glibc/sysdeps/unix/sysv/linux/spawni.c

488 lines
16 KiB
C
Raw Normal View History

posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* POSIX spawn interface. Linux version.
Copyright (C) 2016-2023 Free Software Foundation, Inc.
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
Prefer https to http for gnu.org and fsf.org URLs Also, change sources.redhat.com to sourceware.org. This patch was automatically generated by running the following shell script, which uses GNU sed, and which avoids modifying files imported from upstream: sed -ri ' s,(http|ftp)(://(.*\.)?(gnu|fsf|sourceware)\.org($|[^.]|\.[^a-z])),https\2,g s,(http|ftp)(://(.*\.)?)sources\.redhat\.com($|[^.]|\.[^a-z]),https\2sourceware.org\4,g ' \ $(find $(git ls-files) -prune -type f \ ! -name '*.po' \ ! -name 'ChangeLog*' \ ! -path COPYING ! -path COPYING.LIB \ ! -path manual/fdl-1.3.texi ! -path manual/lgpl-2.1.texi \ ! -path manual/texinfo.tex ! -path scripts/config.guess \ ! -path scripts/config.sub ! -path scripts/install-sh \ ! -path scripts/mkinstalldirs ! -path scripts/move-if-change \ ! -path INSTALL ! -path locale/programs/charmap-kw.h \ ! -path po/libc.pot ! -path sysdeps/gnu/errlist.c \ ! '(' -name configure \ -execdir test -f configure.ac -o -f configure.in ';' ')' \ ! '(' -name preconfigure \ -execdir test -f preconfigure.ac ';' ')' \ -print) and then by running 'make dist-prepare' to regenerate files built from the altered files, and then executing the following to cleanup: chmod a+x sysdeps/unix/sysv/linux/riscv/configure # Omit irrelevant whitespace and comment-only changes, # perhaps from a slightly-different Autoconf version. git checkout -f \ sysdeps/csky/configure \ sysdeps/hppa/configure \ sysdeps/riscv/configure \ sysdeps/unix/sysv/linux/csky/configure # Omit changes that caused a pre-commit check to fail like this: # remote: *** error: sysdeps/powerpc/powerpc64/ppc-mcount.S: trailing lines git checkout -f \ sysdeps/powerpc/powerpc64/ppc-mcount.S \ sysdeps/unix/sysv/linux/s390/s390-64/syscall.S # Omit change that caused a pre-commit check to fail like this: # remote: *** error: sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S: last line does not end in newline git checkout -f sysdeps/sparc/sparc64/multiarch/memcpy-ultra3.S
2019-09-07 05:40:42 +00:00
<https://www.gnu.org/licenses/>. */
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
posix: Add posix_spawn_file_actions_addclosefrom_np This patch adds a way to close a range of file descriptors on posix_spawn as a new file action. The API is similar to the one provided by Solaris 11 [1], where the file action causes the all open file descriptors greater than or equal to input on to be closed when the new process is spawned. The function posix_spawn_file_actions_addclosefrom_np is safe to be implemented by iterating over /proc/self/fd, since the Linux spawni.c helper process does not use CLONE_FILES, so its has own file descriptor table and any failure (in /proc operation) aborts the process creation and returns an error to the caller. I am aware that this file action might be redundant to the current approach of POSIX in promoting O_CLOEXEC in more interfaces. However O_CLOEXEC is still not the default and for some specific usages, the caller needs to close all possible file descriptors to avoid them leaking. Some examples are CPython (discussed in BZ#10353) and OpenJDK jspawnhelper [2] (where OpenJDK spawns a helper process to exactly closes all file descriptors). Most likely any environment which calls functions that might open file descriptor under the hood and aim to use posix_spawn might face the same requirement. Checked on x86_64-linux-gnu and i686-linux-gnu on kernel 5.11 and 4.15. [1] https://docs.oracle.com/cd/E36784_01/html/E36874/posix-spawn-file-actions-addclosefrom-np-3c.html [2] https://github.com/openjdk/jdk/blob/master/src/java.base/unix/native/libjava/childproc.c#L82
2021-03-10 15:26:33 +00:00
#include <internal-signals.h>
#include <ldsodefs.h>
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
#include <local-setxid.h>
posix: Add posix_spawn_file_actions_addclosefrom_np This patch adds a way to close a range of file descriptors on posix_spawn as a new file action. The API is similar to the one provided by Solaris 11 [1], where the file action causes the all open file descriptors greater than or equal to input on to be closed when the new process is spawned. The function posix_spawn_file_actions_addclosefrom_np is safe to be implemented by iterating over /proc/self/fd, since the Linux spawni.c helper process does not use CLONE_FILES, so its has own file descriptor table and any failure (in /proc operation) aborts the process creation and returns an error to the caller. I am aware that this file action might be redundant to the current approach of POSIX in promoting O_CLOEXEC in more interfaces. However O_CLOEXEC is still not the default and for some specific usages, the caller needs to close all possible file descriptors to avoid them leaking. Some examples are CPython (discussed in BZ#10353) and OpenJDK jspawnhelper [2] (where OpenJDK spawns a helper process to exactly closes all file descriptors). Most likely any environment which calls functions that might open file descriptor under the hood and aim to use posix_spawn might face the same requirement. Checked on x86_64-linux-gnu and i686-linux-gnu on kernel 5.11 and 4.15. [1] https://docs.oracle.com/cd/E36784_01/html/E36874/posix-spawn-file-actions-addclosefrom-np-3c.html [2] https://github.com/openjdk/jdk/blob/master/src/java.base/unix/native/libjava/childproc.c#L82
2021-03-10 15:26:33 +00:00
#include <not-cancel.h>
#include <paths.h>
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
#include <shlib-compat.h>
posix: Add posix_spawn_file_actions_addclosefrom_np This patch adds a way to close a range of file descriptors on posix_spawn as a new file action. The API is similar to the one provided by Solaris 11 [1], where the file action causes the all open file descriptors greater than or equal to input on to be closed when the new process is spawned. The function posix_spawn_file_actions_addclosefrom_np is safe to be implemented by iterating over /proc/self/fd, since the Linux spawni.c helper process does not use CLONE_FILES, so its has own file descriptor table and any failure (in /proc operation) aborts the process creation and returns an error to the caller. I am aware that this file action might be redundant to the current approach of POSIX in promoting O_CLOEXEC in more interfaces. However O_CLOEXEC is still not the default and for some specific usages, the caller needs to close all possible file descriptors to avoid them leaking. Some examples are CPython (discussed in BZ#10353) and OpenJDK jspawnhelper [2] (where OpenJDK spawns a helper process to exactly closes all file descriptors). Most likely any environment which calls functions that might open file descriptor under the hood and aim to use posix_spawn might face the same requirement. Checked on x86_64-linux-gnu and i686-linux-gnu on kernel 5.11 and 4.15. [1] https://docs.oracle.com/cd/E36784_01/html/E36874/posix-spawn-file-actions-addclosefrom-np-3c.html [2] https://github.com/openjdk/jdk/blob/master/src/java.base/unix/native/libjava/childproc.c#L82
2021-03-10 15:26:33 +00:00
#include <spawn.h>
#include <spawn_int.h>
#include <sysdep.h>
#include <sys/resource.h>
Add an internal wrapper for clone, clone2 and clone3 The clone3 system call (since Linux 5.3) provides a superset of the functionality of clone and clone2. It also provides a number of API improvements, including the ability to specify the size of the child's stack area which can be used by kernel to compute the shadow stack size when allocating the shadow stack. Add: extern int __clone_internal (struct clone_args *__cl_args, int (*__func) (void *__arg), void *__arg); to provide an abstract interface for clone, clone2 and clone3. 1. Simplify stack management for thread creation by passing both stack base and size to create_thread. 2. Consolidate clone vs clone2 differences into a single file. 3. Call __clone3 if HAVE_CLONE3_WAPPER is defined. If __clone3 returns -1 with ENOSYS, fall back to clone or clone2. 4. Use only __clone_internal to clone a thread. Since the stack size argument for create_thread is now unconditional, always pass stack size to create_thread. 5. Enable the public clone3 wrapper in the future after it has been added to all targets. NB: Sandbox will return ENOSYS on clone3 in both Chromium: The following revision refers to this bug: https://chromium.googlesource.com/chromium/src/+/218438259dd795456f0a48f67cbe5b4e520db88b commit 218438259dd795456f0a48f67cbe5b4e520db88b Author: Matthew Denton <mpdenton@chromium.org> Date: Thu Jun 03 20:06:13 2021 Linux sandbox: return ENOSYS for clone3 Because clone3 uses a pointer argument rather than a flags argument, we cannot examine the contents with seccomp, which is essential to preventing sandboxed processes from starting other processes. So, we won't be able to support clone3 in Chromium. This CL modifies the BPF policy to return ENOSYS for clone3 so glibc always uses the fallback to clone. Bug: 1213452 Change-Id: I7c7c585a319e0264eac5b1ebee1a45be2d782303 Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/2936184 Reviewed-by: Robert Sesek <rsesek@chromium.org> Commit-Queue: Matthew Denton <mpdenton@chromium.org> Cr-Commit-Position: refs/heads/master@{#888980} [modify] https://crrev.com/218438259dd795456f0a48f67cbe5b4e520db88b/sandbox/linux/seccomp-bpf-helpers/baseline_policy.cc and Firefox: https://hg.mozilla.org/integration/autoland/rev/ecb4011a0c76 Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2021-02-13 19:47:46 +00:00
#include <clone_internal.h>
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* The Linux implementation of posix_spawn{p} uses the clone syscall directly
with CLONE_VM and CLONE_VFORK flags and an allocated stack. The new stack
and start function solves most the vfork limitation (possible parent
clobber due stack spilling). The remaining issue are:
1. That no signal handlers must run in child context, to avoid corrupting
parent's state.
2. The parent must ensure child's stack freeing.
3. Child must synchronize with parent to enforce 2. and to possible
return execv issues.
