mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-29 16:21:07 +00:00
128 lines
4.9 KiB
C
128 lines
4.9 KiB
C
|
/* Double-precision vector (SVE) exp10 function.
|
||
|
|
||
|
Copyright (C) 2023 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, see
|
||
|
<https://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include "sv_math.h"
|
||
|
#include "poly_sve_f64.h"
|
||
|
|
||
|
#define SpecialBound 307.0 /* floor (log10 (2^1023)). */
|
||
|
|
||
|
static const struct data
|
||
|
{
|
||
|
double poly[5];
|
||
|
double shift, log10_2, log2_10_hi, log2_10_lo, scale_thres, special_bound;
|
||
|
} data = {
|
||
|
/* Coefficients generated using Remez algorithm.
|
||
|
rel error: 0x1.9fcb9b3p-60
|
||
|
abs error: 0x1.a20d9598p-60 in [ -log10(2)/128, log10(2)/128 ]
|
||
|
max ulp err 0.52 +0.5. */
|
||
|
.poly = { 0x1.26bb1bbb55516p1, 0x1.53524c73cd32ap1, 0x1.0470591daeafbp1,
|
||
|
0x1.2bd77b1361ef6p0, 0x1.142b5d54e9621p-1 },
|
||
|
/* 1.5*2^46+1023. This value is further explained below. */
|
||
|
.shift = 0x1.800000000ffc0p+46,
|
||
|
.log10_2 = 0x1.a934f0979a371p1, /* 1/log2(10). */
|
||
|
.log2_10_hi = 0x1.34413509f79ffp-2, /* log2(10). */
|
||
|
.log2_10_lo = -0x1.9dc1da994fd21p-59,
|
||
|
.scale_thres = 1280.0,
|
||
|
.special_bound = SpecialBound,
|
||
|
};
|
||
|
|
||
|
#define SpecialOffset 0x6000000000000000 /* 0x1p513. */
|
||
|
/* SpecialBias1 + SpecialBias1 = asuint(1.0). */
|
||
|
#define SpecialBias1 0x7000000000000000 /* 0x1p769. */
|
||
|
#define SpecialBias2 0x3010000000000000 /* 0x1p-254. */
|
||
|
|
||
|
/* Update of both special and non-special cases, if any special case is
|
||
|
detected. */
|
||
|
static inline svfloat64_t
|
||
|
special_case (svbool_t pg, svfloat64_t s, svfloat64_t y, svfloat64_t n,
|
||
|
const struct data *d)
|
||
|
{
|
||
|
/* s=2^n may overflow, break it up into s=s1*s2,
|
||
|
such that exp = s + s*y can be computed as s1*(s2+s2*y)
|
||
|
and s1*s1 overflows only if n>0. */
|
||
|
|
||
|
/* If n<=0 then set b to 0x6, 0 otherwise. */
|
||
|
svbool_t p_sign = svcmple (pg, n, 0.0); /* n <= 0. */
|
||
|
svuint64_t b = svdup_u64_z (p_sign, SpecialOffset);
|
||
|
|
||
|
/* Set s1 to generate overflow depending on sign of exponent n. */
|
||
|
svfloat64_t s1 = svreinterpret_f64 (svsubr_x (pg, b, SpecialBias1));
|
||
|
/* Offset s to avoid overflow in final result if n is below threshold. */
|
||
|
svfloat64_t s2 = svreinterpret_f64 (
|
||
|
svadd_x (pg, svsub_x (pg, svreinterpret_u64 (s), SpecialBias2), b));
|
||
|
|
||
|
/* |n| > 1280 => 2^(n) overflows. */
|
||
|
svbool_t p_cmp = svacgt (pg, n, d->scale_thres);
|
||
|
|
||
|
svfloat64_t r1 = svmul_x (pg, s1, s1);
|
||
|
svfloat64_t r2 = svmla_x (pg, s2, s2, y);
|
||
|
svfloat64_t r0 = svmul_x (pg, r2, s1);
|
||
|
|
||
|
return svsel (p_cmp, r1, r0);
|
||
|
}
|
||
|
|
||
|
/* Fast vector implementation of exp10 using FEXPA instruction.
|
||
|
Maximum measured error is 1.02 ulp.
|
||
|
SV_NAME_D1 (exp10)(-0x1.2862fec805e58p+2) got 0x1.885a89551d782p-16
|
||
|
want 0x1.885a89551d781p-16. */
|
||
|
svfloat64_t SV_NAME_D1 (exp10) (svfloat64_t x, svbool_t pg)
|
||
|
{
|
||
|
const struct data *d = ptr_barrier (&data);
|
||
|
svbool_t no_big_scale = svacle (pg, x, d->special_bound);
|
||
|
svbool_t special = svnot_z (pg, no_big_scale);
|
||
|
|
||
|
/* n = round(x/(log10(2)/N)). */
|
||
|
svfloat64_t shift = sv_f64 (d->shift);
|
||
|
svfloat64_t z = svmla_x (pg, shift, x, d->log10_2);
|
||
|
svfloat64_t n = svsub_x (pg, z, shift);
|
||
|
|
||
|
/* r = x - n*log10(2)/N. */
|
||
|
svfloat64_t log2_10 = svld1rq (svptrue_b64 (), &d->log2_10_hi);
|
||
|
svfloat64_t r = x;
|
||
|
r = svmls_lane (r, n, log2_10, 0);
|
||
|
r = svmls_lane (r, n, log2_10, 1);
|
||
|
|
||
|
/* scale = 2^(n/N), computed using FEXPA. FEXPA does not propagate NaNs, so
|
||
|
for consistent NaN handling we have to manually propagate them. This
|
||
|
comes at significant performance cost. */
|
||
|
svuint64_t u = svreinterpret_u64 (z);
|
||
|
svfloat64_t scale = svexpa (u);
|
||
|
|
||
|
/* Approximate exp10(r) using polynomial. */
|
||
|
svfloat64_t r2 = svmul_x (pg, r, r);
|
||
|
svfloat64_t y = svmla_x (pg, svmul_x (pg, r, d->poly[0]), r2,
|
||
|
sv_pairwise_poly_3_f64_x (pg, r, r2, d->poly + 1));
|
||
|
|
||
|
/* Assemble result as exp10(x) = 2^n * exp10(r). If |x| > SpecialBound
|
||
|
multiplication may overflow, so use special case routine. */
|
||
|
if (__glibc_unlikely (svptest_any (pg, special)))
|
||
|
{
|
||
|
/* FEXPA zeroes the sign bit, however the sign is meaningful to the
|
||
|
special case function so needs to be copied.
|
||
|
e = sign bit of u << 46. */
|
||
|
svuint64_t e = svand_x (pg, svlsl_x (pg, u, 46), 0x8000000000000000);
|
||
|
/* Copy sign to scale. */
|
||
|
scale = svreinterpret_f64 (svadd_x (pg, e, svreinterpret_u64 (scale)));
|
||
|
return special_case (pg, scale, y, n, d);
|
||
|
}
|
||
|
|
||
|
/* No special case. */
|
||
|
return svmla_x (pg, scale, scale, y);
|
||
|
}
|