2012-03-16 12:28:25 +00:00
|
|
|
/* Quad-precision floating point sine on <-pi/4,pi/4>.
|
2015-01-02 16:28:19 +00:00
|
|
|
Copyright (C) 1999-2015 Free Software Foundation, Inc.
|
2012-03-16 12:28:25 +00:00
|
|
|
This file is part of the GNU C Library.
|
|
|
|
Based on quad-precision sine by Jakub Jelinek <jj@ultra.linux.cz>
|
|
|
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
|
|
License along with the GNU C Library; if not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
/* The polynomials have not been optimized for extended-precision and
|
|
|
|
may contain more terms than needed. */
|
|
|
|
|
2015-06-23 22:24:20 +00:00
|
|
|
#include <float.h>
|
2012-03-16 12:28:25 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
|
|
|
|
|
|
|
/* The polynomials have not been optimized for extended-precision and
|
|
|
|
may contain more terms than needed. */
|
|
|
|
|
|
|
|
static const long double c[] = {
|
|
|
|
#define ONE c[0]
|
|
|
|
1.00000000000000000000000000000000000E+00L,
|
|
|
|
|
|
|
|
/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
|
|
|
|
x in <0,1/256> */
|
|
|
|
#define SCOS1 c[1]
|
|
|
|
#define SCOS2 c[2]
|
|
|
|
#define SCOS3 c[3]
|
|
|
|
#define SCOS4 c[4]
|
|
|
|
#define SCOS5 c[5]
|
|
|
|
-5.00000000000000000000000000000000000E-01L,
|
|
|
|
4.16666666666666666666666666556146073E-02L,
|
|
|
|
-1.38888888888888888888309442601939728E-03L,
|
|
|
|
2.48015873015862382987049502531095061E-05L,
|
|
|
|
-2.75573112601362126593516899592158083E-07L,
|
|
|
|
|
|
|
|
/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
|
|
|
|
x in <0,0.1484375> */
|
|
|
|
#define SIN1 c[6]
|
|
|
|
#define SIN2 c[7]
|
|
|
|
#define SIN3 c[8]
|
|
|
|
#define SIN4 c[9]
|
|
|
|
#define SIN5 c[10]
|
|
|
|
#define SIN6 c[11]
|
|
|
|
#define SIN7 c[12]
|
|
|
|
#define SIN8 c[13]
|
|
|
|
-1.66666666666666666666666666666666538e-01L,
|
|
|
|
8.33333333333333333333333333307532934e-03L,
|
|
|
|
-1.98412698412698412698412534478712057e-04L,
|
|
|
|
2.75573192239858906520896496653095890e-06L,
|
|
|
|
-2.50521083854417116999224301266655662e-08L,
|
|
|
|
1.60590438367608957516841576404938118e-10L,
|
|
|
|
-7.64716343504264506714019494041582610e-13L,
|
|
|
|
2.81068754939739570236322404393398135e-15L,
|
|
|
|
|
|
|
|
/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
|
|
|
|
x in <0,1/256> */
|
|
|
|
#define SSIN1 c[14]
|
|
|
|
#define SSIN2 c[15]
|
|
|
|
#define SSIN3 c[16]
|
|
|
|
#define SSIN4 c[17]
|
|
|
|
#define SSIN5 c[18]
|
|
|
|
-1.66666666666666666666666666666666659E-01L,
|
|
|
|
8.33333333333333333333333333146298442E-03L,
|
|
|
|
-1.98412698412698412697726277416810661E-04L,
|
|
|
|
2.75573192239848624174178393552189149E-06L,
|
|
|
|
-2.50521016467996193495359189395805639E-08L,
|
|
|
|
};
|
|
|
|
|
|
|
|
#define SINCOSL_COS_HI 0
|
|
|
|
#define SINCOSL_COS_LO 1
|
|
|
|
#define SINCOSL_SIN_HI 2
|
|
|
|
#define SINCOSL_SIN_LO 3
|
|
|
|
extern const long double __sincosl_table[];
|
|
|
|
|
|
|
|
long double
|
|
|
|
__kernel_sinl(long double x, long double y, int iy)
|
|
|
|
{
|
|
|
|
long double absx, h, l, z, sin_l, cos_l_m1;
|
|
|
|
int index;
|
|
|
|
|
|
|
|
absx = fabsl (x);
|
|
|
|
if (absx < 0.1484375L)
|
|
|
|
{
|
|
|
|
/* Argument is small enough to approximate it by a Chebyshev
|
|
|
|
polynomial of degree 17. */
|
|
|
|
if (absx < 0x1p-33L)
|
2015-06-23 22:24:20 +00:00
|
|
|
{
|
2015-09-23 22:42:30 +00:00
|
|
|
math_check_force_underflow (x);
|
2015-06-23 22:24:20 +00:00
|
|
|
if (!((int)x)) return x; /* generate inexact */
|
|
|
|
}
|
2012-03-16 12:28:25 +00:00
|
|
|
z = x * x;
|
|
|
|
return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
|
|
|
|
z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* So that we don't have to use too large polynomial, we find
|
|
|
|
l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
|
|
|
|
possible values for h. We look up cosl(h) and sinl(h) in
|
|
|
|
pre-computed tables, compute cosl(l) and sinl(l) using a
|
|
|
|
Chebyshev polynomial of degree 10(11) and compute
|
|
|
|
sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l). */
|
|
|
|
index = (int) (128 * (absx - (0.1484375L - 1.0L / 256.0L)));
|
|
|
|
h = 0.1484375L + index / 128.0;
|
|
|
|
index *= 4;
|
|
|
|
if (iy)
|
|
|
|
l = (x < 0 ? -y : y) - (h - absx);
|
|
|
|
else
|
|
|
|
l = absx - h;
|
|
|
|
z = l * l;
|
|
|
|
sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
|
|
|
|
cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
|
|
|
|
z = __sincosl_table [index + SINCOSL_SIN_HI]
|
|
|
|
+ (__sincosl_table [index + SINCOSL_SIN_LO]
|
|
|
|
+ (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
|
|
|
|
+ (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
|
|
|
|
return (x < 0) ? -z : z;
|
|
|
|
}
|
|
|
|
}
|