glibc/sysdeps/ia64/fpu/e_atan2f.S

901 lines
23 KiB
ArmAsm
Raw Normal View History

.file "atan2f.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// History
//==============================================================
// 06/01/00 Initial version
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 08/17/00 Changed predicate register macro-usage to direct predicate
// names due to an assembler bug.
// 01/05/01 Fixed flag settings for denormal input.
// 01/19/01 Added documentation
// 01/30/01 Improved speed
// 02/06/02 Corrected .section statement
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
// Description
//=========================================
// The atan2 function computes the principle value of the arc tangent of y/x using
// the signs of both arguments to determine the quadrant of the return value.
// A domain error may occur if both arguments are zero.
// The atan2 function returns the arc tangent of y/x in the range [-pi,+pi] radians.
//..
//..Let (v,u) = (y,x) if |y| <= |x|, and (v,u) = (x,y) otherwise. Note that
//..v and u can be negative. We state the relationship between atan2(y,x) and
//..atan(v/u).
//..
//..Let swap = false if v = y, and swap = true if v = x.
//..Define C according to the matrix
//..
//.. TABLE FOR C
//.. x +ve x -ve
//.. no swap (swap = false) sgn(y)*0 sgn(y)*pi
//.. swap (swap = true ) sgn(y)*pi/2 sgn(y)*pi/2
//..
//.. atan2(y,x) = C + atan(v/u) if no swap
//.. atan2(y,x) = C - atan(v/u) if swap
//..
//..These relationship is more efficient to compute as we accommodate signs in v and u
//..saving the need to obtain the absolute value before computation can proceed.
//..
//..Suppose (v,u) = (y,x), we calculate atan(v/u) as follows:
//..A = y * frcpa(x) (so A = (y/x)(1 - beta))
//..atan(y/x) = atan(A) + atan( ((y/x)-A))/(1 + (y/x)A) ), the second term is
//..a correction.
//..atan(A) is approximated by a polynomial
//..A + p1 A^3 + p2 A^5 + ... + p10 A^21,
//..atan(G) is approximated as follows:
//..Let G = (y - Ax)/(x + Ay), atan(G) can be approximated by G + g * p1
//..where g is a limited precision approximation to G via g = (y - Ax)*frcpa(x + Ay).
//..
//..Suppose (v,u) = (x,y), we calculate atan(v/u) as follows:
//..Z = x * frcpa(y) (so Z = (x/y)(1 - beta))
//..atan(x/y) = atan(Z) + atan( ((x/y)-Z))/(1 + (x/y)Z) ), the second term is
//..a correction.
//..atan(Z) is approximated by a polynomial
//..Z + p1 Z^3 + p2 Z^5 + ... + p10 Z^21,
//..atan(T) is approximated as follows:
//..Let T = (x - Ay)/(y + Ax), atan(T) can be approximated by T + t * p1
//..where t is a limited precision approximation to T via t = (x - Ay)*frcpa(y + Ax).
//..
//..
//..A = y * frcpa(x)
//..atan(A) ~=~ A + p1 A^3 + ... + P10 A^21
//..
//..This polynomial is computed as follows:
//..Asq = A*A; Acub = A*Asq, A4 = Asq*Asq
//..A5 = Asq*Acub, A6 = Asq*A4; A11 = A5 * A6
//..
//..poly_A1 = p9 + Asq*p10, poly_A2 = p7 + Asq*p8, poly_A3 = p5 + Asq*p6
//..poly_A1 = poly_A2 + A4 * poly_A1
//..poly_A1 = poly_A3 + A4 * poly_A1
//..
//..poly_A4 = p1 * A
//,,poly_A5 = p3 + Asq * p4, poly_A4 = A + Asq*poly_A4
//..poly_A5 = p2 + Asq * poly_A5
//..poly_A4 = poly_A4 + A5 * poly_A5
//..