The first issue is solved by blocking all signals in child, even
the NPTL-internal ones (SIGCANCEL and SIGSETXID). The second and
third issue is done by a stack allocation in parent, and by using a
field in struct spawn_args where the child can write an error
code. CLONE_VFORK ensures that the parent does not run until the
child has either exec'ed successfully or exited. */
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* The Unix standard contains a long explanation of the way to signal
an error after the fork() was successful. Since no new wait status
was wanted there is no way to signal an error using one of the
available methods. The committee chose to signal an error by a
normal program exit with the exit code 127. */
#define SPAWN_ERROR 127
struct posix_spawn_args
{
internal_sigset_t oldmask;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
const char *file;
int (*exec) (const char *, char *const *, char *const *);
const posix_spawn_file_actions_t *fa;
const posix_spawnattr_t *restrict attr;
char *const *argv;
ptrdiff_t argc;
char *const *envp;
int xflags;
bool use_clone3;
int err;
posix: Add pidfd_spawn and pidfd_spawnp (BZ 30349) Returning a pidfd allows a process to keep a race-free handle for a child process, otherwise, the caller will need to either use pidfd_open (which still might be subject to TOCTOU) or keep the old racy interface base on pid_t. To correct use pifd_spawn, the kernel must support not only returning the pidfd with clone/clone3 but also waitid (P_PIDFD) (added on Linux 5.4). If kernel does not support the waitid, pidfd return ENOSYS. It avoids the need to racy workarounds, such as reading the procfs fdinfo to get the pid to use along with other wait interfaces. These interfaces are similar to the posix_spawn and posix_spawnp, with the only difference being it returns a process file descriptor (int) instead of a process ID (pid_t). Their prototypes are: int pidfd_spawn (int *restrict pidfd, const char *restrict file, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict], char *const envp[restrict]) int pidfd_spawnp (int *restrict pidfd, const char *restrict path, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict_arr], char *const envp[restrict_arr]); A new symbol is used instead of a posix_spawn extension to avoid possible issues with language bindings that might track the return argument lifetime. Although on Linux pid_t and int are interchangeable, POSIX only states that pid_t should be a signed integer. Both symbols reuse the posix_spawn posix_spawn_file_actions_t and posix_spawnattr_t, to void rehash posix_spawn API or add a new one. It also means that both interfaces support the same attribute and file actions, and a new flag or file action on posix_spawn is also added automatically for pidfd_spawn. Also, using posix_spawn plumbing allows the reusing of most of the current testing with some changes: - waitid is used instead of waitpid since it is a more generic interface. - tst-posix_spawn-setsid.c is adapted to take into consideration that the caller can check for session id directly. The test now spawns itself and writes the session id as a file instead. - tst-spawn3.c need to know where pidfd_spawn is used so it keeps an extra file description unused. Checked on x86_64-linux-gnu on Linux 4.15 (no CLONE_PIDFD or waitid support), Linux 5.4 (full support), and Linux 6.2. Reviewed-by: Florian Weimer <fweimer@redhat.com>
2023-08-24 16:42:18 +00:00
int pidfd;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
};
/* Older version requires that shell script without shebang definition
to be called explicitly using /bin/sh (_PATH_BSHELL). */
static void
maybe_script_execute (struct posix_spawn_args *args)
{
if (SHLIB_COMPAT (libc, GLIBC_2_2, GLIBC_2_15)
&& (args->xflags & SPAWN_XFLAGS_TRY_SHELL) && errno == ENOEXEC)
{
char *const *argv = args->argv;
ptrdiff_t argc = args->argc;
/* Construct an argument list for the shell. */
char *new_argv[argc + 2];
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
new_argv[0] = (char *) _PATH_BSHELL;
new_argv[1] = (char *) args->file;
if (argc > 1)
Add some spaces before '('. This patch fixes various places where a space should have been present before '(' in accordance with the GNU Coding Standards. Most but not all of the fixes in this patch are for calls to sizeof (but it's not exhaustive regarding such calls that should be fixed). Tested for x86_64, and with build-many-glibcs.py. * benchtests/bench-strcpy.c (do_test): Use space before '('. * benchtests/bench-string.h (cmdline_process_function): Likewise. * benchtests/bench-strlen.c (do_test): Likewise. (test_main): Likewise. * catgets/gencat.c (read_old): Likewise. * elf/cache.c (load_aux_cache): Likewise. * iconvdata/bug-iconv8.c (do_test): Likewise. * math/test-tgmath-ret.c (do_test): Likewise. * nis/nis_call.c (rec_dirsearch): Likewise. * nis/nis_findserv.c (__nis_findfastest_with_timeout): Likewise. * nptl/tst-audit-threads.c (do_test): Likewise. * nptl/tst-cancel4-common.h (set_socket_buffer): Likewise. * nss/nss_test1.c (init): Likewise. * nss/test-netdb.c (test_hosts): Likewise. * posix/execvpe.c (maybe_script_execute): Likewise. * stdio-common/tst-fmemopen4.c (do_test): Likewise. * stdio-common/tst-printf.c (do_test): Likewise. * stdio-common/vfscanf-internal.c (__vfscanf_internal): Likewise. * stdlib/fmtmsg.c (NKEYWORDS): Likewise. * stdlib/qsort.c (STACK_SIZE): Likewise. * stdlib/test-canon.c (do_test): Likewise. * stdlib/tst-swapcontext1.c (do_test): Likewise. * string/memcmp.c (OPSIZ): Likewise. * string/test-strcpy.c (do_test): Likewise. (do_random_tests): Likewise. * string/test-strlen.c (do_test): Likewise. (test_main): Likewise. * string/test-strrchr.c (do_test): Likewise. (do_random_tests): Likewise. * string/tester.c (test_memrchr): Likewise. (test_memchr): Likewise. * sysdeps/generic/memcopy.h (OPSIZ): Likewise. * sysdeps/generic/unwind-dw2.c (execute_stack_op): Likewise. * sysdeps/generic/unwind-pe.h (read_sleb128): Likewise. (read_encoded_value_with_base): Likewise. * sysdeps/hppa/dl-machine.h (elf_machine_runtime_setup): Likewise. * sysdeps/hppa/fpu/feupdateenv.c (__feupdateenv): Likewise. * sysdeps/ia64/fpu/sfp-machine.h (TI_BITS): Likewise. * sysdeps/mach/hurd/spawni.c (__spawni): Likewise. * sysdeps/posix/spawni.c (maybe_script_execute): Likewise. * sysdeps/powerpc/fpu/tst-setcontext-fpscr.c (query_auxv): Likewise. * sysdeps/unix/sysv/linux/aarch64/bits/procfs.h (ELF_NGREG): Likewise. * sysdeps/unix/sysv/linux/arm/bits/procfs.h (ELF_NGREG): Likewise. * sysdeps/unix/sysv/linux/arm/ioperm.c (init_iosys): Likewise. * sysdeps/unix/sysv/linux/csky/bits/procfs.h (ELF_NGREG): Likewise. * sysdeps/unix/sysv/linux/m68k/bits/procfs.h (ELF_NGREG): Likewise. * sysdeps/unix/sysv/linux/nios2/bits/procfs.h (ELF_NGREG): Likewise. * sysdeps/unix/sysv/linux/spawni.c (maybe_script_execute): Likewise. * sysdeps/unix/sysv/linux/x86/bits/procfs.h (ELF_NGREG): Likewise. * sysdeps/unix/sysv/linux/x86/bits/sigcontext.h (FP_XSTATE_MAGIC2_SIZE): Likewise. * sysdeps/x86/fpu/sfp-machine.h (TI_BITS): Likewise. * time/test_time.c (main): Likewise.
2019-02-27 13:55:45 +00:00
memcpy (new_argv + 2, argv + 1, argc * sizeof (char *));
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
else
new_argv[2] = NULL;
/* Execute the shell. */
args->exec (new_argv[0], new_argv, args->envp);
}
}
/* Function used in the clone call to setup the signals mask, posix_spawn
attributes, and file actions. It run on its own stack (provided by the
posix_spawn call). */
static int
__spawni_child (void *arguments)
{
struct posix_spawn_args *args = arguments;
const posix_spawnattr_t *restrict attr = args->attr;
const posix_spawn_file_actions_t *file_actions = args->fa;
/* The child must ensure that no signal handler is enabled because it
shares memory with parent, so all signal dispositions must be either
SIG_DFL or SIG_IGN. If clone3/CLONE_CLEAR_SIGHAND is used, there is
only the need to set the defined signals POSIX_SPAWN_SETSIGDEF to
SIG_DFL; otherwise, the code iterates over all signals. */
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
struct sigaction sa;
memset (&sa, '\0', sizeof (sa));
sigset_t hset;
__sigprocmask (SIG_BLOCK, 0, &hset);
for (int sig = 1; sig < _NSIG; ++sig)
{
if ((attr->__flags & POSIX_SPAWN_SETSIGDEF)
&& __sigismember (&attr->__sd, sig))
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
{
sa.sa_handler = SIG_DFL;
}
else if (!args->use_clone3 && __sigismember (&hset, sig))
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
{
if (is_internal_signal (sig))
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
sa.sa_handler = SIG_IGN;
else
{
__libc_sigaction (sig, 0, &sa);
if (sa.sa_handler == SIG_IGN || sa.sa_handler == SIG_DFL)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
continue;
sa.sa_handler = SIG_DFL;
}
}
else
continue;
__libc_sigaction (sig, &sa, 0);
}
#ifdef _POSIX_PRIORITY_SCHEDULING
/* Set the scheduling algorithm and parameters. */
if ((attr->__flags & (POSIX_SPAWN_SETSCHEDPARAM | POSIX_SPAWN_SETSCHEDULER))
== POSIX_SPAWN_SETSCHEDPARAM)
{
if (__sched_setparam (0, &attr->__sp) == -1)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
goto fail;
}
else if ((attr->__flags & POSIX_SPAWN_SETSCHEDULER) != 0)
{
if (__sched_setscheduler (0, attr->__policy, &attr->__sp) == -1)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
goto fail;
}
#endif
if ((attr->__flags & POSIX_SPAWN_SETSID) != 0
&& __setsid () < 0)
goto fail;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* Set the process group ID. */
if ((attr->__flags & POSIX_SPAWN_SETPGROUP) != 0
&& __setpgid (0, attr->__pgrp) != 0)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
goto fail;
/* Set the effective user and group IDs. */
if ((attr->__flags & POSIX_SPAWN_RESETIDS) != 0
&& (local_seteuid (__getuid ()) != 0
|| local_setegid (__getgid ()) != 0))
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
goto fail;
/* Execute the file actions. */
if (file_actions != 0)
{
int cnt;
struct rlimit64 fdlimit;
bool have_fdlimit = false;
for (cnt = 0; cnt < file_actions->__used; ++cnt)
{
struct __spawn_action *action = &file_actions->__actions[cnt];
switch (action->tag)
{
case spawn_do_close:
