glibc/sysdeps/ieee754/ldbl-128ibm/s_fmal.c

283 lines
7.7 KiB
C
Raw Normal View History

/* Compute x * y + z as ternary operation.
Copyright (C) 2011-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by David Flaherty <flaherty@linux.vnet.ibm.com>.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
Implement proper fmal for ldbl-128ibm (bug 13304). ldbl-128ibm had an implementation of fmal that just did (x * y) + z in most cases, with no attempt at actually being a fused operation. This patch replaces it with a genuine fused operation. It is not necessarily correctly rounding, but should produce a result at least as accurate as the long double arithmetic operations in libgcc, which I think is all that can reasonably be expected for such a non-IEEE format where arithmetic is approximate rather than rounded according to any particular rule for determining the exact result. Like the libgcc arithmetic, it may produce spurious overflow and underflow results, and it falls back to the libgcc multiplication in the case of (finite, finite, zero). This concludes the fixes for bug 13304; any subsequently found fma issues should go in separate Bugzilla bugs. Various other pieces of bug 13304 were fixed in past releases over the past several years. Tested for powerpc. [BZ #13304] * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Include <fenv.h>, <float.h>, <math_private.h> and <stdlib.h>. (add_split): New function. (mul_split): Likewise. (ext_val): New typedef. (store_ext_val): New function. (mul_ext_val): New function. (compare): New function. (add_split_ext): New function. (__fmal): After checking for Inf, NaN and zero, compute result as an exact sum of scaled double values in round-to-nearest before adding those up and adjusting for other rounding modes. * math/auto-libm-test-in: Remove xfail-rounding:ldbl-128ibm from tests of fma. * math/auto-libm-test-out: Regenerated.
2016-05-19 20:10:56 +00:00
#include <fenv.h>
#include <float.h>
#include <math.h>
Implement proper fmal for ldbl-128ibm (bug 13304). ldbl-128ibm had an implementation of fmal that just did (x * y) + z in most cases, with no attempt at actually being a fused operation. This patch replaces it with a genuine fused operation. It is not necessarily correctly rounding, but should produce a result at least as accurate as the long double arithmetic operations in libgcc, which I think is all that can reasonably be expected for such a non-IEEE format where arithmetic is approximate rather than rounded according to any particular rule for determining the exact result. Like the libgcc arithmetic, it may produce spurious overflow and underflow results, and it falls back to the libgcc multiplication in the case of (finite, finite, zero). This concludes the fixes for bug 13304; any subsequently found fma issues should go in separate Bugzilla bugs. Various other pieces of bug 13304 were fixed in past releases over the past several years. Tested for powerpc. [BZ #13304] * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Include <fenv.h>, <float.h>, <math_private.h> and <stdlib.h>. (add_split): New function. (mul_split): Likewise. (ext_val): New typedef. (store_ext_val): New function. (mul_ext_val): New function. (compare): New function. (add_split_ext): New function. (__fmal): After checking for Inf, NaN and zero, compute result as an exact sum of scaled double values in round-to-nearest before adding those up and adjusting for other rounding modes. * math/auto-libm-test-in: Remove xfail-rounding:ldbl-128ibm from tests of fma. * math/auto-libm-test-out: Regenerated.