//..atan_A = poly_A4 + A11 * poly_A1
//..
//..atan(G) is approximated as follows:
//..G_numer = y - A*x, G_denom = x + A*y
//..H1 = frcpa(G_denom)
//..H_beta = 1 - H1 * G_denom
//..H2 = H1 + H1 * H_beta
//..H_beta2 = H_beta*H_beta
//..H3 = H2 + H2*H_beta2
//..g = H1 * G_numer; gsq = g*g; atan_G = g*p1, atan_G = atan_G*gsq
//..atan_G = G_numer*H3 + atan_G
//..
//..
//..A = y * frcpa(x)
//..atan(A) ~=~ A + p1 A^3 + ... + P10 A^21
//..
//..This polynomial is computed as follows:
//..Asq = A*A; Acub = A*Asq, A4 = Asq*Asq
//..A5 = Asq*Acub, A6 = Asq*A4; A11 = A5 * A6
//..
//..poly_A1 = p9 + Asq*p10, poly_A2 = p7 + Asq*p8, poly_A3 = p5 + Asq*p6
//..poly_A1 = poly_A2 + A4 * poly_A1
//..poly_A1 = poly_A3 + A4 * poly_A1
//..
//..poly_A4 = p1 * A
//,,poly_A5 = p3 + Asq * p4, poly_A4 = A + Asq*poly_A4
//..poly_A5 = p2 + Asq * poly_A5
//..poly_A4 = poly_A4 + A5 * poly_A5
//..
//..atan_A = poly_A4 + A11 * poly_A1
//..
//..
//..====================================================================
//.. COEFFICIENTS USED IN THE COMPUTATION
//..====================================================================
//coef_pj, j = 1,2,...,10; atan(A) ~=~ A + p1 A^3 + p2 A^5 + ... + p10 A^21
//
// coef_p1 = -.3333332707155439167401311806315789E+00
// coef_p1 in dbl = BFD5 5555 1219 1621
//
// coef_p2 = .1999967670926658391827857030875748E+00
// coef_p2 in dbl = 3FC9 997E 7AFB FF4E
//
// coef_p3 = -.1427989384500152360161563301087296E+00
// coef_p3 in dbl = BFC2 473C 5145 EE38
//
// coef_p4 = .1105852823460720770079031213661163E+00
// coef_p4 in dbl = 3FBC 4F51 2B18 65F5
//
// coef_p5 = -.8811839915595312348625710228448363E-01
// coef_p5 in dbl = BFB6 8EED 6A8C FA32
//
// coef_p6 = .6742329836955067042153645159059714E-01
// coef_p6 in dbl = 3FB1 42A7 3D7C 54E3
//
// coef_p7 = -.4468571068774672908561591262231909E-01
// coef_p7 in dbl = BFA6 E10B A401 393F
//
// coef_p8 = .2252333246746511135532726960586493E-01
// coef_p8 in dbl = 3F97 105B 4160 F86B
//
// coef_p9 = -.7303884867007574742501716845542314E-02
// coef_p9 in dbl = BF7D EAAD AA33 6451
//
// coef_p10 = .1109686868355312093949039454619058E-02
// coef_p10 in dbl = 3F52 2E5D 33BC 9BAA
//
// Special values
//==============================================================
// Y x Result
// +number +inf +0
// -number +inf -0
// +number -inf +pi
// -number -inf -pi
//
// +inf +number +pi/2
// -inf +number -pi/2
// +inf -number +pi/2
// -inf -number -pi/2
//
// +inf +inf +pi/4
// -inf +inf -pi/4
// +inf -inf +3pi/4
// -inf -inf -3pi/4
//
// +1 +1 +pi/4
// -1 +1 -pi/4
// +1 -1 +3pi/4
// -1 -1 -3pi/4
//
// +number +0 +pi/2 // does not raise DBZ
// -number +0 -pi/2 // does not raise DBZ
// +number -0 +pi/2 // does not raise DBZ
// -number -0 -pi/2 // does not raise DBZ
//
// +0 +number +0
// -0 +number -0
// +0 -number +pi
// -0 -number -pi
//
// +0 +0 +0 // does not raise invalid
// -0 +0 -0 // does not raise invalid
// +0 -0 +pi // does not raise invalid
// -0 -0 -pi // does not raise invalid
//
// Nan anything quiet Y
// anything NaN quiet X
// atan2(+-0/+-0) sets double error tag to 37
// atan2f(+-0/+-0) sets single error tag to 38
// These are domain errors.
