glibc/sysdeps/aarch64/tst-auditmod27.c

181 lines
6.5 KiB
C
Raw Normal View History

elf: Fix runtime linker auditing on aarch64 (BZ #26643) The rtld audit support show two problems on aarch64: 1. _dl_runtime_resolve does not preserve x8, the indirect result location register, which might generate wrong result calls depending of the function signature. 2. The NEON Q registers pushed onto the stack by _dl_runtime_resolve were twice the size of D registers extracted from the stack frame by _dl_runtime_profile. While 2. might result in wrong information passed on the PLT tracing, 1. generates wrong runtime behaviour. The aarch64 rtld audit support is changed to: * Both La_aarch64_regs and La_aarch64_retval are expanded to include both x8 and the full sized NEON V registers, as defined by the ABI. * dl_runtime_profile needed to extract registers saved by _dl_runtime_resolve and put them into the new correctly sized La_aarch64_regs structure. * The LAV_CURRENT check is change to only accept new audit modules to avoid the undefined behavior of not save/restore x8. * Different than other architectures, audit modules older than LAV_CURRENT are rejected (both La_aarch64_regs and La_aarch64_retval changed their layout and there are no requirements to support multiple audit interface with the inherent aarch64 issues). * A new field is also reserved on both La_aarch64_regs and La_aarch64_retval to support variant pcs symbols. Similar to x86, a new La_aarch64_vector type to represent the NEON register is added on the La_aarch64_regs (so each type can be accessed directly). Since LAV_CURRENT was already bumped to support bind-now, there is no need to increase it again. Checked on aarch64-linux-gnu. Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com> Reviewed-by: Carlos O'Donell <carlos@redhat.com> Tested-by: Carlos O'Donell <carlos@redhat.com> (cherry picked from commit ce9a68c57c260c8417afc93972849ac9ad243ec4) Resolved conflicts: NEWS elf/rtld.c
2022-01-24 13:46:18 +00:00
/* Check LD_AUDIT for aarch64 specific ABI.
Copyright (C) 2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <assert.h>
#include <link.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include "tst-audit27mod.h"
#define TEST_NAME "tst-audit27"
#define AUDIT27_COOKIE 0
unsigned int
la_version (unsigned int v)
{
return v;
}
unsigned int
la_objopen (struct link_map *map, Lmid_t lmid, uintptr_t *cookie)
{
const char *p = strrchr (map->l_name, '/');
const char *l_name = p == NULL ? map->l_name : p + 1;
uintptr_t ck = -1;
if (strncmp (l_name, TEST_NAME, strlen (TEST_NAME)) == 0)
ck = AUDIT27_COOKIE;
*cookie = ck;
printf ("objopen: %ld, %s [%ld]\n", lmid, l_name, ck);
return ck == -1 ? 0 : LA_FLG_BINDFROM | LA_FLG_BINDTO;
}
ElfW(Addr)
la_aarch64_gnu_pltenter (ElfW(Sym) *sym, unsigned int ndx, uintptr_t *refcook,
uintptr_t *defcook, La_aarch64_regs *regs,
unsigned int *flags, const char *symname,
long int *framesizep)
{
printf ("pltenter: symname=%s, st_value=%#lx, ndx=%u, flags=%u\n",
symname, (long int) sym->st_value, ndx, *flags);
if (strcmp (symname, "tst_audit27_func_float") == 0)
{
assert (regs->lr_vreg[0].s == FUNC_FLOAT_ARG0);
assert (regs->lr_vreg[1].s == FUNC_FLOAT_ARG1);
assert (regs->lr_vreg[2].s == FUNC_FLOAT_ARG2);
assert (regs->lr_vreg[3].s == FUNC_FLOAT_ARG3);
assert (regs->lr_vreg[4].s == FUNC_FLOAT_ARG4);
assert (regs->lr_vreg[5].s == FUNC_FLOAT_ARG5);
assert (regs->lr_vreg[6].s == FUNC_FLOAT_ARG6);
assert (regs->lr_vreg[7].s == FUNC_FLOAT_ARG7);
}
else if (strcmp (symname, "tst_audit27_func_double") == 0)
{
assert (regs->lr_vreg[0].d == FUNC_DOUBLE_ARG0);
assert (regs->lr_vreg[1].d == FUNC_DOUBLE_ARG1);
assert (regs->lr_vreg[2].d == FUNC_DOUBLE_ARG2);