2016-05-19 20:10:56 +00:00
#include <math_private.h>
#include <math_ldbl_opt.h>
Implement proper fmal for ldbl-128ibm (bug 13304). ldbl-128ibm had an implementation of fmal that just did (x * y) + z in most cases, with no attempt at actually being a fused operation. This patch replaces it with a genuine fused operation. It is not necessarily correctly rounding, but should produce a result at least as accurate as the long double arithmetic operations in libgcc, which I think is all that can reasonably be expected for such a non-IEEE format where arithmetic is approximate rather than rounded according to any particular rule for determining the exact result. Like the libgcc arithmetic, it may produce spurious overflow and underflow results, and it falls back to the libgcc multiplication in the case of (finite, finite, zero). This concludes the fixes for bug 13304; any subsequently found fma issues should go in separate Bugzilla bugs. Various other pieces of bug 13304 were fixed in past releases over the past several years. Tested for powerpc. [BZ #13304] * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Include <fenv.h>, <float.h>, <math_private.h> and <stdlib.h>. (add_split): New function. (mul_split): Likewise. (ext_val): New typedef. (store_ext_val): New function. (mul_ext_val): New function. (compare): New function. (add_split_ext): New function. (__fmal): After checking for Inf, NaN and zero, compute result as an exact sum of scaled double values in round-to-nearest before adding those up and adjusting for other rounding modes. * math/auto-libm-test-in: Remove xfail-rounding:ldbl-128ibm from tests of fma. * math/auto-libm-test-out: Regenerated.
2016-05-19 20:10:56 +00:00
#include <stdlib.h>
/* Calculate X + Y exactly and store the result in *HI + *LO. It is
given that |X| >= |Y| and the values are small enough that no
overflow occurs. */
static void
add_split (double *hi, double *lo, double x, double y)
{
/* Apply Dekker's algorithm. */
*hi = x + y;
*lo = (x - *hi) + y;
}
/* Calculate X * Y exactly and store the result in *HI + *LO. It is
given that the values are small enough that no overflow occurs and
large enough (or zero) that no underflow occurs. */
static void
mul_split (double *hi, double *lo, double x, double y)
{
#ifdef __FP_FAST_FMA
/* Fast built-in fused multiply-add. */
*hi = x * y;
*lo = __builtin_fma (x, y, -*hi);
#else
/* Apply Dekker's algorithm. */
*hi = x * y;
# define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
double x1 = x * C;
double y1 = y * C;
# undef C
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
double x2 = x - x1;
double y2 = y - y1;
*lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
#endif
}
/* Value with extended range, used in intermediate computations. */
typedef struct
{
/* Value in [0.5, 1), as from frexp, or 0. */
double val;
/* Exponent of power of 2 it is multiplied by, or 0 for zero. */
int exp;
} ext_val;
/* Store D as an ext_val value. */
static void
store_ext_val (ext_val *v, double d)
{
v->val = __frexp (d, &v->exp);
}
/* Store X * Y as ext_val values *V0 and *V1. */
static void
mul_ext_val (ext_val *v0, ext_val *v1, double x, double y)
{
int xexp, yexp;
x = __frexp (x, &xexp);
y = __frexp (y, &yexp);
double hi, lo;
mul_split (&hi, &lo, x, y);
store_ext_val (v0, hi);
if (hi != 0)
v0->exp += xexp + yexp;
store_ext_val (v1, lo);
if (lo != 0)
v1->exp += xexp + yexp;
}
/* Compare absolute values of ext_val values pointed to by P and Q for
qsort. */
static int
compare (const void *p, const void *q)
{
const ext_val *pe = p;
const ext_val *qe = q;
