2001-11-10 10:39:05 +00:00
|
|
|
/* log10l.c
|
|
|
|
*
|
|
|
|
* Common logarithm, 128-bit long double precision
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* SYNOPSIS:
|
|
|
|
*
|
|
|
|
* long double x, y, log10l();
|
|
|
|
*
|
|
|
|
* y = log10l( x );
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* DESCRIPTION:
|
|
|
|
*
|
|
|
|
* Returns the base 10 logarithm of x.
|
|
|
|
*
|
|
|
|
* The argument is separated into its exponent and fractional
|
|
|
|
* parts. If the exponent is between -1 and +1, the logarithm
|
|
|
|
* of the fraction is approximated by
|
|
|
|
*
|
|
|
|
* log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
|
|
|
|
*
|
|
|
|
* Otherwise, setting z = 2(x-1)/x+1),
|
|
|
|
*
|
|
|
|
* log(x) = z + z^3 P(z)/Q(z).
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ACCURACY:
|
|
|
|
*
|
|
|
|
* Relative error:
|
|
|
|
* arithmetic domain # trials peak rms
|
|
|
|
* IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
|
|
|
|
* IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
|
|
|
|
*
|
|
|
|
* In the tests over the interval exp(+-10000), the logarithms
|
|
|
|
* of the random arguments were uniformly distributed over
|
|
|
|
* [-10000, +10000].
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Cephes Math Library Release 2.2: January, 1991
|
|
|
|
Copyright 1984, 1991 by Stephen L. Moshier
|
|
|
|
Adapted for glibc November, 2001
|
2002-08-26 22:40:48 +00:00
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
Prefer https to http for gnu.org and fsf.org URLs
Also, change sources.redhat.com to sourceware.org.
This patch was automatically generated by running the following shell
script, which uses GNU sed, and which avoids modifying files imported
from upstream:
sed -ri '
s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g
s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g
' \
$(find $(git ls-files) -prune -type f \
! -name '*.po' \
! -name 'ChangeLog*' \
! -path COPYING ! -path COPYING.LIB \
! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \
! -path manual/texinfo.tex ! -path scripts/config.guess \
! -path scripts/config.sub ! -path scripts/install-sh \
! -path scripts/mkinstalldirs ! -path scripts/move-if-change \
! -path INSTALL ! -path locale/programs/charmap-kw.h \
! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \
! '(' -name configure \
-execdir test -f configure.ac -o -f configure.in ';' ')' \
! '(' -name preconfigure \
-execdir test -f preconfigure.ac ';' ')' \
-print)
and then by running 'make dist-prepare' to regenerate files built
from the altered files, and then executing the following to cleanup:
chmod a+x sysdeps/unix/sysv/linux/riscv/configure
# Omit irrelevant whitespace and comment-only changes,
# perhaps from a slightly-different Autoconf version.
git checkout -f \
sysdeps/csky/configure \
sysdeps/hppa/configure \
sysdeps/riscv/configure \
sysdeps/unix/sysv/linux/csky/configure
# Omit changes that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines
git checkout -f \
sysdeps/powerpc/powerpc64/ppc-mcount.S \
sysdeps/unix/sysv/linux/s390/s390-64/syscall.S
# Omit change that caused a pre-commit check to fail like this:
# remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline
git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 05:40:42 +00:00
|
|
|
License along with this library; if not, see <https://www.gnu.org/licenses/>.