Consolidate non cancellable close call This patch consolidates all the non cancellable close calls to use the __close_nocancel{_nostatus} identifier. For non cancellable targets it will be just a macro to call the default respective symbol while on Linux will be a internal one. Also, since it is used on libcrypto it is also exported in GLIBC_PRIVATE namespace. Checked on x86_64-linux-gnu, x86_64-linux-gnu-x32, and i686-linux-gnu. * sysdeps/generic/not-cancel.h (close_not_cancel): Remove macro. (close_not_cancel_no_status): Likewise. (__close_nocancel): New macro. (__close_nocancel_no_status): Likewise. * sysdeps/unix/sysv/linux/not-cancel.h (__close_nocancel): Remove macro. (close_not_cancel): Likewise. (close_not_cancel_no_status): Likewise. (__close_nocancel): New prototype. (__close_nocancel_no_status): New function. * sysdeps/unix/sysv/linux/close.c (__close_nocancel): New function. * catgets/open_catalog.c (__open_catalog): Replace close_not_cancel{_no_status) with __close_nocancel{_nostatus}. * gmon/gmon.c (write_gmon): Likewise. * iconv/gconv_cache.c (__gconv_load_cache): Likewise. * intl/loadmsgcat.c (close): Likewise. * io/ftw.c (open_dir_stream): Likewise. (ftw_startup): Likewise. * libio/fileops.c (_IO_file_open): Likewise. (_IO_file_close_mmap): Likewise. (_IO_file_close): Likewise. * libio/iopopen.c (_IO_dup2): Likewise. * locale/loadarchive.c (_nl_load_locale_from_archive): Likewise. * locale/loadlocale.c (_nl_load_locale): Likewise. * login/utmp_file.c (pututline_file): Likewise. (endutent_file): Likewise. * misc/daemon.c (daemon): Likewise. * nscd/nscd_getai.c (__nscd_getai): Likewise. * nscd/nscd_getgr_r.c (nscd_getgr_r): Likewise. * nscd/nscd_gethst_r.c (nscd_gethst_r): Likewise. * nscd/nscd_getpw_r.c (nscd_getpw_r): Likewise. * nscd/nscd_getserv_r.c (nscd_getserv_r): Likewise. * nscd/nscd_helper.c (open_socket): Likewise. (__nscd_open_socket): Likewise. * nscd/nscd_initgroups.c (__nscd_getgrouplist): Likewise. * nscd/nscd_netgroup.c (__nscd_setnetgrent): Likewise. (__nscd_innetgr): Likewise. * nss/nss_db/db-open.c (internal_setent): Likewise. * resolv/res-close.c (__res_iclose): Likewise. * sunrpc/pm_getmaps.c (pmap_getmaps): Likewise. * sysdeps/posix/closedir.c (__closedir): Likewise. * sysdeps/posix/getaddrinfo.c (getaddrinfo): Likewise. * sysdeps/posix/getcwd.c (__getcwd): Likewise. * sysdeps/posix/opendir.c (tryopen_o_directory): Likewise. (opendir_tail): Likewise. * sysdeps/posix/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/check_native.c (__check_native): Likewise. * sysdeps/unix/sysv/linux/check_pf.c (__check_pf): Likewise. * sysdeps/unix/sysv/linux/fips-private.h (fips_enabled_p): Likewise. * sysdeps/unix/sysv/linux/gethostid.c (sethostid): Likewise. (gethostid): Likewise. * sysdeps/unix/sysv/linux/getloadavg.c (getloadavg): Likewise. * sysdeps/unix/sysv/linux/getlogin_r.c (__getlogin_r_loginuid): Likewise. * sysdeps/unix/sysv/linux/getsysstats.c (__get_nprocs): Likewise. * sysdeps/unix/sysv/linux/grantpt.c (close_all_fds): Likewise. * sysdeps/unix/sysv/linux/i386/smp.h (is_smp_system): Likewise. * sysdeps/unix/sysv/linux/ia64/has_cpuclock.c (has_cpuclock): Likewise. * sysdeps/unix/sysv/linux/if_index.c (__if_nametoindex): Likewise. * sysdeps/unix/sysv/linux/libc_fatal.c (backtrace_and_maps): Likewise. * sysdeps/unix/sysv/linux/malloc-sysdep.h (check_may_shrink_heap): Likewise. * sysdeps/unix/sysv/linux/mq_notify.c (init_mq_netlink): Likewise. * sysdeps/unix/sysv/linux/pthread_getname.c (pthread_getname_np): Likewise. * sysdeps/unix/sysv/linux/pthread_setname.c (pthread_setname_np): Likewise. * sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/sysconf.c (__sysconf): Likewise.
2017-07-03 18:22:58 +00:00
if (__close_nocancel (action->action.close_action.fd) != 0)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
{
if (!have_fdlimit)
{
__getrlimit64 (RLIMIT_NOFILE, &fdlimit);
have_fdlimit = true;
}
/* Signal errors only for file descriptors out of range. */
if (action->action.close_action.fd < 0
|| action->action.close_action.fd >= fdlimit.rlim_cur)
goto fail;
}
break;
case spawn_do_open:
{
/* POSIX states that if fildes was already an open file descriptor,
it shall be closed before the new file is opened. This avoid
potential issues when posix_spawn plus addopen action is called
with the process already at maximum number of file descriptor
opened and also for multiple actions on single-open special
paths (like /dev/watchdog). */
Consolidate non cancellable close call This patch consolidates all the non cancellable close calls to use the __close_nocancel{_nostatus} identifier. For non cancellable targets it will be just a macro to call the default respective symbol while on Linux will be a internal one. Also, since it is used on libcrypto it is also exported in GLIBC_PRIVATE namespace. Checked on x86_64-linux-gnu, x86_64-linux-gnu-x32, and i686-linux-gnu. * sysdeps/generic/not-cancel.h (close_not_cancel): Remove macro. (close_not_cancel_no_status): Likewise. (__close_nocancel): New macro. (__close_nocancel_no_status): Likewise. * sysdeps/unix/sysv/linux/not-cancel.h (__close_nocancel): Remove macro. (close_not_cancel): Likewise. (close_not_cancel_no_status): Likewise. (__close_nocancel): New prototype. (__close_nocancel_no_status): New function. * sysdeps/unix/sysv/linux/close.c (__close_nocancel): New function. * catgets/open_catalog.c (__open_catalog): Replace close_not_cancel{_no_status) with __close_nocancel{_nostatus}. * gmon/gmon.c (write_gmon): Likewise. * iconv/gconv_cache.c (__gconv_load_cache): Likewise. * intl/loadmsgcat.c (close): Likewise. * io/ftw.c (open_dir_stream): Likewise. (ftw_startup): Likewise. * libio/fileops.c (_IO_file_open): Likewise. (_IO_file_close_mmap): Likewise. (_IO_file_close): Likewise. * libio/iopopen.c (_IO_dup2): Likewise. * locale/loadarchive.c (_nl_load_locale_from_archive): Likewise. * locale/loadlocale.c (_nl_load_locale): Likewise. * login/utmp_file.c (pututline_file): Likewise. (endutent_file): Likewise. * misc/daemon.c (daemon): Likewise. * nscd/nscd_getai.c (__nscd_getai): Likewise. * nscd/nscd_getgr_r.c (nscd_getgr_r): Likewise. * nscd/nscd_gethst_r.c (nscd_gethst_r): Likewise. * nscd/nscd_getpw_r.c (nscd_getpw_r): Likewise. * nscd/nscd_getserv_r.c (nscd_getserv_r): Likewise. * nscd/nscd_helper.c (open_socket): Likewise. (__nscd_open_socket): Likewise. * nscd/nscd_initgroups.c (__nscd_getgrouplist): Likewise. * nscd/nscd_netgroup.c (__nscd_setnetgrent): Likewise. (__nscd_innetgr): Likewise. * nss/nss_db/db-open.c (internal_setent): Likewise. * resolv/res-close.c (__res_iclose): Likewise. * sunrpc/pm_getmaps.c (pmap_getmaps): Likewise. * sysdeps/posix/closedir.c (__closedir): Likewise. * sysdeps/posix/getaddrinfo.c (getaddrinfo): Likewise. * sysdeps/posix/getcwd.c (__getcwd): Likewise. * sysdeps/posix/opendir.c (tryopen_o_directory): Likewise. (opendir_tail): Likewise. * sysdeps/posix/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/check_native.c (__check_native): Likewise. * sysdeps/unix/sysv/linux/check_pf.c (__check_pf): Likewise. * sysdeps/unix/sysv/linux/fips-private.h (fips_enabled_p): Likewise. * sysdeps/unix/sysv/linux/gethostid.c (sethostid): Likewise. (gethostid): Likewise. * sysdeps/unix/sysv/linux/getloadavg.c (getloadavg): Likewise. * sysdeps/unix/sysv/linux/getlogin_r.c (__getlogin_r_loginuid): Likewise. * sysdeps/unix/sysv/linux/getsysstats.c (__get_nprocs): Likewise. * sysdeps/unix/sysv/linux/grantpt.c (close_all_fds): Likewise. * sysdeps/unix/sysv/linux/i386/smp.h (is_smp_system): Likewise. * sysdeps/unix/sysv/linux/ia64/has_cpuclock.c (has_cpuclock): Likewise. * sysdeps/unix/sysv/linux/if_index.c (__if_nametoindex): Likewise. * sysdeps/unix/sysv/linux/libc_fatal.c (backtrace_and_maps): Likewise. * sysdeps/unix/sysv/linux/malloc-sysdep.h (check_may_shrink_heap): Likewise. * sysdeps/unix/sysv/linux/mq_notify.c (init_mq_netlink): Likewise. * sysdeps/unix/sysv/linux/pthread_getname.c (pthread_getname_np): Likewise. * sysdeps/unix/sysv/linux/pthread_setname.c (pthread_setname_np): Likewise. * sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/sysconf.c (__sysconf): Likewise.
2017-07-03 18:22:58 +00:00
__close_nocancel (action->action.open_action.fd);
Consolidate non cancellable open call This patch consolidates all the non cancellable open calls to use the __open_nocancel identifier. For non cancellable targets it will be just a macro to call the default respective symbol while on Linux will be a internal one. To be consistent with the following non cancellable openat call, a new __open64_nocancel is also added (although not currently used). Checked on x86_64-linux-gnu, x86_64-linux-gnu-x32, and i686-linux-gnu. * sysdeps/generic/not-cancel.h (open_not_cancel): Remove macro. (open_not_cancel_2): Likewise. (open_nocancel): New macro. (open64_nocancel): Likewise. * sysdeps/unix/sysv/linux/not-cancel.h (open_not_cancel): Remove macro. (open_not_cancel_2): Likewise. (__open_nocancel): New prototype. (__open64_nocancel): Likewise. * sysdeps/unix/sysv/linux/Versions (libc) [GLIBC_PRIVATE]: Add __open_nocancel. * sysdeps/unix/sysv/linux/open.c (__open_nocancel): New function. * sysdeps/unix/sysv/linux/open64.c (__open64_nocancel): Likewise. * catgets/open_catalog.c (__open_catalog): Replace open_not_cancel{_2} with __open_nocancel. * csu/check_fds.c (check_one_fd): Likewise. * gmon/gmon.c (write_gmon): Likewise. * iconv/gconv_cache.c (__gconv_load_cached): Likewise. * intl/loadmsgcat.c (open): Likewise. * libio/fileops.c (_IO_file_open): Likewise. * locale/loadarchive.c (_nl_load_locale_from_archive): Likewise. * locale/loadlocale.c (_nl_load_locale): Likewise. * login/utmp_file.c (setutent_file): Likewise. * misc/daemon.c (daemon): Likewise. * nss/nss_db/db-open.c (internal_setent): Likewise. * sysdeps/mach/hurd/opendir.c (__opendirat): Likewise. * sysdeps/posix/libc_fatal.c (__libc_message): Likewise. * sysdeps/posix/opendir.c (tryopen_o_directory): Likewise. (__opendir): Likewise. * sysdeps/posix/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/fips-private.h (fips_enable_p): Likewise. * sysdeps/unix/sysv/linux/gethostid.c (sethostid): Likewise. (gethostid): Likewise. * sysdeps/unix/sysv/linux/getloadavg.c (getloadavg): Likewise. * sysdeps/unix/sysv/linux/getlogin_r.c (__getlogin_r_loginuid): Likewise. * sysdeps/unix/sysv/linux/getsysstats.c (__get_nprocs): Likewise. * sysdeps/unix/sysv/linux/grantpt.c (__close_all_fds): Likewise. * sysdeps/unix/sysv/linux/i386/smp.h (is_smp_system): Likewise. * sysdeps/unix/sysv/linux/ia64/has_cpuclock.c (has_cpuclock): Likewise. * sysdeps/unix/sysv/linux/libc_fatal.c (backtrace_and_maps): Likewise. * sysdeps/unix/sysv/linux/malloc-sysdep.h (check_may_shrink_heap): Likewise. * sysdeps/unix/sysv/linux/powerpc/get_clockfreq.c (__get_clockfreq): Likewise. * sysdeps/unix/sysv/linux/pthread_getname.c (pthread_getname_np): Likewise. * sysdeps/unix/sysv/linux/pthread_setname.c (pthread_setname_np): Likewise. * sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/sysconf.c (__sysconf): Likewise.