if (pe->val == 0)
return qe->val == 0 ? 0 : -1;
else if (qe->val == 0)
return 1;
else if (pe->exp < qe->exp)
return -1;
else if (pe->exp > qe->exp)
return 1;
else
{
double pd = fabs (pe->val);
double qd = fabs (qe->val);
if (pd < qd)
return -1;
else if (pd == qd)
return 0;
else
return 1;
}
}
/* Calculate *X + *Y exactly, storing the high part in *X (rounded to
nearest) and the low part in *Y. It is given that |X| >= |Y|. */
static void
add_split_ext (ext_val *x, ext_val *y)
{
int xexp = x->exp, yexp = y->exp;
if (y->val == 0 || xexp - yexp > 53)
return;
double hi = x->val;
double lo = __scalbn (y->val, yexp - xexp);
add_split (&hi, &lo, hi, lo);
store_ext_val (x, hi);
if (hi != 0)
x->exp += xexp;
store_ext_val (y, lo);
if (lo != 0)
y->exp += xexp;
}
long double
__fmal (long double x, long double y, long double z)
{
Implement proper fmal for ldbl-128ibm (bug 13304). ldbl-128ibm had an implementation of fmal that just did (x * y) + z in most cases, with no attempt at actually being a fused operation. This patch replaces it with a genuine fused operation. It is not necessarily correctly rounding, but should produce a result at least as accurate as the long double arithmetic operations in libgcc, which I think is all that can reasonably be expected for such a non-IEEE format where arithmetic is approximate rather than rounded according to any particular rule for determining the exact result. Like the libgcc arithmetic, it may produce spurious overflow and underflow results, and it falls back to the libgcc multiplication in the case of (finite, finite, zero). This concludes the fixes for bug 13304; any subsequently found fma issues should go in separate Bugzilla bugs. Various other pieces of bug 13304 were fixed in past releases over the past several years. Tested for powerpc. [BZ #13304] * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Include <fenv.h>, <float.h>, <math_private.h> and <stdlib.h>. (add_split): New function. (mul_split): Likewise. (ext_val): New typedef. (store_ext_val): New function. (mul_ext_val): New function. (compare): New function. (add_split_ext): New function. (__fmal): After checking for Inf, NaN and zero, compute result as an exact sum of scaled double values in round-to-nearest before adding those up and adjusting for other rounding modes. * math/auto-libm-test-in: Remove xfail-rounding:ldbl-128ibm from tests of fma. * math/auto-libm-test-out: Regenerated.
2016-05-19 20:10:56 +00:00
double xhi, xlo, yhi, ylo, zhi, zlo;
int64_t hx, hy, hz;
int xexp, yexp, zexp;
double scale_val;
int scale_exp;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
xexp = (hx & 0x7ff0000000000000LL) >> 52;
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS64 (hy, yhi);
yexp = (hy & 0x7ff0000000000000LL) >> 52;
ldbl_unpack (z, &zhi, &zlo);
EXTRACT_WORDS64 (hz, zhi);
zexp = (hz & 0x7ff0000000000000LL) >> 52;
/* If z is Inf or NaN, but x and y are finite, avoid any exceptions
from computing x * y. */
if (zexp == 0x7ff && xexp != 0x7ff && yexp != 0x7ff)
return (z + x) + y;
/* If z is zero and x are y are nonzero, compute the result as x * y
to avoid the wrong sign of a zero result if x * y underflows to
0. */
if (z == 0 && x != 0 && y != 0)
return x * y;
/* If x or y or z is Inf/NaN, or if x * y is zero, compute as x * y
+ z. */
if (xexp == 0x7ff || yexp == 0x7ff || zexp == 0x7ff
|| x == 0 || y == 0)
return (x * y) + z;
{
SET_RESTORE_ROUND (FE_TONEAREST);
ext_val vals[10];
store_ext_val (&vals[0], zhi);
store_ext_val (&vals[1], zlo);
mul_ext_val (&vals[2], &vals[3], xhi, yhi);
mul_ext_val (&vals[4], &vals[5], xhi, ylo);