|
2001-11-10 10:39:05 +00:00
|
|
|
*/
|
|
|
|
|
2012-03-09 19:29:16 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
2001-11-10 10:39:05 +00:00
|
|
|
|
|
|
|
/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
|
|
|
|
* 1/sqrt(2) <= x < sqrt(2)
|
|
|
|
* Theoretical peak relative error = 5.3e-37,
|
|
|
|
* relative peak error spread = 2.3e-14
|
|
|
|
*/
|
2016-07-20 20:20:51 +00:00
|
|
|
static const _Float128 P[13] =
|
2001-11-10 10:39:05 +00:00
|
|
|
{
|
2016-09-02 16:01:07 +00:00
|
|
|
L(1.313572404063446165910279910527789794488E4),
|
|
|
|
L(7.771154681358524243729929227226708890930E4),
|
|
|
|
L(2.014652742082537582487669938141683759923E5),
|
|
|
|
L(3.007007295140399532324943111654767187848E5),
|
|
|
|
L(2.854829159639697837788887080758954924001E5),
|
|
|
|
L(1.797628303815655343403735250238293741397E5),
|
|
|
|
L(7.594356839258970405033155585486712125861E4),
|
|
|
|
L(2.128857716871515081352991964243375186031E4),
|
|
|
|
L(3.824952356185897735160588078446136783779E3),
|
|
|
|
L(4.114517881637811823002128927449878962058E2),
|
|
|
|
L(2.321125933898420063925789532045674660756E1),
|
|
|
|
L(4.998469661968096229986658302195402690910E-1),
|
|
|
|
L(1.538612243596254322971797716843006400388E-6)
|
2001-11-10 10:39:05 +00:00
|
|
|
};
|
2016-07-20 20:20:51 +00:00
|
|
|
static const _Float128 Q[12] =
|
2001-11-10 10:39:05 +00:00
|
|
|
{
|
2016-09-02 16:01:07 +00:00
|
|
|
L(3.940717212190338497730839731583397586124E4),
|
|
|
|
L(2.626900195321832660448791748036714883242E5),
|
|
|
|
L(7.777690340007566932935753241556479363645E5),
|
|
|
|
L(1.347518538384329112529391120390701166528E6),
|
|
|
|
L(1.514882452993549494932585972882995548426E6),
|
|
|
|
L(1.158019977462989115839826904108208787040E6),
|
|
|
|
L(6.132189329546557743179177159925690841200E5),
|
|
|
|
L(2.248234257620569139969141618556349415120E5),
|
|
|
|
L(5.605842085972455027590989944010492125825E4),
|
|
|
|
L(9.147150349299596453976674231612674085381E3),
|
|
|
|
L(9.104928120962988414618126155557301584078E2),
|
|
|
|
L(4.839208193348159620282142911143429644326E1)
|
2001-11-10 10:39:05 +00:00
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
|
|
|
|
* where z = 2(x-1)/(x+1)
|
|
|
|
* 1/sqrt(2) <= x < sqrt(2)
|
|
|
|
* Theoretical peak relative error = 1.1e-35,
|
|
|
|
* relative peak error spread 1.1e-9
|
|
|
|
*/
|
2016-07-20 20:20:51 +00:00
|
|
|
static const _Float128 R[6] =
|
2001-11-10 10:39:05 +00:00
|
|
|
{
|
2016-09-02 16:01:07 +00:00
|
|
|
L(1.418134209872192732479751274970992665513E5),
|
|
|
|
L(-8.977257995689735303686582344659576526998E4),
|
|
|
|
L(2.048819892795278657810231591630928516206E4),
|
|
|
|
L(-2.024301798136027039250415126250455056397E3),
|
|
|
|
L(8.057002716646055371965756206836056074715E1),
|
|
|
|
L(-8.828896441624934385266096344596648080902E-1)
|
2001-11-10 10:39:05 +00:00
|
|
|
};
|
2016-07-20 20:20:51 +00:00
|
|
|
static const _Float128 S[6] =
|
2001-11-10 10:39:05 +00:00
|
|
|
{
|
2016-09-02 16:01:07 +00:00
|
|
|
L(1.701761051846631278975701529965589676574E6),
|
|
|
|
L(-1.332535117259762928288745111081235577029E6),
|
|
|
|
L(4.001557694070773974936904547424676279307E5),
|
|
|
|
L(-5.748542087379434595104154610899551484314E4),
|
|
|
|
L(3.998526750980007367835804959888064681098E3),
|
|
|
|
L(-1.186359407982897997337150403816839480438E2)
|
2001-11-10 10:39:05 +00:00
|
|
|
/* 1.000000000000000000000000000000000000000E0L, */
|
|
|
|
};
|
|
|
|
|
2016-07-20 20:20:51 +00:00
|
|
|
static const _Float128
|
2001-11-10 10:39:05 +00:00
|
|
|
/* log10(2) */
|
2016-09-02 16:01:07 +00:00
|
|
|
L102A = L(0.3125),
|
|
|
|
L102B = L(-1.14700043360188047862611052755069732318101185E-2),
|
2001-11-10 10:39:05 +00:00
|
|
|
/* log10(e) */
|
2016-09-02 16:01:07 +00:00
|
|
|