2017-07-03 14:11:24 +00:00
int ret = __open_nocancel (action->action.open_action.path,
action->action.
open_action.oflag | O_LARGEFILE,
action->action.open_action.mode);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
if (ret == -1)
goto fail;
int new_fd = ret;
/* Make sure the desired file descriptor is used. */
if (ret != action->action.open_action.fd)
{
if (__dup2 (new_fd, action->action.open_action.fd)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
!= action->action.open_action.fd)
goto fail;
Consolidate non cancellable close call This patch consolidates all the non cancellable close calls to use the __close_nocancel{_nostatus} identifier. For non cancellable targets it will be just a macro to call the default respective symbol while on Linux will be a internal one. Also, since it is used on libcrypto it is also exported in GLIBC_PRIVATE namespace. Checked on x86_64-linux-gnu, x86_64-linux-gnu-x32, and i686-linux-gnu. * sysdeps/generic/not-cancel.h (close_not_cancel): Remove macro. (close_not_cancel_no_status): Likewise. (__close_nocancel): New macro. (__close_nocancel_no_status): Likewise. * sysdeps/unix/sysv/linux/not-cancel.h (__close_nocancel): Remove macro. (close_not_cancel): Likewise. (close_not_cancel_no_status): Likewise. (__close_nocancel): New prototype. (__close_nocancel_no_status): New function. * sysdeps/unix/sysv/linux/close.c (__close_nocancel): New function. * catgets/open_catalog.c (__open_catalog): Replace close_not_cancel{_no_status) with __close_nocancel{_nostatus}. * gmon/gmon.c (write_gmon): Likewise. * iconv/gconv_cache.c (__gconv_load_cache): Likewise. * intl/loadmsgcat.c (close): Likewise. * io/ftw.c (open_dir_stream): Likewise. (ftw_startup): Likewise. * libio/fileops.c (_IO_file_open): Likewise. (_IO_file_close_mmap): Likewise. (_IO_file_close): Likewise. * libio/iopopen.c (_IO_dup2): Likewise. * locale/loadarchive.c (_nl_load_locale_from_archive): Likewise. * locale/loadlocale.c (_nl_load_locale): Likewise. * login/utmp_file.c (pututline_file): Likewise. (endutent_file): Likewise. * misc/daemon.c (daemon): Likewise. * nscd/nscd_getai.c (__nscd_getai): Likewise. * nscd/nscd_getgr_r.c (nscd_getgr_r): Likewise. * nscd/nscd_gethst_r.c (nscd_gethst_r): Likewise. * nscd/nscd_getpw_r.c (nscd_getpw_r): Likewise. * nscd/nscd_getserv_r.c (nscd_getserv_r): Likewise. * nscd/nscd_helper.c (open_socket): Likewise. (__nscd_open_socket): Likewise. * nscd/nscd_initgroups.c (__nscd_getgrouplist): Likewise. * nscd/nscd_netgroup.c (__nscd_setnetgrent): Likewise. (__nscd_innetgr): Likewise. * nss/nss_db/db-open.c (internal_setent): Likewise. * resolv/res-close.c (__res_iclose): Likewise. * sunrpc/pm_getmaps.c (pmap_getmaps): Likewise. * sysdeps/posix/closedir.c (__closedir): Likewise. * sysdeps/posix/getaddrinfo.c (getaddrinfo): Likewise. * sysdeps/posix/getcwd.c (__getcwd): Likewise. * sysdeps/posix/opendir.c (tryopen_o_directory): Likewise. (opendir_tail): Likewise. * sysdeps/posix/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/check_native.c (__check_native): Likewise. * sysdeps/unix/sysv/linux/check_pf.c (__check_pf): Likewise. * sysdeps/unix/sysv/linux/fips-private.h (fips_enabled_p): Likewise. * sysdeps/unix/sysv/linux/gethostid.c (sethostid): Likewise. (gethostid): Likewise. * sysdeps/unix/sysv/linux/getloadavg.c (getloadavg): Likewise. * sysdeps/unix/sysv/linux/getlogin_r.c (__getlogin_r_loginuid): Likewise. * sysdeps/unix/sysv/linux/getsysstats.c (__get_nprocs): Likewise. * sysdeps/unix/sysv/linux/grantpt.c (close_all_fds): Likewise. * sysdeps/unix/sysv/linux/i386/smp.h (is_smp_system): Likewise. * sysdeps/unix/sysv/linux/ia64/has_cpuclock.c (has_cpuclock): Likewise. * sysdeps/unix/sysv/linux/if_index.c (__if_nametoindex): Likewise. * sysdeps/unix/sysv/linux/libc_fatal.c (backtrace_and_maps): Likewise. * sysdeps/unix/sysv/linux/malloc-sysdep.h (check_may_shrink_heap): Likewise. * sysdeps/unix/sysv/linux/mq_notify.c (init_mq_netlink): Likewise. * sysdeps/unix/sysv/linux/pthread_getname.c (pthread_getname_np): Likewise. * sysdeps/unix/sysv/linux/pthread_setname.c (pthread_setname_np): Likewise. * sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Likewise. * sysdeps/unix/sysv/linux/sysconf.c (__sysconf): Likewise.
2017-07-03 18:22:58 +00:00
if (__close_nocancel (new_fd) != 0)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
goto fail;
}
}
break;
case spawn_do_dup2:
posix: Clear close-on-exec for posix_spawn adddup2 (BZ#23640) Austin Group issue #411 [1] proposes that posix_spawn file action posix_spawn_file_actions_adddup2 resets the close-on-exec when source and destination refer to same file descriptor. It solves the issue on multi-thread applications which uses close-on-exec as default, and want to hand-chose specifically file descriptor to purposefully inherited into a child process. Current approach to achieve this scenario is to use two adddup2 file actions and a temporary file description which do not conflict with any other, coupled with a close file action to avoid leaking the temporary file descriptor. This approach, besides being complex, may fail with EMFILE/ENFILE file descriptor exaustion. This can be more easily accomplished with an in-place removal of FD_CLOEXEC. Although the resulting adddup2 semantic is slight different than dup2 (equal file descriptors should be handled as no-op), the proposed possible solution are either more complex (fcntl action which a limited set of operations) or results in unrequired operations (dup3 which also returns EINVAL for same file descriptor). Checked on aarch64-linux-gnu. [BZ #23640] * posix/tst-spawn.c (do_prepare, handle_restart, do_test): Add posix_spawn_file_actions_adddup2 test to check O_CLOCEXEC reset. * sysdeps/unix/sysv/linux/spawni.c (__spawni_child): Add close-on-exec reset for adddup2 file action. * sysdeps/posix/spawni.c (__spawni_child): Likewise. [1] http://austingroupbugs.net/view.php?id=411
2018-09-19 19:14:34 +00:00
/* Austin Group issue #411 requires adddup2 action with source
and destination being equal to remove close-on-exec flag. */
if (action->action.dup2_action.fd
== action->action.dup2_action.newfd)
{
int fd = action->action.dup2_action.newfd;
int flags = __fcntl (fd, F_GETFD, 0);
if (flags == -1)
goto fail;
if (__fcntl (fd, F_SETFD, flags & ~FD_CLOEXEC) == -1)
goto fail;
}
else if (__dup2 (action->action.dup2_action.fd,
action->action.dup2_action.newfd)
!= action->action.dup2_action.newfd)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
goto fail;
break;
case spawn_do_chdir:
if (__chdir (action->action.chdir_action.path) != 0)
goto fail;
break;
case spawn_do_fchdir:
if (__fchdir (action->action.fchdir_action.fd) != 0)
goto fail;
break;
posix: Add posix_spawn_file_actions_addclosefrom_np This patch adds a way to close a range of file descriptors on posix_spawn as a new file action. The API is similar to the one provided by Solaris 11 [1], where the file action causes the all open file descriptors greater than or equal to input on to be closed when the new process is spawned. The function posix_spawn_file_actions_addclosefrom_np is safe to be implemented by iterating over /proc/self/fd, since the Linux spawni.c helper process does not use CLONE_FILES, so its has own file descriptor table and any failure (in /proc operation) aborts the process creation and returns an error to the caller. I am aware that this file action might be redundant to the current approach of POSIX in promoting O_CLOEXEC in more interfaces. However O_CLOEXEC is still not the default and for some specific usages, the caller needs to close all possible file descriptors to avoid them leaking. Some examples are CPython (discussed in BZ#10353) and OpenJDK jspawnhelper [2] (where OpenJDK spawns a helper process to exactly closes all file descriptors). Most likely any environment which calls functions that might open file descriptor under the hood and aim to use posix_spawn might face the same requirement. Checked on x86_64-linux-gnu and i686-linux-gnu on kernel 5.11 and 4.15. [1] https://docs.oracle.com/cd/E36784_01/html/E36874/posix-spawn-file-actions-addclosefrom-np-3c.html [2] https://github.com/openjdk/jdk/blob/master/src/java.base/unix/native/libjava/childproc.c#L82
2021-03-10 15:26:33 +00:00
case spawn_do_closefrom:
{
int lowfd = action->action.closefrom_action.from;
int r = INLINE_SYSCALL_CALL (close_range, lowfd, ~0U, 0);
if (r != 0 && !__closefrom_fallback (lowfd, false))
goto fail;
} break;
case spawn_do_tcsetpgrp:
{
/* Check if it is possible to avoid an extra syscall. */
pid_t pgrp = (attr->__flags & POSIX_SPAWN_SETPGROUP) != 0
&& attr->__pgrp != 0
? attr->__pgrp : __getpgid (0);
if (__tcsetpgrp (action->action.setpgrp_action.fd, pgrp) != 0)
goto fail;
}
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
}
}
}
/* Set the initial signal mask of the child if POSIX_SPAWN_SETSIGMASK
is set, otherwise restore the previous one. */
if (attr->__flags & POSIX_SPAWN_SETSIGMASK)
__sigprocmask (SIG_SETMASK, &attr->__ss, NULL);
else
internal_sigprocmask (SIG_SETMASK, &args->oldmask, NULL);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
args->exec (args->file, args->argv, args->envp);
/* This is compatibility function required to enable posix_spawn run
script without shebang definition for older posix_spawn versions
(2.15). */
maybe_script_execute (args);
fail:
/* errno should have an appropriate non-zero value; otherwise,
there's a bug in glibc or the kernel. For lack of an error code
(EINTERNALBUG) describing that, use ECHILD. Another option would
be to set args->err to some negative sentinel and have the parent
abort(), but that seems needlessly harsh. */
args->err = errno ? : ECHILD;
_exit (SPAWN_ERROR);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
}
/* Spawn a new process executing PATH with the attributes describes in *ATTRP.