//
// Assembly macros
//=========================================
// integer registers
atan2f_GR_Addr_1 = r33
atan2f_GR_Addr_2 = r34
GR_SAVE_B0 = r35
GR_SAVE_PFS = r36
GR_SAVE_GP = r37
GR_Parameter_X = r38
GR_Parameter_Y = r39
GR_Parameter_RESULT = r40
GR_Parameter_TAG = r41
// floating point registers
atan2f_coef_p1 = f32
atan2f_coef_p10 = f33
atan2f_coef_p7 = f34
atan2f_coef_p6 = f35
atan2f_coef_p3 = f36
atan2f_coef_p2 = f37
atan2f_coef_p9 = f38
atan2f_coef_p8 = f39
atan2f_coef_p5 = f40
atan2f_coef_p4 = f41
atan2f_const_piby2 = f42
atan2f_const_pi = f43
atan2f_const_piby4 = f44
atan2f_const_3piby4 = f45
atan2f_xsq = f46
atan2f_ysq = f47
atan2f_xy = f48
atan2f_const_1 = f49
atan2f_sgn_Y = f50
atan2f_Z0 = f51
atan2f_A0 = f52
atan2f_Z = f53
atan2f_A = f54
atan2f_C = f55
atan2f_U = f56
atan2f_Usq = f57
atan2f_U4 = f58
atan2f_U6 = f59
atan2f_U8 = f60
atan2f_poly_u109 = f61
atan2f_poly_u87 = f62
atan2f_poly_u65 = f63
atan2f_poly_u43 = f64
atan2f_poly_u21 = f65
atan2f_poly_u10to7 = f66
atan2f_poly_u6to3 = f67
atan2f_poly_u10to3 = f68
atan2f_poly_u10to0 = f69
atan2f_poly_u210 = f70
atan2f_T_numer = f71
atan2f_T_denom = f72
atan2f_G_numer = f73
atan2f_G_denom = f74
atan2f_p1rnum = f75
atan2f_R_denom = f76
atan2f_R_numer = f77
atan2f_pR = f78
atan2f_pRC = f79
atan2f_pQRC = f80
atan2f_Q1 = f81
atan2f_Q_beta = f82
atan2f_Q2 = f83
atan2f_Q_beta2 = f84
atan2f_Q3 = f85
atan2f_r = f86
atan2f_rsq = f87
atan2f_poly_atan_U = f88
// predicate registers
//atan2f_Pred_Swap = p6 // |y| > |x|
//atan2f_Pred_noSwap = p7 // |y| <= |x|
//atan2f_Pred_Xpos = p8 // x >= 0
//atan2f_Pred_Xneg = p9 // x < 0
RODATA
.align 16
LOCAL_OBJECT_START(atan2f_coef_table1)
data8 0xBFD5555512191621 // p1
data8 0x3F522E5D33BC9BAA // p10
data8 0xBFA6E10BA401393F // p7
data8 0x3FB142A73D7C54E3 // p6
data8 0xBFC2473C5145EE38 // p3
data8 0x3FC9997E7AFBFF4E // p2
LOCAL_OBJECT_END(atan2f_coef_table1)
LOCAL_OBJECT_START(atan2f_coef_table2)
data8 0xBF7DEAADAA336451 // p9
data8 0x3F97105B4160F86B // p8
data8 0xBFB68EED6A8CFA32 // p5
data8 0x3FBC4F512B1865F5 // p4
data8 0x3ff921fb54442d18 // pi/2
data8 0x400921fb54442d18 // pi
data8 0x3fe921fb54442d18 // pi/4
data8 0x4002d97c7f3321d2 // 3pi/4
LOCAL_OBJECT_END(atan2f_coef_table2)
.section .text
GLOBAL_IEEE754_ENTRY(atan2f)
{ .mfi
alloc r32 = ar.pfs,1,5,4,0
frcpa.s1 atan2f_Z0,p0 = f1,f8 // Approx to 1/y
nop.i 999
}
{ .mfi
addl atan2f_GR_Addr_1 = @ltoff(atan2f_coef_table1),gp
fma.s1 atan2f_xsq = f9,f9,f0
nop.i 999 ;;
}
{ .mfi
ld8 atan2f_GR_Addr_1 = [atan2f_GR_Addr_1]
frcpa.s1 atan2f_A0,p0 = f1,f9 // Approx to 1/x
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_ysq = f8,f8,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
fcmp.ge.s1 p8,p9 = f9,f0 // Set p8 if x>=0, p9 if x<0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_xy = f9,f8,f0
