2017-12-04 04:42:10 +00:00
|
|
|
/* Compute sine of argument.
|
2018-01-01 00:32:25 +00:00
|
|
|
Copyright (C) 2017-2018 Free Software Foundation, Inc.
|
2017-12-04 04:42:10 +00:00
|
|
|
This file is part of the GNU C Library.
|
|
|
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
|
|
License along with the GNU C Library; if not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
1996-03-05 21:41:30 +00:00
|
|
|
|
2009-04-26 01:04:54 +00:00
|
|
|
#include <errno.h>
|
2012-03-09 19:29:16 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
2017-09-22 20:24:12 +00:00
|
|
|
#include <libm-alias-float.h>
|
2017-12-16 08:31:37 +00:00
|
|
|
#include "s_sincosf.h"
|
1996-03-05 21:41:30 +00:00
|
|
|
|
2012-09-03 13:32:13 +00:00
|
|
|
#ifndef SINF
|
|
|
|
# define SINF_FUNC __sinf
|
|
|
|
#else
|
|
|
|
# define SINF_FUNC SINF
|
|
|
|
#endif
|
|
|
|
|
2017-12-04 04:42:10 +00:00
|
|
|
float
|
|
|
|
SINF_FUNC (float x)
|
|
|
|
{
|
|
|
|
double cx;
|
|
|
|
double theta = x;
|
|
|
|
double abstheta = fabs (theta);
|
|
|
|
/* If |x|< Pi/4. */
|
2017-12-05 18:09:22 +00:00
|
|
|
if (isless (abstheta, M_PI_4))
|
2017-12-04 04:42:10 +00:00
|
|
|
{
|
|
|
|
if (abstheta >= 0x1p-5) /* |x| >= 2^-5. */
|
|
|
|
{
|
|
|
|
const double theta2 = theta * theta;
|
|
|
|
/* Chebyshev polynomial of the form for sin
|
|
|
|
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
|
|
|
|
cx = S3 + theta2 * S4;
|
|
|
|
cx = S2 + theta2 * cx;
|
|
|
|
cx = S1 + theta2 * cx;
|
|
|
|
cx = S0 + theta2 * cx;
|
|
|
|
cx = theta + theta * theta2 * cx;
|
|
|
|
return cx;
|
|
|
|
}
|
|
|
|
else if (abstheta >= 0x1p-27) /* |x| >= 2^-27. */
|
|
|
|
{
|
|
|
|
/* A simpler Chebyshev approximation is close enough for this range:
|
|
|
|
for sin: x+x^3*(SS0+x^2*SS1). */
|
|
|
|
const double theta2 = theta * theta;
|
|
|
|
cx = SS0 + theta2 * SS1;
|
|
|
|
cx = theta + theta * theta2 * cx;
|
|
|
|
return cx;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Handle some special cases. */
|
|
|
|
if (theta)
|
|
|
|
return theta - (theta * SMALL);
|
|
|
|
else
|
|
|
|
return theta;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else /* |x| >= Pi/4. */
|
|
|
|
{
|
2017-12-05 18:09:22 +00:00
|
|
|
unsigned int signbit = isless (x, 0);
|
|
|
|
if (isless (abstheta, 9 * M_PI_4)) /* |x| < 9*Pi/4. */
|
2017-12-04 04:42:10 +00:00
|
|
|
{
|
|
|
|
/* There are cases where FE_UPWARD rounding mode can
|
|
|
|
produce a result of abstheta * inv_PI_4 == 9,
|
|
|
|
where abstheta < 9pi/4, so the domain for
|
|
|
|
pio2_table must go to 5 (9 / 2 + 1). */
|
2017-12-05 16:32:19 +00:00
|
|
|
unsigned int n = (abstheta * inv_PI_4) + 1;
|
2017-12-04 04:42:10 +00:00
|
|
|
theta = abstheta - pio2_table[n / 2];
|
2017-12-16 08:31:37 +00:00
|
|
|
return reduced_sin (theta, n, signbit);
|
2017-12-04 04:42:10 +00:00
|
|
|
}
|
|
|
|
else if (isless (abstheta, INFINITY))
|
|
|
|
{
|
|
|
|
if (abstheta < 0x1p+23) /* |x| < 2^23. */
|
|
|
|
{
|
2017-12-05 16:32:19 +00:00
|
|
|
unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
|
|
|
|
double x = n / 2;
|
2017-12-16 08:31:37 +00:00
|
|
|
theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
|
2017-12-04 04:42:10 +00:00
|
|
|
/* Argument reduction needed. */
|
2017-12-16 08:31:37 +00:00
|
|
|
return reduced_sin (theta, n, signbit);
|
2017-12-04 04:42:10 +00:00
|
|
|
}
|
|
|
|
else /* |x| >= 2^23. */
|
|
|
|
{
|
|
|
|
x = fabsf (x);
|
|
|
|
int exponent;
|
|
|
|
GET_FLOAT_WORD (exponent, x);
|
|
|
|
exponent
|
|
|
|
= (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS;
|
|
|
|
exponent += 3;
|
|
|
|
exponent /= 28;
|
|
|
|
double a = invpio4_table[exponent] * x;
|
|
|
|
double b = invpio4_table[exponent + 1] * x;
|
|
|
|
double c = invpio4_table[exponent + 2] * x;
|
|
|
|
double d = invpio4_table[exponent + 3] * x;
|
|
|
|
uint64_t l = a;
|
|
|
|
l &= ~0x7;
|
|
|
|
a -= l;
|
|
|
|
double e = a + b;
|
|
|
|
l = e;
|
|
|
|
e = a - l;
|
|
|
|
if (l & 1)
|
|
|
|
{
|
|
|
|
e -= 1.0;
|
|
|
|
e += b;
|
|
|
|
e += c;
|
|
|
|
e += d;
|
|
|
|
e *= M_PI_4;
|
2017-12-16 08:31:37 +00:00
|
|
|
return reduced_sin (e, l + 1, signbit);
|
2017-12-04 04:42:10 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
e += b;
|
|
|
|
e += c;
|
|
|
|
e += d;
|
|
|
|
if (e <= 1.0)
|
|
|
|
{
|
|
|
|
e *= M_PI_4;
|
2017-12-16 08:31:37 +00:00
|
|
|
return reduced_sin (e, l + 1, signbit);
|
2017-12-04 04:42:10 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
l++;
|
|
|
|
e -= 2.0;
|
|
|
|
e *= M_PI_4;
|
2017-12-16 08:31:37 +00:00
|
|
|
return reduced_sin (e, l + 1, signbit);
|
2017-12-04 04:42:10 +00:00
|
|
|
}
|
|
|
|
}
|
1996-03-05 21:41:30 +00:00
|
|
|
}
|
|
|
|
}
|
2017-12-04 04:42:10 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
int32_t ix;
|
|
|
|
/* High word of x. */
|
|
|
|
GET_FLOAT_WORD (ix, abstheta);
|
|
|
|
/* Sin(Inf or NaN) is NaN. */
|
|
|
|
if (ix == 0x7f800000)
|
|
|
|
__set_errno (EDOM);
|
|
|
|
return x - x;
|
|
|
|
}
|
|
|
|
}
|
1996-03-05 21:41:30 +00:00
|
|
|
}
|
2012-09-03 13:32:13 +00:00
|
|
|
|
|
|
|
#ifndef SINF
|
2017-09-22 20:24:12 +00:00
|
|
|
libm_alias_float (__sin, sin)
|
2012-09-03 13:32:13 +00:00
|
|
|
#endif
|