mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-11 05:40:06 +00:00
83 lines
2.8 KiB
C
83 lines
2.8 KiB
C
|
/* Compute a product of 1 + (T/X), 1 + (T/(X+1)), ....
|
||
|
Copyright (C) 2015 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <math_private.h>
|
||
|
#include <float.h>
|
||
|
|
||
|
/* Calculate X * Y exactly and store the result in *HI + *LO. It is
|
||
|
given that the values are small enough that no overflow occurs and
|
||
|
large enough (or zero) that no underflow occurs. */
|
||
|
|
||
|
static void
|
||
|
mul_split (long double *hi, long double *lo, long double x, long double y)
|
||
|
{
|
||
|
#ifdef __FP_FAST_FMAL
|
||
|
/* Fast built-in fused multiply-add. */
|
||
|
*hi = x * y;
|
||
|
*lo = __builtin_fmal (x, y, -*hi);
|
||
|
#elif defined FP_FAST_FMAL
|
||
|
/* Fast library fused multiply-add, compiler before GCC 4.6. */
|
||
|
*hi = x * y;
|
||
|
*lo = __fmal (x, y, -*hi);
|
||
|
#else
|
||
|
/* Apply Dekker's algorithm. */
|
||
|
*hi = x * y;
|
||
|
# define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
|
||
|
long double x1 = x * C;
|
||
|
long double y1 = y * C;
|
||
|
# undef C
|
||
|
x1 = (x - x1) + x1;
|
||
|
y1 = (y - y1) + y1;
|
||
|
long double x2 = x - x1;
|
||
|
long double y2 = y - y1;
|
||
|
*lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
|
||
|
1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that
|
||
|
all the values X + 1, ..., X + N - 1 are exactly representable, and
|
||
|
X_EPS / X is small enough that factors quadratic in it can be
|
||
|
neglected. */
|
||
|
|
||
|
long double
|
||
|
__lgamma_productl (long double t, long double x, long double x_eps, int n)
|
||
|
{
|
||
|
long double ret = 0, ret_eps = 0;
|
||
|
for (int i = 0; i < n; i++)
|
||
|
{
|
||
|
long double xi = x + i;
|
||
|
long double quot = t / xi;
|
||
|
long double mhi, mlo;
|
||
|
mul_split (&mhi, &mlo, quot, xi);
|
||
|
long double quot_lo = (t - mhi - mlo) / xi - t * x_eps / (xi * xi);
|
||
|
/* We want (1 + RET + RET_EPS) * (1 + QUOT + QUOT_LO) - 1. */
|
||
|
long double rhi, rlo;
|
||
|
mul_split (&rhi, &rlo, ret, quot);
|
||
|
long double rpq = ret + quot;
|
||
|
long double rpq_eps = (ret - rpq) + quot;
|
||
|
long double nret = rpq + rhi;
|
||
|
long double nret_eps = (rpq - nret) + rhi;
|
||
|
ret_eps += (rpq_eps + nret_eps + rlo + ret_eps * quot
|
||
|
+ quot_lo + quot_lo * (ret + ret_eps));
|
||
|
ret = nret;
|
||
|
}
|
||
|
return ret + ret_eps;
|
||
|
}
|