mul_ext_val (&vals[6], &vals[7], xlo, yhi);
mul_ext_val (&vals[8], &vals[9], xlo, ylo);
qsort (vals, 10, sizeof (ext_val), compare);
/* Add up the values so that each element of VALS has absolute
value at most equal to the last set bit of the next nonzero
element. */
for (size_t i = 0; i <= 8; i++)
{
add_split_ext (&vals[i + 1], &vals[i]);
qsort (vals + i + 1, 9 - i, sizeof (ext_val), compare);
}
/* Add up the values in the other direction, so that each element
of VALS has absolute value less than 5ulp of the next
value. */
size_t dstpos = 9;
for (size_t i = 1; i <= 9; i++)
{
if (vals[dstpos].val == 0)
{
vals[dstpos] = vals[9 - i];
vals[9 - i].val = 0;
vals[9 - i].exp = 0;
}
else
{
add_split_ext (&vals[dstpos], &vals[9 - i]);
if (vals[9 - i].val != 0)
{
if (9 - i < dstpos - 1)
{
vals[dstpos - 1] = vals[9 - i];
vals[9 - i].val = 0;
vals[9 - i].exp = 0;
}
dstpos--;
}
}
}
/* If the result is an exact zero, it results from adding two
values with opposite signs; recompute in the original rounding
mode. */
if (vals[9].val == 0)
goto zero_out;
/* Adding the top three values will now give a result as accurate
as the underlying long double arithmetic. */
add_split_ext (&vals[9], &vals[8]);
if (compare (&vals[8], &vals[7]) < 0)
{
ext_val tmp = vals[7];
vals[7] = vals[8];
vals[8] = tmp;
}
add_split_ext (&vals[8], &vals[7]);
add_split_ext (&vals[9], &vals[8]);
if (vals[9].exp > DBL_MAX_EXP || vals[9].exp < DBL_MIN_EXP)
{
/* Overflow or underflow, with the result depending on the
original rounding mode, but not on the low part computed
here. */
scale_val = vals[9].val;
scale_exp = vals[9].exp;
goto scale_out;
}
double hi = __scalbn (vals[9].val, vals[9].exp);
double lo = __scalbn (vals[8].val, vals[8].exp);
/* It is possible that the low part became subnormal and was
rounded so that the result is no longer canonical. */
ldbl_canonicalize (&hi, &lo);
long double ret = ldbl_pack (hi, lo);
math_check_force_underflow (ret);
return ret;
}
Implement proper fmal for ldbl-128ibm (bug 13304). ldbl-128ibm had an implementation of fmal that just did (x * y) + z in most cases, with no attempt at actually being a fused operation. This patch replaces it with a genuine fused operation. It is not necessarily correctly rounding, but should produce a result at least as accurate as the long double arithmetic operations in libgcc, which I think is all that can reasonably be expected for such a non-IEEE format where arithmetic is approximate rather than rounded according to any particular rule for determining the exact result. Like the libgcc arithmetic, it may produce spurious overflow and underflow results, and it falls back to the libgcc multiplication in the case of (finite, finite, zero). This concludes the fixes for bug 13304; any subsequently found fma issues should go in separate Bugzilla bugs. Various other pieces of bug 13304 were fixed in past releases over the past several years. Tested for powerpc. [BZ #13304] * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Include <fenv.h>, <float.h>, <math_private.h> and <stdlib.h>. (add_split): New function. (mul_split): Likewise. (ext_val): New typedef. (store_ext_val): New function. (mul_ext_val): New function. (compare): New function. (add_split_ext): New function. (__fmal): After checking for Inf, NaN and zero, compute result as an exact sum of scaled double values in round-to-nearest before adding those up and adjusting for other rounding modes. * math/auto-libm-test-in: Remove xfail-rounding:ldbl-128ibm from tests of fma. * math/auto-libm-test-out: Regenerated.