Before running the process perform the actions described in FILE-ACTIONS. */
static int
posix: Add pidfd_spawn and pidfd_spawnp (BZ 30349) Returning a pidfd allows a process to keep a race-free handle for a child process, otherwise, the caller will need to either use pidfd_open (which still might be subject to TOCTOU) or keep the old racy interface base on pid_t. To correct use pifd_spawn, the kernel must support not only returning the pidfd with clone/clone3 but also waitid (P_PIDFD) (added on Linux 5.4). If kernel does not support the waitid, pidfd return ENOSYS. It avoids the need to racy workarounds, such as reading the procfs fdinfo to get the pid to use along with other wait interfaces. These interfaces are similar to the posix_spawn and posix_spawnp, with the only difference being it returns a process file descriptor (int) instead of a process ID (pid_t). Their prototypes are: int pidfd_spawn (int *restrict pidfd, const char *restrict file, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict], char *const envp[restrict]) int pidfd_spawnp (int *restrict pidfd, const char *restrict path, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict_arr], char *const envp[restrict_arr]); A new symbol is used instead of a posix_spawn extension to avoid possible issues with language bindings that might track the return argument lifetime. Although on Linux pid_t and int are interchangeable, POSIX only states that pid_t should be a signed integer. Both symbols reuse the posix_spawn posix_spawn_file_actions_t and posix_spawnattr_t, to void rehash posix_spawn API or add a new one. It also means that both interfaces support the same attribute and file actions, and a new flag or file action on posix_spawn is also added automatically for pidfd_spawn. Also, using posix_spawn plumbing allows the reusing of most of the current testing with some changes: - waitid is used instead of waitpid since it is a more generic interface. - tst-posix_spawn-setsid.c is adapted to take into consideration that the caller can check for session id directly. The test now spawns itself and writes the session id as a file instead. - tst-spawn3.c need to know where pidfd_spawn is used so it keeps an extra file description unused. Checked on x86_64-linux-gnu on Linux 4.15 (no CLONE_PIDFD or waitid support), Linux 5.4 (full support), and Linux 6.2. Reviewed-by: Florian Weimer <fweimer@redhat.com>
2023-08-24 16:42:18 +00:00
__spawnix (int *pid, const char *file,
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
const posix_spawn_file_actions_t * file_actions,
const posix_spawnattr_t * attrp, char *const argv[],
char *const envp[], int xflags,
int (*exec) (const char *, char *const *, char *const *))
{
pid_t new_pid;
struct posix_spawn_args args;
int ec;
posix: Add pidfd_spawn and pidfd_spawnp (BZ 30349) Returning a pidfd allows a process to keep a race-free handle for a child process, otherwise, the caller will need to either use pidfd_open (which still might be subject to TOCTOU) or keep the old racy interface base on pid_t. To correct use pifd_spawn, the kernel must support not only returning the pidfd with clone/clone3 but also waitid (P_PIDFD) (added on Linux 5.4). If kernel does not support the waitid, pidfd return ENOSYS. It avoids the need to racy workarounds, such as reading the procfs fdinfo to get the pid to use along with other wait interfaces. These interfaces are similar to the posix_spawn and posix_spawnp, with the only difference being it returns a process file descriptor (int) instead of a process ID (pid_t). Their prototypes are: int pidfd_spawn (int *restrict pidfd, const char *restrict file, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict], char *const envp[restrict]) int pidfd_spawnp (int *restrict pidfd, const char *restrict path, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict_arr], char *const envp[restrict_arr]); A new symbol is used instead of a posix_spawn extension to avoid possible issues with language bindings that might track the return argument lifetime. Although on Linux pid_t and int are interchangeable, POSIX only states that pid_t should be a signed integer. Both symbols reuse the posix_spawn posix_spawn_file_actions_t and posix_spawnattr_t, to void rehash posix_spawn API or add a new one. It also means that both interfaces support the same attribute and file actions, and a new flag or file action on posix_spawn is also added automatically for pidfd_spawn. Also, using posix_spawn plumbing allows the reusing of most of the current testing with some changes: - waitid is used instead of waitpid since it is a more generic interface. - tst-posix_spawn-setsid.c is adapted to take into consideration that the caller can check for session id directly. The test now spawns itself and writes the session id as a file instead. - tst-spawn3.c need to know where pidfd_spawn is used so it keeps an extra file description unused. Checked on x86_64-linux-gnu on Linux 4.15 (no CLONE_PIDFD or waitid support), Linux 5.4 (full support), and Linux 6.2. Reviewed-by: Florian Weimer <fweimer@redhat.com>
2023-08-24 16:42:18 +00:00
bool use_pidfd = xflags & SPAWN_XFLAGS_RET_PIDFD;
/* For CLONE_PIDFD, older kernels might not fail with unsupported flags or
some versions might not support waitid (P_PIDFD). So to avoid the need
to handle the error on the helper process, check for full pidfd
support.
ENOSYS is returned because without proper waitid support, pidfd_spawn
can not be used proporly independently of its arguments. */
if (use_pidfd && !__clone_pidfd_supported ())
return ENOSYS;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* To avoid imposing hard limits on posix_spawn{p} the total number of
arguments is first calculated to allocate a mmap to hold all possible
values. */
ptrdiff_t argc = 0;
/* Linux allows at most max (0x7FFFFFFF, 1/4 stack size) arguments
to be used in a execve call. We limit to INT_MAX minus one due the
compatibility code that may execute a shell script (maybe_script_execute)
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
where it will construct another argument list with an additional
argument. */
ptrdiff_t limit = INT_MAX - 1;
while (argv[argc++] != NULL)
if (argc == limit)
{
errno = E2BIG;
return errno;
}
int prot = (PROT_READ | PROT_WRITE
| ((GL (dl_stack_flags) & PF_X) ? PROT_EXEC : 0));
/* Add a slack area for child's stack. */
size_t argv_size = (argc * sizeof (void *)) + 512;
/* We need at least a few pages in case the compiler's stack checking is
enabled. In some configs, it is known to use at least 24KiB. We use
32KiB to be "safe" from anything the compiler might do. Besides, the
posix: Add posix_spawn_file_actions_addclosefrom_np This patch adds a way to close a range of file descriptors on posix_spawn as a new file action. The API is similar to the one provided by Solaris 11 [1], where the file action causes the all open file descriptors greater than or equal to input on to be closed when the new process is spawned. The function posix_spawn_file_actions_addclosefrom_np is safe to be implemented by iterating over /proc/self/fd, since the Linux spawni.c helper process does not use CLONE_FILES, so its has own file descriptor table and any failure (in /proc operation) aborts the process creation and returns an error to the caller. I am aware that this file action might be redundant to the current approach of POSIX in promoting O_CLOEXEC in more interfaces. However O_CLOEXEC is still not the default and for some specific usages, the caller needs to close all possible file descriptors to avoid them leaking. Some examples are CPython (discussed in BZ#10353) and OpenJDK jspawnhelper [2] (where OpenJDK spawns a helper process to exactly closes all file descriptors). Most likely any environment which calls functions that might open file descriptor under the hood and aim to use posix_spawn might face the same requirement. Checked on x86_64-linux-gnu and i686-linux-gnu on kernel 5.11 and 4.15. [1] https://docs.oracle.com/cd/E36784_01/html/E36874/posix-spawn-file-actions-addclosefrom-np-3c.html [2] https://github.com/openjdk/jdk/blob/master/src/java.base/unix/native/libjava/childproc.c#L82
2021-03-10 15:26:33 +00:00
extra pages won't actually be allocated unless they get used.
It also acts the slack for spawn_closefrom (including MIPS64 getdents64
where it might use about 1k extra stack space). */
argv_size += (32 * 1024);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
size_t stack_size = ALIGN_UP (argv_size, GLRO(dl_pagesize));
void *stack = __mmap (NULL, stack_size, prot,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
if (__glibc_unlikely (stack == MAP_FAILED))
return errno;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* Disable asynchronous cancellation. */
int state;
__pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &state);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* Child must set args.err to something non-negative - we rely on
the parent and child sharing VM. */
posix: Fix improper assert in Linux posix_spawn (BZ#22273) As noted by Florian Weimer, current Linux posix_spawn implementation can trigger an assert if the auxiliary process is terminated before actually setting the err member: 340 /* Child must set args.err to something non-negative - we rely on 341 the parent and child sharing VM. */ 342 args.err = -1; [...] 362 new_pid = CLONE (__spawni_child, STACK (stack, stack_size), stack_size, 363 CLONE_VM | CLONE_VFORK | SIGCHLD, &args); 364 365 if (new_pid > 0) 366 { 367 ec = args.err; 368 assert (ec >= 0); Another possible issue is killing the child between setting the err and actually calling execve. In this case the process will not ran, but posix_spawn also will not report any error: 269 270 args->err = 0; 271 args->exec (args->file, args->argv, args->envp); As suggested by Andreas Schwab, this patch removes the faulty assert and also handles any signal that happens before fork and execve as the spawn was successful (and thus relaying the handling to the caller to figure this out). Different than Florian, I can not see why using atomics to set err would help here, essentially the code runs sequentially (due CLONE_VFORK) and I think it would not be legal the compiler evaluate ec without checking for new_pid result (thus there is no need to compiler barrier). Summarizing the possible scenarios on posix_spawn execution, we have: 1. For default case with a success execution, args.err will be 0, pid will not be collected and it will be reported to caller. 2. For default failure case, args.err will be positive and the it will be collected by the waitpid. An error will be reported to the caller. 3. For the unlikely case where the process was terminated and not collected by a caller signal handler, it will be reported as succeful execution and not be collected by posix_spawn (since args.err will be 0). The caller will need to actually handle this case. 4. For the unlikely case where the process was terminated and collected by caller we have 3 other possible scenarios: 4.1. The auxiliary process was terminated with args.err equal to 0: it will handled as 1. (so it does not matter if we hit the pid reuse race since we won't possible collect an unexpected process). 4.2. The auxiliary process was terminated after execve (due a failure in calling it) and before setting args.err to -1: it will also be handle as 1. but with the issue of not be able to report the caller a possible execve failures. 4.3. The auxiliary process was terminated after args.err is set to -1: this is the case where it will be possible to hit the pid reuse case where we will need to collected the auxiliary pid but we can not be sure if it will be expected one. I think for this case we need to actually change waitpid to use WNOHANG to avoid hanging indefinitely on the call and report an error to caller since we can't differentiate between a default failure as 2. and a possible pid reuse race issue. Checked on x86_64-linux-gnu. * sysdeps/unix/sysv/linux/spawni.c (__spawnix): Handle the case where the auxiliary process is terminated by a signal before calling _exit or execve.