nop.i 999 ;;
}
{ .mfi
add atan2f_GR_Addr_2 = 0x30, atan2f_GR_Addr_1
fmerge.s atan2f_sgn_Y = f8,f1
nop.i 999 ;;
}
{ .mmf
ldfpd atan2f_coef_p1,atan2f_coef_p10 = [atan2f_GR_Addr_1],16
ldfpd atan2f_coef_p9,atan2f_coef_p8 = [atan2f_GR_Addr_2],16
fclass.m p10,p0 = f9,0xe7 // Test x @inf|@snan|@qnan|@zero
}
;;
{ .mfi
ldfpd atan2f_coef_p7,atan2f_coef_p6 = [atan2f_GR_Addr_1],16
fma.s1 atan2f_T_denom = atan2f_Z0,atan2f_xsq,f8
nop.i 999
}
{ .mfi
ldfpd atan2f_coef_p5,atan2f_coef_p4 = [atan2f_GR_Addr_2],16
fma.s1 atan2f_Z = atan2f_Z0,f9,f0
nop.i 999 ;;
}
{ .mfi
ldfpd atan2f_coef_p3,atan2f_coef_p2 = [atan2f_GR_Addr_1],16
fma.s1 atan2f_G_denom = atan2f_A0,atan2f_ysq,f9
nop.i 999
}
{ .mfi
ldfpd atan2f_const_piby2,atan2f_const_pi = [atan2f_GR_Addr_2],16
fma.s1 atan2f_A = atan2f_A0,f8,f0
nop.i 999 ;;
}
{ .mfi
ldfpd atan2f_const_piby4,atan2f_const_3piby4 = [atan2f_GR_Addr_2]
fclass.m p11,p0 = f8,0xe7 // Test y @inf|@snan|@qnan|@zero
nop.i 999
}
{ .mfb
nop.m 999
fnma.s1 atan2f_T_numer = atan2f_Z0,atan2f_xy,f9
(p10) br.cond.spnt ATAN2F_XY_INF_NAN_ZERO ;; // Branch on x nan,inf,zero
}
// p6 if |y|>|x|, p7 if |x|>=|y| , use xsq and ysq for test
{ .mfi
nop.m 999
fcmp.gt.s1 p6,p7 = atan2f_ysq,atan2f_xsq
nop.i 999
}
{ .mfb
nop.m 999
fnma.s1 atan2f_G_numer = atan2f_A0,atan2f_xy,f8
(p11) br.cond.spnt ATAN2F_XY_INF_NAN_ZERO ;; // Branch on y nan,inf,zero
}
{ .mfi
nop.m 999
(p8) fma.s1 atan2f_const_1 = atan2f_sgn_Y,f0,f0
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 atan2f_const_1 = atan2f_sgn_Y,f1,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p6) fnma.s1 atan2f_U = atan2f_Z,f1,f0
nop.i 999
}
{ .mfi
nop.m 999
(p6) fma.s1 atan2f_Usq = atan2f_Z,atan2f_Z,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p7) fma.s1 atan2f_U = atan2f_A,f1,f0
nop.i 999
}
{ .mfi
nop.m 999
(p7) fma.s1 atan2f_Usq = atan2f_A,atan2f_A,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p6) frcpa.s1 atan2f_Q1,p0 = f1,atan2f_T_denom
nop.i 999
}
{ .mfi
nop.m 999
(p6) fma.s1 atan2f_R_denom = atan2f_T_denom,f1,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p7) frcpa.s1 atan2f_Q1,p0 = f1,atan2f_G_denom
nop.i 999
}
{ .mfi
nop.m 999
(p7) fma.s1 atan2f_R_denom = atan2f_G_denom,f1,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p6) fnma.s1 atan2f_R_numer = atan2f_T_numer,f1,f0
nop.i 999
}
{ .mfi
nop.m 999
(p7) fma.s1 atan2f_R_numer = atan2f_G_numer,f1,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p6) fnma.s1 atan2f_p1rnum = atan2f_T_numer,atan2f_coef_p1,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p7) fma.s1 atan2f_p1rnum = atan2f_G_numer,atan2f_coef_p1,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_U4 = atan2f_Usq,atan2f_Usq,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u109 = atan2f_Usq,atan2f_coef_p10,atan2f_coef_p9
