll T, TOPBITS, T ! high order bit
|
||
|
srl V, 1, V ! rest of V
|
||
|
add V, T, V
|
||
|
b Ldo_single_div
|
||
|
sub SC, 1, SC
|
||
|
|
||
|
Lnot_too_big:
|
||
|
3: cmp V, R
|
||
|
blu 2b
|
||
|
nop
|
||
|
be Ldo_single_div
|
||
|
nop
|
||
|
/* NB: these are commented out in the V8-Sparc manual as well */
|
||
|
/* (I do not understand this) */
|
||
|
! V > R: went too far: back up 1 step
|
||
|
! srl V, 1, V
|
||
|
! dec SC
|
||
|
! do single-bit divide steps
|
||
|
!
|
||
|
! We have to be careful here. We know that R >= V, so we can do the
|
||
|
! first divide step without thinking. BUT, the others are conditional,
|
||
|
! and are only done if R >= 0. Because both R and V may have the high-
|
||
|
! order bit set in the first step, just falling into the regular
|
||
|
! division loop will mess up the first time around.
|
||
|
! So we unroll slightly...
|
||
|
Ldo_single_div:
|
||
|
subcc SC, 1, SC
|
||
|
bl Lend_regular_divide
|
||
|
nop
|
||
|
sub R, V, R
|
||
|
mov 1, Q
|
||
|
b Lend_single_divloop
|
||
|
nop
|
||
|
Lsingle_divloop:
|
||
|
sll Q, 1, Q
|
||
|
bl 1f
|
||
|
srl V, 1, V
|
||
|
! R >= 0
|
||
|
sub R, V, R
|
||
|
b 2f
|
||
|
add Q, 1, Q
|
||
|
1: ! R < 0
|
||
|
add R, V, R
|
||
|
sub Q, 1, Q
|
||
|
2:
|
||
|
Lend_single_divloop:
|
||
|
subcc SC, 1, SC
|
||
|
bge Lsingle_divloop
|
||
|
tst R
|
||
|
b,a Lend_regular_divide
|
||
|
|
||
|
Lnot_really_big:
|
||
|
1:
|
||
|
sll V, N, V
|
||
|
cmp V, R
|
||
|
bleu 1b
|
||
|
addcc ITER, 1, ITER
|
||
|
be Lgot_result
|
||
|
sub ITER, 1, ITER
|
||
|
|
||
|
tst R ! set up for initial iteration
|
||
|
Ldivloop:
|
||
|
sll Q, N, Q
|
||
|
DEVELOP_QUOTIENT_BITS(1, 0)
|
||
|
Lend_regular_divide:
|
||
|
subcc ITER, 1, ITER
|
||
|
bge Ldivloop
|
||
|
tst R
|
||
|
bl,a Lgot_result
|
||
|
! non-restoring fixup here (one instruction only!)
|
||
|
ifelse(OP, `div',
|
||
|
` sub Q, 1, Q
|
||
|
', ` add R, divisor, R
|
||
|
')
|
||
|
|
||
|
Lgot_result:
|
||
|
ifelse(S, `true',
|
||
|
` ! check to see if answer should be < 0
|
||
|
tst SIGN
|
||
|
bl,a 1f
|
||
|
ifelse(OP, `div', `sub %g0, Q, Q', `sub %g0, R, R')
|
||
|
1:')
|
||
|
retl
|
||
|
ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
|