L10EA = L(0.5),
|
|
|
|
L10EB = L(-6.570551809674817234887108108339491770560299E-2),
|
2001-11-10 10:39:05 +00:00
|
|
|
/* sqrt(2)/2 */
|
2016-09-02 16:01:07 +00:00
|
|
|
SQRTH = L(7.071067811865475244008443621048490392848359E-1);
|
2001-11-10 10:39:05 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
|
2016-07-20 20:20:51 +00:00
|
|
|
static _Float128
|
|
|
|
neval (_Float128 x, const _Float128 *p, int n)
|
2001-11-10 10:39:05 +00:00
|
|
|
{
|
2016-07-20 20:20:51 +00:00
|
|
|
_Float128 y;
|
2001-11-10 10:39:05 +00:00
|
|
|
|
|
|
|
p += n;
|
|
|
|
y = *p--;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
y = y * x + *p--;
|
|
|
|
}
|
|
|
|
while (--n > 0);
|
|
|
|
return y;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
|
2016-07-20 20:20:51 +00:00
|
|
|
static _Float128
|
|
|
|
deval (_Float128 x, const _Float128 *p, int n)
|
2001-11-10 10:39:05 +00:00
|
|
|
{
|
2016-07-20 20:20:51 +00:00
|
|
|
_Float128 y;
|
2001-11-10 10:39:05 +00:00
|
|
|
|
|
|
|
p += n;
|
|
|
|
y = x + *p--;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
y = y * x + *p--;
|
|
|
|
}
|
|
|
|
while (--n > 0);
|
|
|
|
return y;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2016-07-20 20:20:51 +00:00
|
|
|
_Float128
|
|
|
|
__ieee754_log10l (_Float128 x)
|
2001-11-10 10:39:05 +00:00
|
|
|
{
|
2016-07-20 20:20:51 +00:00
|
|
|
_Float128 z;
|
|
|
|
_Float128 y;
|
2001-11-10 10:39:05 +00:00
|
|
|
int e;
|
2002-07-11 05:55:13 +00:00
|
|
|
int64_t hx, lx;
|
2001-11-10 10:39:05 +00:00
|
|
|
|
|
|
|
/* Test for domain */
|
2002-07-11 05:55:13 +00:00
|
|
|
GET_LDOUBLE_WORDS64 (hx, lx, x);
|
|
|
|
if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
|
2017-09-29 17:54:24 +00:00
|
|
|
return (-1 / fabsl (x)); /* log10l(+-0)=-inf */
|
2002-07-11 05:55:13 +00:00
|
|
|
if (hx < 0)
|
|
|
|
return (x - x) / (x - x);
|
|
|
|
if (hx >= 0x7fff000000000000LL)
|
2001-11-10 10:39:05 +00:00
|
|
|
return (x + x);
|
|
|
|
|
2016-09-02 16:01:07 +00:00
|
|
|
if (x == 1)
|
|
|
|
return 0;
|
2014-05-23 12:07:50 +00:00
|
|
|
|
2001-11-10 10:39:05 +00:00
|
|
|
/* separate mantissa from exponent */
|
|
|
|
|
|
|
|
/* Note, frexp is used so that denormal numbers
|
|
|
|
* will be handled properly.
|
|
|
|
*/
|
|
|
|
x = __frexpl (x, &e);
|
|
|
|
|
|
|
|
|
|
|
|
/* logarithm using log(x) = z + z**3 P(z)/Q(z),
|
|
|
|
* where z = 2(x-1)/x+1)
|
|
|
|
*/
|
|
|
|
if ((e > 2) || (e < -2))
|
|
|
|
{
|
|
|
|
if (x < SQRTH)
|
|
|
|
{ /* 2( 2x-1 )/( 2x+1 ) */
|
|
|
|
e -= 1;
|
2016-09-02 16:01:07 +00:00
|
|
|
z = x - L(0.5);
|
|
|
|
y = L(0.5) * z + L(0.5);
|
2001-11-10 10:39:05 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{ /* 2 (x-1)/(x+1) */
|
2016-09-02 16:01:07 +00:00
|
|
|
z = x - L(0.5);
|
|
|
|
z -= L(0.5);
|
|
|
|
y = L(0.5) * x + L(0.5);
|
2001-11-10 10:39:05 +00:00
|
|
|
}
|
|
|
|
x = z / y;
|
|
|
|
z = x * x;
|
|
|
|
y = x * (z * neval (z, R, 5) / deval (z, S, 5));
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
|
|
|
|
|
|
|
if (x < SQRTH)
|
|
|
|
{
|
|
|
|
e -= 1;
|
2016-09-02 16:01:07 +00:00
|
|
|
x = 2.0 * x - 1; /* 2x - 1 */
|
2001-11-10 10:39:05 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2016-09-02 16:01:07 +00:00
|
|
|
x = x - 1;
|
2001-11-10 10:39:05 +00:00
|
|
|
}
|
|
|
|
z = x * x;
|
|
|
|
y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
|
|
|
|
y = y - 0.5 * z;
|
|
|
|
|
|
|
|
done:
|
|
|
|
|
|
|
|
/* Multiply log of fraction by log10(e)
|
|
|
|
* and base 2 exponent by log10(2).
|
|
|
|
*/
|
|
|
|
z = y * L10EB;
|
|
|
|
z += x * L10EB;
|
|
|
|
z += e * L102B;
|
|
|
|
z += y * L10EA;
|
|
|
|
z += x * L10EA;
|
|
|
|
z += e * L102A;
|
|
|
|
return (z);
|
|
|
|
}
|
2011-10-12 15:27:51 +00:00
|
|
|
strong_alias (__ieee754_log10l, __log10l_finite)
|