2007-06-03 21:20:06 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* IBM Accurate Mathematical Library
|
|
|
|
* written by International Business Machines Corp.
|
2017-01-01 00:14:16 +00:00
|
|
|
* Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
2007-06-03 21:20:06 +00:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public License
|
2012-02-09 23:18:22 +00:00
|
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
2007-06-03 21:20:06 +00:00
|
|
|
*/
|
|
|
|
|
2013-03-07 06:53:29 +00:00
|
|
|
/* Define __mul and __sqr and use the rest from generic code. */
|
|
|
|
#define NO__MUL
|
|
|
|
#define NO__SQR
|
2007-06-03 21:20:06 +00:00
|
|
|
|
2013-03-07 06:53:29 +00:00
|
|
|
#include <sysdeps/ieee754/dbl-64/mpa.c>
|
2007-06-03 21:20:06 +00:00
|
|
|
|
2013-01-09 13:37:15 +00:00
|
|
|
/* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X
|
|
|
|
and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P
|
|
|
|
digits. In case P > 3 the error is bounded by 1.001 ULP. */
|
2013-01-14 16:01:25 +00:00
|
|
|
void
|
|
|
|
__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
|
|
|
|
{
|
2007-06-03 21:20:06 +00:00
|
|
|
long i, i1, i2, j, k, k2;
|
|
|
|
long p2 = p;
|
|
|
|
double u, zk, zk2;
|
|
|
|
|
2013-02-20 13:26:20 +00:00
|
|
|
/* Is z=0? */
|
2013-03-29 11:07:26 +00:00
|
|
|
if (__glibc_unlikely (X[0] * Y[0] == 0))
|
2013-01-14 16:01:25 +00:00
|
|
|
{
|
2013-03-29 11:07:26 +00:00
|
|
|
Z[0] = 0;
|
2013-01-14 16:01:25 +00:00
|
|
|
return;
|
|
|
|
}
|
2007-06-03 21:20:06 +00:00
|
|
|
|
2013-01-14 16:01:25 +00:00
|
|
|
/* Multiply, add and carry */
|
|
|
|
k2 = (p2 < 3) ? p2 + p2 : p2 + 3;
|
2013-03-29 11:07:26 +00:00
|
|
|
zk = Z[k2] = 0;
|
2013-01-14 16:01:25 +00:00
|
|
|
for (k = k2; k > 1;)
|
2007-06-03 21:20:06 +00:00
|
|
|
{
|
2013-01-14 16:01:25 +00:00
|
|
|
if (k > p2)
|
2007-06-03 21:20:06 +00:00
|
|
|
{
|
2013-01-14 16:01:25 +00:00
|
|
|
i1 = k - p2;
|
|
|
|
i2 = p2 + 1;
|
2007-06-03 21:20:06 +00:00
|
|
|
}
|
2013-01-14 16:01:25 +00:00
|
|
|
else
|
2007-06-03 21:20:06 +00:00
|
|
|
{
|
2013-01-14 16:01:25 +00:00
|
|
|
i1 = 1;
|
|
|
|
i2 = k;
|
|
|
|
}
|
|
|
|
#if 1
|
|
|
|
/* Rearrange this inner loop to allow the fmadd instructions to be
|
|
|
|
independent and execute in parallel on processors that have
|
|
|
|
dual symmetrical FP pipelines. */
|
|
|
|
if (i1 < (i2 - 1))
|
|
|
|
{
|
|
|
|
/* Make sure we have at least 2 iterations. */
|
|
|
|
if (((i2 - i1) & 1L) == 1L)
|
|
|
|
{
|
|
|
|
/* Handle the odd iterations case. */
|
|
|
|
zk2 = x->d[i2 - 1] * y->d[i1];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
zk2 = 0.0;
|
|
|
|
/* Do two multiply/adds per loop iteration, using independent
|
|
|
|
accumulators; zk and zk2. */
|
|
|
|
for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2)
|
|
|
|
{
|
|
|
|
zk += x->d[i] * y->d[j];
|
|
|
|
zk2 += x->d[i + 1] * y->d[j - 1];
|
|
|
|
}
|
|
|
|
zk += zk2; /* Final sum. */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Special case when iterations is 1. */
|
|
|
|
zk += x->d[i1] * y->d[i1];
|
2007-06-03 21:20:06 +00:00
|
|
|
}
|
|
|
|
#else
|
2013-01-14 16:01:25 +00:00
|
|
|
/* The original code. */
|
|
|
|
for (i = i1, j = i2 - 1; i < i2; i++, j--)
|
|
|
|
zk += X[i] * Y[j];
|
2007-06-03 21:20:06 +00:00
|
|
|
#endif
|
|
|
|
|
2013-01-14 16:01:25 +00:00
|
|
|
u = (zk + CUTTER) - CUTTER;
|
|
|
|
if (u > zk)
|
|
|
|
u -= RADIX;
|
|
|
|
Z[k] = zk - u;
|
|
|
|
zk = u * RADIXI;
|
|
|
|
--k;
|
|
|
|
}
|
2007-06-03 21:20:06 +00:00
|
|
|
Z[k] = zk;
|
|
|
|
|
2013-03-07 07:48:56 +00:00
|
|
|
int e = EX + EY;
|