2017-10-12 18:20:57 +00:00
args.err = 0;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
args.file = file;
args.exec = exec;
args.fa = file_actions;
args.attr = attrp ? attrp : &(const posix_spawnattr_t) { 0 };
args.argv = argv;
args.argc = argc;
args.envp = envp;
posix: Add pidfd_spawn and pidfd_spawnp (BZ 30349) Returning a pidfd allows a process to keep a race-free handle for a child process, otherwise, the caller will need to either use pidfd_open (which still might be subject to TOCTOU) or keep the old racy interface base on pid_t. To correct use pifd_spawn, the kernel must support not only returning the pidfd with clone/clone3 but also waitid (P_PIDFD) (added on Linux 5.4). If kernel does not support the waitid, pidfd return ENOSYS. It avoids the need to racy workarounds, such as reading the procfs fdinfo to get the pid to use along with other wait interfaces. These interfaces are similar to the posix_spawn and posix_spawnp, with the only difference being it returns a process file descriptor (int) instead of a process ID (pid_t). Their prototypes are: int pidfd_spawn (int *restrict pidfd, const char *restrict file, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict], char *const envp[restrict]) int pidfd_spawnp (int *restrict pidfd, const char *restrict path, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict_arr], char *const envp[restrict_arr]); A new symbol is used instead of a posix_spawn extension to avoid possible issues with language bindings that might track the return argument lifetime. Although on Linux pid_t and int are interchangeable, POSIX only states that pid_t should be a signed integer. Both symbols reuse the posix_spawn posix_spawn_file_actions_t and posix_spawnattr_t, to void rehash posix_spawn API or add a new one. It also means that both interfaces support the same attribute and file actions, and a new flag or file action on posix_spawn is also added automatically for pidfd_spawn. Also, using posix_spawn plumbing allows the reusing of most of the current testing with some changes: - waitid is used instead of waitpid since it is a more generic interface. - tst-posix_spawn-setsid.c is adapted to take into consideration that the caller can check for session id directly. The test now spawns itself and writes the session id as a file instead. - tst-spawn3.c need to know where pidfd_spawn is used so it keeps an extra file description unused. Checked on x86_64-linux-gnu on Linux 4.15 (no CLONE_PIDFD or waitid support), Linux 5.4 (full support), and Linux 6.2. Reviewed-by: Florian Weimer <fweimer@redhat.com>
2023-08-24 16:42:18 +00:00
args.pidfd = 0;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
args.xflags = xflags;
internal_signal_block_all (&args.oldmask);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
/* The clone flags used will create a new child that will run in the same
memory space (CLONE_VM) and the execution of calling thread will be
suspend until the child calls execve or _exit.
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
Also since the calling thread execution will be suspend, there is not
need for CLONE_SETTLS. Although parent and child share the same TLS
namespace, there will be no concurrent access for TLS variables (errno
for instance). */
bool set_cgroup = attrp ? (attrp->__flags & POSIX_SPAWN_SETCGROUP) : false;
Add an internal wrapper for clone, clone2 and clone3 The clone3 system call (since Linux 5.3) provides a superset of the functionality of clone and clone2. It also provides a number of API improvements, including the ability to specify the size of the child's stack area which can be used by kernel to compute the shadow stack size when allocating the shadow stack. Add: extern int __clone_internal (struct clone_args *__cl_args, int (*__func) (void *__arg), void *__arg); to provide an abstract interface for clone, clone2 and clone3. 1. Simplify stack management for thread creation by passing both stack base and size to create_thread. 2. Consolidate clone vs clone2 differences into a single file. 3. Call __clone3 if HAVE_CLONE3_WAPPER is defined. If __clone3 returns -1 with ENOSYS, fall back to clone or clone2. 4. Use only __clone_internal to clone a thread. Since the stack size argument for create_thread is now unconditional, always pass stack size to create_thread. 5. Enable the public clone3 wrapper in the future after it has been added to all targets. NB: Sandbox will return ENOSYS on clone3 in both Chromium: The following revision refers to this bug: https://chromium.googlesource.com/chromium/src/+/218438259dd795456f0a48f67cbe5b4e520db88b commit 218438259dd795456f0a48f67cbe5b4e520db88b Author: Matthew Denton <mpdenton@chromium.org> Date: Thu Jun 03 20:06:13 2021 Linux sandbox: return ENOSYS for clone3 Because clone3 uses a pointer argument rather than a flags argument, we cannot examine the contents with seccomp, which is essential to preventing sandboxed processes from starting other processes. So, we won't be able to support clone3 in Chromium. This CL modifies the BPF policy to return ENOSYS for clone3 so glibc always uses the fallback to clone. Bug: 1213452 Change-Id: I7c7c585a319e0264eac5b1ebee1a45be2d782303 Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/2936184 Reviewed-by: Robert Sesek <rsesek@chromium.org> Commit-Queue: Matthew Denton <mpdenton@chromium.org> Cr-Commit-Position: refs/heads/master@{#888980} [modify] https://crrev.com/218438259dd795456f0a48f67cbe5b4e520db88b/sandbox/linux/seccomp-bpf-helpers/baseline_policy.cc and Firefox: https://hg.mozilla.org/integration/autoland/rev/ecb4011a0c76 Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2021-02-13 19:47:46 +00:00
struct clone_args clone_args =
{
/* Unsupported flags like CLONE_CLEAR_SIGHAND will be cleared up by
__clone_internal_fallback. */
.flags = (set_cgroup ? CLONE_INTO_CGROUP : 0)
posix: Add pidfd_spawn and pidfd_spawnp (BZ 30349) Returning a pidfd allows a process to keep a race-free handle for a child process, otherwise, the caller will need to either use pidfd_open (which still might be subject to TOCTOU) or keep the old racy interface base on pid_t. To correct use pifd_spawn, the kernel must support not only returning the pidfd with clone/clone3 but also waitid (P_PIDFD) (added on Linux 5.4). If kernel does not support the waitid, pidfd return ENOSYS. It avoids the need to racy workarounds, such as reading the procfs fdinfo to get the pid to use along with other wait interfaces. These interfaces are similar to the posix_spawn and posix_spawnp, with the only difference being it returns a process file descriptor (int) instead of a process ID (pid_t). Their prototypes are: int pidfd_spawn (int *restrict pidfd, const char *restrict file, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict], char *const envp[restrict]) int pidfd_spawnp (int *restrict pidfd, const char *restrict path, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict_arr], char *const envp[restrict_arr]); A new symbol is used instead of a posix_spawn extension to avoid possible issues with language bindings that might track the return argument lifetime. Although on Linux pid_t and int are interchangeable, POSIX only states that pid_t should be a signed integer. Both symbols reuse the posix_spawn posix_spawn_file_actions_t and posix_spawnattr_t, to void rehash posix_spawn API or add a new one. It also means that both interfaces support the same attribute and file actions, and a new flag or file action on posix_spawn is also added automatically for pidfd_spawn. Also, using posix_spawn plumbing allows the reusing of most of the current testing with some changes: - waitid is used instead of waitpid since it is a more generic interface. - tst-posix_spawn-setsid.c is adapted to take into consideration that the caller can check for session id directly. The test now spawns itself and writes the session id as a file instead. - tst-spawn3.c need to know where pidfd_spawn is used so it keeps an extra file description unused. Checked on x86_64-linux-gnu on Linux 4.15 (no CLONE_PIDFD or waitid support), Linux 5.4 (full support), and Linux 6.2. Reviewed-by: Florian Weimer <fweimer@redhat.com>
2023-08-24 16:42:18 +00:00
| (use_pidfd ? CLONE_PIDFD : 0)
| CLONE_CLEAR_SIGHAND
| CLONE_VM
| CLONE_VFORK,
Add an internal wrapper for clone, clone2 and clone3 The clone3 system call (since Linux 5.3) provides a superset of the functionality of clone and clone2. It also provides a number of API improvements, including the ability to specify the size of the child's stack area which can be used by kernel to compute the shadow stack size when allocating the shadow stack. Add: extern int __clone_internal (struct clone_args *__cl_args, int (*__func) (void *__arg), void *__arg); to provide an abstract interface for clone, clone2 and clone3. 1. Simplify stack management for thread creation by passing both stack base and size to create_thread. 2. Consolidate clone vs clone2 differences into a single file. 3. Call __clone3 if HAVE_CLONE3_WAPPER is defined. If __clone3 returns -1 with ENOSYS, fall back to clone or clone2. 4. Use only __clone_internal to clone a thread. Since the stack size argument for create_thread is now unconditional, always pass stack size to create_thread. 5. Enable the public clone3 wrapper in the future after it has been added to all targets. NB: Sandbox will return ENOSYS on clone3 in both Chromium: The following revision refers to this bug: https://chromium.googlesource.com/chromium/src/+/218438259dd795456f0a48f67cbe5b4e520db88b commit 218438259dd795456f0a48f67cbe5b4e520db88b Author: Matthew Denton <mpdenton@chromium.org> Date: Thu Jun 03 20:06:13 2021 Linux sandbox: return ENOSYS for clone3 Because clone3 uses a pointer argument rather than a flags argument, we cannot examine the contents with seccomp, which is essential to preventing sandboxed processes from starting other processes. So, we won't be able to support clone3 in Chromium. This CL modifies the BPF policy to return ENOSYS for clone3 so glibc always uses the fallback to clone. Bug: 1213452 Change-Id: I7c7c585a319e0264eac5b1ebee1a45be2d782303 Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/2936184 Reviewed-by: Robert Sesek <rsesek@chromium.org> Commit-Queue: Matthew Denton <mpdenton@chromium.org> Cr-Commit-Position: refs/heads/master@{#888980} [modify] https://crrev.com/218438259dd795456f0a48f67cbe5b4e520db88b/sandbox/linux/seccomp-bpf-helpers/baseline_policy.cc and Firefox: https://hg.mozilla.org/integration/autoland/rev/ecb4011a0c76 Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2021-02-13 19:47:46 +00:00
.exit_signal = SIGCHLD,
.stack = (uintptr_t) stack,
.stack_size = stack_size,