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u87 = atan2f_Usq,atan2f_coef_p8,atan2f_coef_p7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u65 = atan2f_Usq,atan2f_coef_p6,atan2f_coef_p5
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u43 = atan2f_Usq,atan2f_coef_p4,atan2f_coef_p3
nop.i 999
}
{ .mfi
nop.m 999
fnma.s1 atan2f_Q_beta = atan2f_Q1,atan2f_R_denom,f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u21 = atan2f_Usq,atan2f_coef_p2,atan2f_coef_p1
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_r = atan2f_Q1,atan2f_R_numer,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p6) fma.s1 atan2f_C = atan2f_sgn_Y,atan2f_const_piby2,f0
nop.i 999
}
{ .mfi
nop.m 999
(p7) fma.s1 atan2f_C = atan2f_const_1,atan2f_const_pi,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_U6 = atan2f_U4,atan2f_Usq,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_U8 = atan2f_U4,atan2f_U4,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u10to7 = atan2f_U4,atan2f_poly_u109,atan2f_poly_u87
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_pR = atan2f_p1rnum,atan2f_Q1,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u6to3 = atan2f_U4,atan2f_poly_u65,atan2f_poly_u43
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_Q2 = atan2f_Q1,atan2f_Q_beta,atan2f_Q1
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_Q_beta2 = atan2f_Q_beta,atan2f_Q_beta,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_rsq = atan2f_r,atan2f_r,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u210 = atan2f_Usq,atan2f_poly_u21,f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
fcmp.eq.s0 p8,p0 = f8,f9 // Dummy op to set flag on denormal inputs
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u10to3 = atan2f_U8,atan2f_poly_u10to7,atan2f_poly_u6to3
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_Q3 = atan2f_Q2,atan2f_Q_beta2,atan2f_Q2
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 atan2f_pRC = atan2f_rsq,atan2f_pR,atan2f_C
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_poly_u10to0 = atan2f_U6,atan2f_poly_u10to3,atan2f_poly_u210
nop.i 999 ;;
}
{ .mfi
nop.m 999
fma.s1 atan2f_pQRC = atan2f_R_numer,atan2f_Q3,atan2f_pRC
nop.i 999 ;;
}
{ .mfb
nop.m 999
fma.s.s0 f8 = atan2f_U,atan2f_poly_u10to0,atan2f_pQRC
br.ret.sptk b0 ;;
}
ATAN2F_XY_INF_NAN_ZERO:
{ .mfi
nop.m 999
fclass.m p10,p0 = f8,0xc3 // Is y nan
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p12,p0 = f9,0xc3 // Is x nan
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p6,p0 = f9,0x21 // Is x +inf
nop.i 999
}
{ .mfb
nop.m 999
(p10) fma.s.s0 f8 = f9,f8,f0 // Result quietized y if y is nan
(p10) br.ret.spnt b0 // Exit if y is nan
}
;;
{ .mfi
nop.m 999