2013-01-09 13:37:15 +00:00
|
|
|
/* Is there a carry beyond the most significant digit? */
|
2013-03-29 11:07:26 +00:00
|
|
|
if (Z[1] == 0)
|
2013-01-14 16:01:25 +00:00
|
|
|
{
|
|
|
|
for (i = 1; i <= p2; i++)
|
|
|
|
Z[i] = Z[i + 1];
|
2013-03-07 07:48:56 +00:00
|
|
|
e--;
|
2013-01-14 16:01:25 +00:00
|
|
|
}
|
2007-06-03 21:20:06 +00:00
|
|
|
|
2013-03-07 07:48:56 +00:00
|
|
|
EZ = e;
|
2007-06-03 21:20:06 +00:00
|
|
|
Z[0] = X[0] * Y[0];
|
|
|
|
}
|
|
|
|
|
2013-02-14 05:01:09 +00:00
|
|
|
/* Square *X and store result in *Y. X and Y may not overlap. For P in
|
|
|
|
[1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
|
|
|
|
error is bounded by 1.001 ULP. This is a faster special case of
|
|
|
|
multiplication. */
|
|
|
|
void
|
|
|
|
__sqr (const mp_no *x, mp_no *y, int p)
|
|
|
|
{
|
|
|
|
long i, j, k, ip;
|
|
|
|
double u, yk;
|
|
|
|
|
|
|
|
/* Is z=0? */
|
2013-03-29 11:07:26 +00:00
|
|
|
if (__glibc_unlikely (X[0] == 0))
|
2013-02-14 05:01:09 +00:00
|
|
|
{
|
2013-03-29 11:07:26 +00:00
|
|
|
Y[0] = 0;
|
2013-02-14 05:01:09 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We need not iterate through all X's since it's pointless to
|
|
|
|
multiply zeroes. */
|
|
|
|
for (ip = p; ip > 0; ip--)
|
2013-03-29 11:07:26 +00:00
|
|
|
if (X[ip] != 0)
|
2013-02-14 05:01:09 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
|
|
|
|
|
|
|
|
while (k > 2 * ip + 1)
|
2013-03-29 11:07:26 +00:00
|
|
|
Y[k--] = 0;
|
2013-02-14 05:01:09 +00:00
|
|
|
|
2013-03-29 11:07:26 +00:00
|
|
|
yk = 0;
|
2013-02-14 05:01:09 +00:00
|
|
|
|
|
|
|
while (k > p)
|
|
|
|
{
|
|
|
|
double yk2 = 0.0;
|
|
|
|
long lim = k / 2;
|
|
|
|
|
|
|
|
if (k % 2 == 0)
|
|
|
|
{
|
|
|
|
yk += X[lim] * X[lim];
|
|
|
|
lim--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* In __mul, this loop (and the one within the next while loop) run
|
|
|
|
between a range to calculate the mantissa as follows:
|
|
|
|
|
|
|
|
Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
|
|
|
|
+ X[n] * Y[k]
|
|
|
|
|
|
|
|
For X == Y, we can get away with summing halfway and doubling the
|
|
|
|
result. For cases where the range size is even, the mid-point needs
|
|
|
|
to be added separately (above). */
|
|
|
|
for (i = k - p, j = p; i <= lim; i++, j--)
|
|
|
|
yk2 += X[i] * X[j];
|
|
|
|
|
|
|
|
yk += 2.0 * yk2;
|
|
|
|
|
|
|
|
u = (yk + CUTTER) - CUTTER;
|
|
|
|
if (u > yk)
|
|
|
|
u -= RADIX;
|
|
|
|
Y[k--] = yk - u;
|
|
|
|
yk = u * RADIXI;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (k > 1)
|
|
|
|
{
|
|
|
|
double yk2 = 0.0;
|
|
|
|
long lim = k / 2;
|
|
|
|
|
|
|
|
if (k % 2 == 0)
|
|
|
|
{
|
|
|
|
yk += X[lim] * X[lim];
|
|
|
|
lim--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Likewise for this loop. */
|
|
|
|
for (i = 1, j = k - 1; i <= lim; i++, j--)
|
|
|
|
yk2 += X[i] * X[j];
|
|
|
|
|
|
|
|
yk += 2.0 * yk2;
|
|
|
|
|
|
|
|
u = (yk + CUTTER) - CUTTER;
|
|
|
|
if (u > yk)
|
|
|
|
u -= RADIX;
|
|
|
|
Y[k--] = yk - u;
|
|
|
|
yk = u * RADIXI;
|
|
|
|
}
|
|
|
|
Y[k] = yk;
|
|
|
|
|
|
|
|
/* Squares are always positive. */
|
|
|
|
Y[0] = 1.0;
|
|
|
|
|
2013-03-07 07:48:56 +00:00
|
|
|
int e = EX * 2;
|
2013-02-14 05:01:09 +00:00
|
|
|
/* Is there a carry beyond the most significant digit? */
|
2013-03-29 11:07:26 +00:00
|
|
|
if (__glibc_unlikely (Y[1] == 0))
|
2013-02-14 05:01:09 +00:00
|
|
|
{
|
|
|
|
for (i = 1; i <= p; i++)
|
|
|
|
Y[i] = Y[i + 1];
|
2013-03-07 07:48:56 +00:00
|
|
|
e--;
|
2013-02-14 05:01:09 +00:00
|
|
|
}
|
2013-03-07 07:48:56 +00:00
|
|
|
EY = e;
|
2013-02-14 05:01:09 +00:00
|
|
|
}
|