posix: Add pidfd_spawn and pidfd_spawnp (BZ 30349) Returning a pidfd allows a process to keep a race-free handle for a child process, otherwise, the caller will need to either use pidfd_open (which still might be subject to TOCTOU) or keep the old racy interface base on pid_t. To correct use pifd_spawn, the kernel must support not only returning the pidfd with clone/clone3 but also waitid (P_PIDFD) (added on Linux 5.4). If kernel does not support the waitid, pidfd return ENOSYS. It avoids the need to racy workarounds, such as reading the procfs fdinfo to get the pid to use along with other wait interfaces. These interfaces are similar to the posix_spawn and posix_spawnp, with the only difference being it returns a process file descriptor (int) instead of a process ID (pid_t). Their prototypes are: int pidfd_spawn (int *restrict pidfd, const char *restrict file, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict], char *const envp[restrict]) int pidfd_spawnp (int *restrict pidfd, const char *restrict path, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict_arr], char *const envp[restrict_arr]); A new symbol is used instead of a posix_spawn extension to avoid possible issues with language bindings that might track the return argument lifetime. Although on Linux pid_t and int are interchangeable, POSIX only states that pid_t should be a signed integer. Both symbols reuse the posix_spawn posix_spawn_file_actions_t and posix_spawnattr_t, to void rehash posix_spawn API or add a new one. It also means that both interfaces support the same attribute and file actions, and a new flag or file action on posix_spawn is also added automatically for pidfd_spawn. Also, using posix_spawn plumbing allows the reusing of most of the current testing with some changes: - waitid is used instead of waitpid since it is a more generic interface. - tst-posix_spawn-setsid.c is adapted to take into consideration that the caller can check for session id directly. The test now spawns itself and writes the session id as a file instead. - tst-spawn3.c need to know where pidfd_spawn is used so it keeps an extra file description unused. Checked on x86_64-linux-gnu on Linux 4.15 (no CLONE_PIDFD or waitid support), Linux 5.4 (full support), and Linux 6.2. Reviewed-by: Florian Weimer <fweimer@redhat.com>
2023-08-24 16:42:18 +00:00
.cgroup = (set_cgroup ? attrp->__cgroup : 0),
.pidfd = use_pidfd ? (uintptr_t) &args.pidfd : 0,
/* This is require for clone fallback, where pidfd is returned
on parent_tid. */
.parent_tid = use_pidfd ? (uintptr_t) &args.pidfd : 0,
Add an internal wrapper for clone, clone2 and clone3 The clone3 system call (since Linux 5.3) provides a superset of the functionality of clone and clone2. It also provides a number of API improvements, including the ability to specify the size of the child's stack area which can be used by kernel to compute the shadow stack size when allocating the shadow stack. Add: extern int __clone_internal (struct clone_args *__cl_args, int (*__func) (void *__arg), void *__arg); to provide an abstract interface for clone, clone2 and clone3. 1. Simplify stack management for thread creation by passing both stack base and size to create_thread. 2. Consolidate clone vs clone2 differences into a single file. 3. Call __clone3 if HAVE_CLONE3_WAPPER is defined. If __clone3 returns -1 with ENOSYS, fall back to clone or clone2. 4. Use only __clone_internal to clone a thread. Since the stack size argument for create_thread is now unconditional, always pass stack size to create_thread. 5. Enable the public clone3 wrapper in the future after it has been added to all targets. NB: Sandbox will return ENOSYS on clone3 in both Chromium: The following revision refers to this bug: https://chromium.googlesource.com/chromium/src/+/218438259dd795456f0a48f67cbe5b4e520db88b commit 218438259dd795456f0a48f67cbe5b4e520db88b Author: Matthew Denton <mpdenton@chromium.org> Date: Thu Jun 03 20:06:13 2021 Linux sandbox: return ENOSYS for clone3 Because clone3 uses a pointer argument rather than a flags argument, we cannot examine the contents with seccomp, which is essential to preventing sandboxed processes from starting other processes. So, we won't be able to support clone3 in Chromium. This CL modifies the BPF policy to return ENOSYS for clone3 so glibc always uses the fallback to clone. Bug: 1213452 Change-Id: I7c7c585a319e0264eac5b1ebee1a45be2d782303 Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/2936184 Reviewed-by: Robert Sesek <rsesek@chromium.org> Commit-Queue: Matthew Denton <mpdenton@chromium.org> Cr-Commit-Position: refs/heads/master@{#888980} [modify] https://crrev.com/218438259dd795456f0a48f67cbe5b4e520db88b/sandbox/linux/seccomp-bpf-helpers/baseline_policy.cc and Firefox: https://hg.mozilla.org/integration/autoland/rev/ecb4011a0c76 Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
2021-02-13 19:47:46 +00:00
};
#ifdef HAVE_CLONE3_WRAPPER
args.use_clone3 = true;
new_pid = __clone3 (&clone_args, sizeof (clone_args), __spawni_child,
&args);
/* clone3 was added in 5.3 and CLONE_CLEAR_SIGHAND in 5.5. */
if (new_pid == -1 && (errno == ENOSYS || errno == EINVAL))
#endif
{
args.use_clone3 = false;
if (!set_cgroup)
new_pid = __clone_internal_fallback (&clone_args, __spawni_child,
&args);
else
{
/* No fallback for POSIX_SPAWN_SETCGROUP if clone3 is not
supported. */
new_pid = -1;
#ifdef HAVE_CLONE3_WRAPPER
if (errno == ENOSYS)
#endif
errno = ENOTSUP;
}
}
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
posix: Fix improper assert in Linux posix_spawn (BZ#22273) As noted by Florian Weimer, current Linux posix_spawn implementation can trigger an assert if the auxiliary process is terminated before actually setting the err member: 340 /* Child must set args.err to something non-negative - we rely on 341 the parent and child sharing VM. */ 342 args.err = -1; [...] 362 new_pid = CLONE (__spawni_child, STACK (stack, stack_size), stack_size, 363 CLONE_VM | CLONE_VFORK | SIGCHLD, &args); 364 365 if (new_pid > 0) 366 { 367 ec = args.err; 368 assert (ec >= 0); Another possible issue is killing the child between setting the err and actually calling execve. In this case the process will not ran, but posix_spawn also will not report any error: 269 270 args->err = 0; 271 args->exec (args->file, args->argv, args->envp); As suggested by Andreas Schwab, this patch removes the faulty assert and also handles any signal that happens before fork and execve as the spawn was successful (and thus relaying the handling to the caller to figure this out). Different than Florian, I can not see why using atomics to set err would help here, essentially the code runs sequentially (due CLONE_VFORK) and I think it would not be legal the compiler evaluate ec without checking for new_pid result (thus there is no need to compiler barrier). Summarizing the possible scenarios on posix_spawn execution, we have: 1. For default case with a success execution, args.err will be 0, pid will not be collected and it will be reported to caller. 2. For default failure case, args.err will be positive and the it will be collected by the waitpid. An error will be reported to the caller. 3. For the unlikely case where the process was terminated and not collected by a caller signal handler, it will be reported as succeful execution and not be collected by posix_spawn (since args.err will be 0). The caller will need to actually handle this case. 4. For the unlikely case where the process was terminated and collected by caller we have 3 other possible scenarios: 4.1. The auxiliary process was terminated with args.err equal to 0: it will handled as 1. (so it does not matter if we hit the pid reuse race since we won't possible collect an unexpected process). 4.2. The auxiliary process was terminated after execve (due a failure in calling it) and before setting args.err to -1: it will also be handle as 1. but with the issue of not be able to report the caller a possible execve failures. 4.3. The auxiliary process was terminated after args.err is set to -1: this is the case where it will be possible to hit the pid reuse case where we will need to collected the auxiliary pid but we can not be sure if it will be expected one. I think for this case we need to actually change waitpid to use WNOHANG to avoid hanging indefinitely on the call and report an error to caller since we can't differentiate between a default failure as 2. and a possible pid reuse race issue. Checked on x86_64-linux-gnu. * sysdeps/unix/sysv/linux/spawni.c (__spawnix): Handle the case where the auxiliary process is terminated by a signal before calling _exit or execve.
2017-10-12 18:20:57 +00:00
/* It needs to collect the case where the auxiliary process was created
but failed to execute the file (due either any preparation step or
for execve itself). */
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
if (new_pid > 0)
{
posix: Fix improper assert in Linux posix_spawn (BZ#22273) As noted by Florian Weimer, current Linux posix_spawn implementation can trigger an assert if the auxiliary process is terminated before actually setting the err member: 340 /* Child must set args.err to something non-negative - we rely on 341 the parent and child sharing VM. */ 342 args.err = -1; [...] 362 new_pid = CLONE (__spawni_child, STACK (stack, stack_size), stack_size, 363 CLONE_VM | CLONE_VFORK | SIGCHLD, &args); 364 365 if (new_pid > 0) 366 { 367 ec = args.err; 368 assert (ec >= 0); Another possible issue is killing the child between setting the err and actually calling execve. In this case the process will not ran, but posix_spawn also will not report any error: 269 270 args->err = 0; 271 args->exec (args->file, args->argv, args->envp); As suggested by Andreas Schwab, this patch removes the faulty assert and also handles any signal that happens before fork and execve as the spawn was successful (and thus relaying the handling to the caller to figure this out). Different than Florian, I can not see why using atomics to set err would help here, essentially the code runs sequentially (due CLONE_VFORK) and I think it would not be legal the compiler evaluate ec without checking for new_pid result (thus there is no need to compiler barrier). Summarizing the possible scenarios on posix_spawn execution, we have: 1. For default case with a success execution, args.err will be 0, pid will not be collected and it will be reported to caller. 2. For default failure case, args.err will be positive and the it will be collected by the waitpid. An error will be reported to the caller. 3. For the unlikely case where the process was terminated and not collected by a caller signal handler, it will be reported as succeful execution and not be collected by posix_spawn (since args.err will be 0). The caller will need to actually handle this case. 4. For the unlikely case where the process was terminated and collected by caller we have 3 other possible scenarios: 4.1. The auxiliary process was terminated with args.err equal to 0: it will handled as 1. (so it does not matter if we hit the pid reuse race since we won't possible collect an unexpected process). 4.2. The auxiliary process was terminated after execve (due a failure in calling it) and before setting args.err to -1: it will also be handle as 1. but with the issue of not be able to report the caller a possible execve failures. 4.3. The auxiliary process was terminated after args.err is set to -1: this is the case where it will be possible to hit the pid reuse case where we will need to collected the auxiliary pid but we can not be sure if it will be expected one. I think for this case we need to actually change waitpid to use WNOHANG to avoid hanging indefinitely on the call and report an error to caller since we can't differentiate between a default failure as 2. and a possible pid reuse race issue. Checked on x86_64-linux-gnu. * sysdeps/unix/sysv/linux/spawni.c (__spawnix): Handle the case where the auxiliary process is terminated by a signal before calling _exit or execve.