(p6) fclass.m.unc p7,p8 = f8,0x23 // x +inf, is y inf
nop.i 999
}
{ .mfb
nop.m 999
(p12) fnorm.s.s0 f8 = f9 // Result quietized x if x is nan, y not nan
(p12) br.ret.spnt b0 // Exit if x is nan, y not nan
}
;;
// Here if x or y inf, or x or y zero
{ .mfi
nop.m 999
fcmp.eq.s0 p15,p0 = f8,f9 // Dummy op to set flag on denormal inputs
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p11,p12 = f9,0x22 // Is x -inf
nop.i 999
}
{ .mfb
nop.m 999
(p7) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_piby4,f0 // Result +-pi/4
(p7) br.ret.spnt b0 // Exit if x +inf and y inf
}
;;
{ .mfb
nop.m 999
(p8) fmerge.s f8 = f8,f0 // If x +inf and y not inf, result +-0
(p8) br.ret.spnt b0 // Exit if x +inf and y not inf
}
;;
{ .mfi
nop.m 999
(p12) fclass.m.unc p13,p0 = f8,0x23 // x not -inf, is y inf
nop.i 999
}
;;
{ .mfi
nop.m 999
(p11) fclass.m.unc p14,p15 = f8,0x23 // x -inf, is y inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p6,p7 = f9,0x7 // Is x zero
nop.i 999
}
{ .mfb
nop.m 999
(p13) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // Result +-pi/2
(p13) br.ret.spnt b0 // Exit if x not -inf and y inf
}
;;
{ .mfi
nop.m 999
(p14) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_3piby4,f0 // Result +-3pi/4
nop.i 999
}
{ .mfb
nop.m 999
(p15) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // Result +-pi
(p11) br.ret.spnt b0 // Exit if x -inf
}
;;
// Here if x or y zero
{ .mfi
nop.m 999
(p7) fclass.m.unc p8,p9 = f9,0x19 // x not zero, y zero, is x > zero
nop.i 999
}
;;
{ .mfi
nop.m 999
(p6) fclass.m.unc p10,p11 = f8,0x7 // x zero, is y zero
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fmerge.s f8 = f8, f0 // x > zero and y zero, result is +-zero
nop.i 999
}
{ .mfb
nop.m 999
(p9) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // x < 0, y 0, result +-pi
(p10) br.cond.spnt __libm_error_region // Branch if x zero and y zero
}
;;
{ .mfb
nop.m 999
(p11) fma.s.s0 f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // x zero, y not zero
br.ret.sptk b0 // Final special case exit
}
;;
GLOBAL_IEEE754_END(atan2f)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
mov GR_Parameter_TAG = 38
fclass.m p10,p11 = f9,0x5 // @zero | @pos
;;
(p10) fmerge.s f10 = f8, f0
(p11) fma.s.s0 f10 = atan2f_sgn_Y, atan2f_const_pi,f0
;;
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
}
;;
{ .mmi
stfs [GR_Parameter_Y] = f9,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
}
;;
.body
{ .mib
stfs [GR_Parameter_X] = f8 // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfs [GR_Parameter_Y] = f10 // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
}
;;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
}
;;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
}
;;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#