2016-05-19 20:10:56 +00:00
scale_out:
scale_val = math_opt_barrier (scale_val);
scale_val = __scalbn (scale_val, scale_exp);
if (fabs (scale_val) == DBL_MAX)
return __copysignl (LDBL_MAX, scale_val);
math_check_force_underflow (scale_val);
return scale_val;
Implement proper fmal for ldbl-128ibm (bug 13304). ldbl-128ibm had an implementation of fmal that just did (x * y) + z in most cases, with no attempt at actually being a fused operation. This patch replaces it with a genuine fused operation. It is not necessarily correctly rounding, but should produce a result at least as accurate as the long double arithmetic operations in libgcc, which I think is all that can reasonably be expected for such a non-IEEE format where arithmetic is approximate rather than rounded according to any particular rule for determining the exact result. Like the libgcc arithmetic, it may produce spurious overflow and underflow results, and it falls back to the libgcc multiplication in the case of (finite, finite, zero). This concludes the fixes for bug 13304; any subsequently found fma issues should go in separate Bugzilla bugs. Various other pieces of bug 13304 were fixed in past releases over the past several years. Tested for powerpc. [BZ #13304] * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Include <fenv.h>, <float.h>, <math_private.h> and <stdlib.h>. (add_split): New function. (mul_split): Likewise. (ext_val): New typedef. (store_ext_val): New function. (mul_ext_val): New function. (compare): New function. (add_split_ext): New function. (__fmal): After checking for Inf, NaN and zero, compute result as an exact sum of scaled double values in round-to-nearest before adding those up and adjusting for other rounding modes. * math/auto-libm-test-in: Remove xfail-rounding:ldbl-128ibm from tests of fma. * math/auto-libm-test-out: Regenerated.
2016-05-19 20:10:56 +00:00
zero_out:;
double zero = 0.0;
zero = math_opt_barrier (zero);
return zero - zero;
}
Remove IS_IN_libm Replace with IS_IN (libm). Generated code unchanged on x86_64. * include/math.h: Use IS_IN instead of IS_IN_libm. * sysdeps/alpha/fpu/s_copysign.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_copysignl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_finitel.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_frexpl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_isinfl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_isnanl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_modfl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_signbitl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_copysignl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_finitel.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_frexpl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_isinfl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_isnanl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_modfl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_scalbnl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/s_signbitl.c: Likewise. * sysdeps/ieee754/ldbl-64-128/w_scalblnl.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_copysign.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_finite.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_frexp.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_isinf.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_isnan.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_ldexp.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_ldexpl.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_modf.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_scalbln.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_scalbn.c: Likewise. * sysdeps/powerpc/power5+/fpu/s_modf.c: Likewise. * sysdeps/powerpc/powerpc32/fpu/s_copysign.S: Likewise. * sysdeps/powerpc/powerpc32/fpu/s_copysignl.S: Likewise. * sysdeps/powerpc/powerpc32/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_copysign.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_finite.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isinf.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_isnan.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_modf.c: Likewise. * sysdeps/powerpc/powerpc32/power5/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc32/power6/fpu/s_copysign.S: Likewise. * sysdeps/powerpc/powerpc32/power6/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc32/power7/fpu/s_finite.S: Likewise. * sysdeps/powerpc/powerpc32/power7/fpu/s_isinf.S: Likewise. * sysdeps/powerpc/powerpc32/power7/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_copysign.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_finite.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_isinf.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_isnan.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_modf.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/s_copysign.S: Likewise. * sysdeps/powerpc/powerpc64/fpu/s_copysignl.S: Likewise. * sysdeps/powerpc/powerpc64/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc64/power5/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc64/power6/fpu/s_copysign.S: Likewise. * sysdeps/powerpc/powerpc64/power6/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc64/power6x/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc64/power7/fpu/s_finite.S: Likewise. * sysdeps/powerpc/powerpc64/power7/fpu/s_isinf.S: Likewise. * sysdeps/powerpc/powerpc64/power7/fpu/s_isnan.S: Likewise. * sysdeps/powerpc/powerpc64/power8/fpu/s_finite.S: Likewise. * sysdeps/powerpc/powerpc64/power8/fpu/s_isinf.S: Likewise. * sysdeps/powerpc/powerpc64/power8/fpu/s_isnan.S: Likewise. * sysdeps/sparc/sparc32/fpu/s_signbitl.S: Likewise. * sysdeps/sparc/sparc32/sparcv9/fpu/s_isnan.S: Likewise. * sysdeps/unix/sysv/linux/alpha/fraiseexcpt.S: Likewise.
2014-11-20 15:34:47 +00:00
#if IS_IN (libm)
long_double_symbol (libm, __fmal, fmal);
#else
long_double_symbol (libc, __fmal, fmal);
#endif