2017-10-12 18:20:57 +00:00
/* Also, it handles the unlikely case where the auxiliary process was
terminated before calling execve as if it was successfully. The
args.err is set to 0 as default and changed to a positive value
only in case of failure, so in case of premature termination
due a signal args.err will remain zeroed and it will be up to
caller to actually collect it. */
ec = args.err;
posix: Fix improper assert in Linux posix_spawn (BZ#22273) As noted by Florian Weimer, current Linux posix_spawn implementation can trigger an assert if the auxiliary process is terminated before actually setting the err member: 340 /* Child must set args.err to something non-negative - we rely on 341 the parent and child sharing VM. */ 342 args.err = -1; [...] 362 new_pid = CLONE (__spawni_child, STACK (stack, stack_size), stack_size, 363 CLONE_VM | CLONE_VFORK | SIGCHLD, &args); 364 365 if (new_pid > 0) 366 { 367 ec = args.err; 368 assert (ec >= 0); Another possible issue is killing the child between setting the err and actually calling execve. In this case the process will not ran, but posix_spawn also will not report any error: 269 270 args->err = 0; 271 args->exec (args->file, args->argv, args->envp); As suggested by Andreas Schwab, this patch removes the faulty assert and also handles any signal that happens before fork and execve as the spawn was successful (and thus relaying the handling to the caller to figure this out). Different than Florian, I can not see why using atomics to set err would help here, essentially the code runs sequentially (due CLONE_VFORK) and I think it would not be legal the compiler evaluate ec without checking for new_pid result (thus there is no need to compiler barrier). Summarizing the possible scenarios on posix_spawn execution, we have: 1. For default case with a success execution, args.err will be 0, pid will not be collected and it will be reported to caller. 2. For default failure case, args.err will be positive and the it will be collected by the waitpid. An error will be reported to the caller. 3. For the unlikely case where the process was terminated and not collected by a caller signal handler, it will be reported as succeful execution and not be collected by posix_spawn (since args.err will be 0). The caller will need to actually handle this case. 4. For the unlikely case where the process was terminated and collected by caller we have 3 other possible scenarios: 4.1. The auxiliary process was terminated with args.err equal to 0: it will handled as 1. (so it does not matter if we hit the pid reuse race since we won't possible collect an unexpected process). 4.2. The auxiliary process was terminated after execve (due a failure in calling it) and before setting args.err to -1: it will also be handle as 1. but with the issue of not be able to report the caller a possible execve failures. 4.3. The auxiliary process was terminated after args.err is set to -1: this is the case where it will be possible to hit the pid reuse case where we will need to collected the auxiliary pid but we can not be sure if it will be expected one. I think for this case we need to actually change waitpid to use WNOHANG to avoid hanging indefinitely on the call and report an error to caller since we can't differentiate between a default failure as 2. and a possible pid reuse race issue. Checked on x86_64-linux-gnu. * sysdeps/unix/sysv/linux/spawni.c (__spawnix): Handle the case where the auxiliary process is terminated by a signal before calling _exit or execve.
2017-10-12 18:20:57 +00:00
if (ec > 0)
/* There still an unlikely case where the child is cancelled after
setting args.err, due to a positive error value. Also there is
posix: Fix improper assert in Linux posix_spawn (BZ#22273) As noted by Florian Weimer, current Linux posix_spawn implementation can trigger an assert if the auxiliary process is terminated before actually setting the err member: 340 /* Child must set args.err to something non-negative - we rely on 341 the parent and child sharing VM. */ 342 args.err = -1; [...] 362 new_pid = CLONE (__spawni_child, STACK (stack, stack_size), stack_size, 363 CLONE_VM | CLONE_VFORK | SIGCHLD, &args); 364 365 if (new_pid > 0) 366 { 367 ec = args.err; 368 assert (ec >= 0); Another possible issue is killing the child between setting the err and actually calling execve. In this case the process will not ran, but posix_spawn also will not report any error: 269 270 args->err = 0; 271 args->exec (args->file, args->argv, args->envp); As suggested by Andreas Schwab, this patch removes the faulty assert and also handles any signal that happens before fork and execve as the spawn was successful (and thus relaying the handling to the caller to figure this out). Different than Florian, I can not see why using atomics to set err would help here, essentially the code runs sequentially (due CLONE_VFORK) and I think it would not be legal the compiler evaluate ec without checking for new_pid result (thus there is no need to compiler barrier). Summarizing the possible scenarios on posix_spawn execution, we have: 1. For default case with a success execution, args.err will be 0, pid will not be collected and it will be reported to caller. 2. For default failure case, args.err will be positive and the it will be collected by the waitpid. An error will be reported to the caller. 3. For the unlikely case where the process was terminated and not collected by a caller signal handler, it will be reported as succeful execution and not be collected by posix_spawn (since args.err will be 0). The caller will need to actually handle this case. 4. For the unlikely case where the process was terminated and collected by caller we have 3 other possible scenarios: 4.1. The auxiliary process was terminated with args.err equal to 0: it will handled as 1. (so it does not matter if we hit the pid reuse race since we won't possible collect an unexpected process). 4.2. The auxiliary process was terminated after execve (due a failure in calling it) and before setting args.err to -1: it will also be handle as 1. but with the issue of not be able to report the caller a possible execve failures. 4.3. The auxiliary process was terminated after args.err is set to -1: this is the case where it will be possible to hit the pid reuse case where we will need to collected the auxiliary pid but we can not be sure if it will be expected one. I think for this case we need to actually change waitpid to use WNOHANG to avoid hanging indefinitely on the call and report an error to caller since we can't differentiate between a default failure as 2. and a possible pid reuse race issue. Checked on x86_64-linux-gnu. * sysdeps/unix/sysv/linux/spawni.c (__spawnix): Handle the case where the auxiliary process is terminated by a signal before calling _exit or execve.
2017-10-12 18:20:57 +00:00
possible pid reuse race (where the kernel allocated the same pid
to an unrelated process). Unfortunately due synchronization
issues where the kernel might not have the process collected
the waitpid below can not use WNOHANG. */
__waitpid (new_pid, NULL, 0);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
}
else
ec = errno;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
__munmap (stack, stack_size);
if ((ec == 0) && (pid != NULL))
posix: Add pidfd_spawn and pidfd_spawnp (BZ 30349) Returning a pidfd allows a process to keep a race-free handle for a child process, otherwise, the caller will need to either use pidfd_open (which still might be subject to TOCTOU) or keep the old racy interface base on pid_t. To correct use pifd_spawn, the kernel must support not only returning the pidfd with clone/clone3 but also waitid (P_PIDFD) (added on Linux 5.4). If kernel does not support the waitid, pidfd return ENOSYS. It avoids the need to racy workarounds, such as reading the procfs fdinfo to get the pid to use along with other wait interfaces. These interfaces are similar to the posix_spawn and posix_spawnp, with the only difference being it returns a process file descriptor (int) instead of a process ID (pid_t). Their prototypes are: int pidfd_spawn (int *restrict pidfd, const char *restrict file, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict], char *const envp[restrict]) int pidfd_spawnp (int *restrict pidfd, const char *restrict path, const posix_spawn_file_actions_t *restrict facts, const posix_spawnattr_t *restrict attrp, char *const argv[restrict_arr], char *const envp[restrict_arr]); A new symbol is used instead of a posix_spawn extension to avoid possible issues with language bindings that might track the return argument lifetime. Although on Linux pid_t and int are interchangeable, POSIX only states that pid_t should be a signed integer. Both symbols reuse the posix_spawn posix_spawn_file_actions_t and posix_spawnattr_t, to void rehash posix_spawn API or add a new one. It also means that both interfaces support the same attribute and file actions, and a new flag or file action on posix_spawn is also added automatically for pidfd_spawn. Also, using posix_spawn plumbing allows the reusing of most of the current testing with some changes: - waitid is used instead of waitpid since it is a more generic interface. - tst-posix_spawn-setsid.c is adapted to take into consideration that the caller can check for session id directly. The test now spawns itself and writes the session id as a file instead. - tst-spawn3.c need to know where pidfd_spawn is used so it keeps an extra file description unused. Checked on x86_64-linux-gnu on Linux 4.15 (no CLONE_PIDFD or waitid support), Linux 5.4 (full support), and Linux 6.2. Reviewed-by: Florian Weimer <fweimer@redhat.com>
2023-08-24 16:42:18 +00:00
*pid = use_pidfd ? args.pidfd : new_pid;
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
internal_signal_restore_set (&args.oldmask);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
__pthread_setcancelstate (state, NULL);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
return ec;
}
/* Spawn a new process executing PATH with the attributes describes in *ATTRP.
Before running the process perform the actions described in FILE-ACTIONS. */
int
__spawni (pid_t * pid, const char *file,
const posix_spawn_file_actions_t * acts,
const posix_spawnattr_t * attrp, char *const argv[],
char *const envp[], int xflags)
{
/* It uses __execvpex to avoid run ENOEXEC in non compatibility mode (it
will be handled by maybe_script_execute). */
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
return __spawnix (pid, file, acts, attrp, argv, envp, xflags,
xflags & SPAWN_XFLAGS_USE_PATH ? __execvpex :__execve);
posix: New Linux posix_spawn{p} implementation This patch implements a new posix_spawn{p} implementation for Linux. The main difference is it uses the clone syscall directly with CLONE_VM and CLONE_VFORK flags and a direct allocated stack. The new stack and start function solves most the vfork limitation (possible parent clobber due stack spilling). The remaning issue are related to signal handling: 1. That no signal handlers must run in child context, to avoid corrupt parent's state. 2. Child must synchronize with parent to enforce stack deallocation and to possible return execv issues. The first one is solved by blocking all signals in child, even NPTL-internal ones (SIGCANCEL and SIGSETXID). The second issue is done by a stack allocation in parent and a synchronization with using a pipe or waitpid (in case or error). The pipe has the advantage of allowing the child signal an exec error (checked with new tst-spawn2 test). There is an inherent race condition in pipe2 usage for architectures that do not support the syscall directly. In such cases the a pipe plus fctnl is used instead and it may lead to file descriptor leak in parent (as decribed by fcntl documentation). The child process stack is allocate with a mmap with MAP_STACK flag using default architecture stack size. Although it is slower than use a stack buffer from parent, it allows some slack for the compatibility code to run scripts with no shebang (which may use a buffer with size depending of argument list count). Performance should be similar to the vfork default posix implementation and way faster than fork path (vfork on mostly linux ports are basically clone with CLONE_VM plus CLONE_VFORK). The only difference is the syscalls required for the stack allocation/deallocation. It fixes BZ#10354, BZ#14750, and BZ#18433. Tested on i386, x86_64, powerpc64le, and aarch64. [BZ #14750] [BZ #10354] [BZ #18433] * include/sched.h (__clone): Add hidden prototype. (__clone2): Likewise. * include/unistd.h (__dup): Likewise. * posix/Makefile (tests): Add tst-spawn2. * posix/tst-spawn2.c: New file. * sysdeps/posix/dup.c (__dup): Add hidden definition. * sysdeps/unix/sysv/linux/aarch64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/alpha/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/arm/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/hppa/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/i386/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/ia64/clone2.S (__clone): Likewise. * sysdeps/unix/sysv/linux/m68k/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/microblaze/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/mips/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nios2/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sh/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/tile/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S (__clone): Likewise. * sysdeps/unix/sysv/linux/nptl-signals.h (____nptl_is_internal_signal): New function. * sysdeps/unix/sysv/linux/spawni.c: New file.
2016-01-19 19:33:32 +00:00
}