assert (regs->lr_vreg[3].d == FUNC_DOUBLE_ARG3);
assert (regs->lr_vreg[4].d == FUNC_DOUBLE_ARG4);
assert (regs->lr_vreg[5].d == FUNC_DOUBLE_ARG5);
assert (regs->lr_vreg[6].d == FUNC_DOUBLE_ARG6);
assert (regs->lr_vreg[7].d == FUNC_DOUBLE_ARG7);
}
else if (strcmp (symname, "tst_audit27_func_ldouble") == 0)
{
assert (regs->lr_vreg[0].q == FUNC_LDOUBLE_ARG0);
assert (regs->lr_vreg[1].q == FUNC_LDOUBLE_ARG1);
assert (regs->lr_vreg[2].q == FUNC_LDOUBLE_ARG2);
assert (regs->lr_vreg[3].q == FUNC_LDOUBLE_ARG3);
assert (regs->lr_vreg[4].q == FUNC_LDOUBLE_ARG4);
assert (regs->lr_vreg[5].q == FUNC_LDOUBLE_ARG5);
assert (regs->lr_vreg[6].q == FUNC_LDOUBLE_ARG6);
assert (regs->lr_vreg[7].q == FUNC_LDOUBLE_ARG7);
}
else
abort ();
assert (regs->lr_vpcs == 0);
/* Clobber the q registers on exit. */
uint8_t v = 0xff;
asm volatile ("dup v0.8b, %w0" : : "r" (v) : "v0");
asm volatile ("dup v1.8b, %w0" : : "r" (v) : "v1");
asm volatile ("dup v2.8b, %w0" : : "r" (v) : "v2");
asm volatile ("dup v3.8b, %w0" : : "r" (v) : "v3");
asm volatile ("dup v4.8b, %w0" : : "r" (v) : "v4");
asm volatile ("dup v5.8b, %w0" : : "r" (v) : "v5");
asm volatile ("dup v6.8b, %w0" : : "r" (v) : "v6");
asm volatile ("dup v7.8b, %w0" : : "r" (v) : "v7");
*framesizep = 1024;
return sym->st_value;
}
unsigned int
la_aarch64_gnu_pltexit (ElfW(Sym) *sym, unsigned int ndx, uintptr_t *refcook,
uintptr_t *defcook,
const struct La_aarch64_regs *inregs,
struct La_aarch64_retval *outregs,
const char *symname)
{
printf ("pltexit: symname=%s, st_value=%#lx, ndx=%u\n",
symname, (long int) sym->st_value, ndx);
if (strcmp (symname, "tst_audit27_func_float") == 0)
{
assert (inregs->lr_vreg[0].s == FUNC_FLOAT_ARG0);
assert (inregs->lr_vreg[1].s == FUNC_FLOAT_ARG1);
assert (inregs->lr_vreg[2].s == FUNC_FLOAT_ARG2);
assert (inregs->lr_vreg[3].s == FUNC_FLOAT_ARG3);
assert (inregs->lr_vreg[4].s == FUNC_FLOAT_ARG4);
assert (inregs->lr_vreg[5].s == FUNC_FLOAT_ARG5);
assert (inregs->lr_vreg[6].s == FUNC_FLOAT_ARG6);
assert (inregs->lr_vreg[7].s == FUNC_FLOAT_ARG7);
assert (outregs->lrv_vreg[0].s == FUNC_FLOAT_RET);
}
else if (strcmp (symname, "tst_audit27_func_double") == 0)
{
assert (inregs->lr_vreg[0].d == FUNC_DOUBLE_ARG0);
assert (inregs->lr_vreg[1].d == FUNC_DOUBLE_ARG1);
assert (inregs->lr_vreg[2].d == FUNC_DOUBLE_ARG2);
assert (inregs->lr_vreg[3].d == FUNC_DOUBLE_ARG3);
assert (inregs->lr_vreg[4].d == FUNC_DOUBLE_ARG4);
assert (inregs->lr_vreg[5].d == FUNC_DOUBLE_ARG5);
assert (inregs->lr_vreg[6].d == FUNC_DOUBLE_ARG6);
assert (inregs->lr_vreg[7].d == FUNC_DOUBLE_ARG7);
assert (outregs->lrv_vreg[0].d == FUNC_DOUBLE_RET);
}
else if (strcmp (symname, "tst_audit27_func_ldouble") == 0)
{
assert (inregs->lr_vreg[0].q == FUNC_LDOUBLE_ARG0);
assert (inregs->lr_vreg[1].q == FUNC_LDOUBLE_ARG1);
assert (inregs->lr_vreg[2].q == FUNC_LDOUBLE_ARG2);
assert (inregs->lr_vreg[3].q == FUNC_LDOUBLE_ARG3);
assert (inregs->lr_vreg[4].q == FUNC_LDOUBLE_ARG4);
assert (inregs->lr_vreg[5].q == FUNC_LDOUBLE_ARG5);
assert (inregs->lr_vreg[6].q == FUNC_LDOUBLE_ARG6);
assert (inregs->lr_vreg[7].q == FUNC_LDOUBLE_ARG7);
assert (outregs->lrv_vreg[0].q == FUNC_LDOUBLE_RET);
}
else
abort ();
assert (inregs->lr_vpcs == 0);
assert (outregs->lrv_vpcs == 0);
/* Clobber the q registers on exit. */
uint8_t v = 0xff;
asm volatile ("dup v0.8b, %w0" : : "r" (v) : "v0");
asm volatile ("dup v1.8b, %w0" : : "r" (v) : "v1");
asm volatile ("dup v2.8b, %w0" : : "r" (v) : "v2");
asm volatile ("dup v3.8b, %w0" : : "r" (v) : "v3");
asm volatile ("dup v4.8b, %w0" : : "r" (v) : "v4");
asm volatile ("dup v5.8b, %w0" : : "r" (v) : "v5");
asm volatile ("dup v6.8b, %w0" : : "r" (v) : "v6");
asm volatile ("dup v7.8b, %w0" : : "r" (v) : "v7");
return 0;
}