glibc/sysdeps/x86_64/multiarch/strrchr-evex.S

395 lines
9.4 KiB
ArmAsm
Raw Normal View History

/* strrchr/wcsrchr optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
# include <sysdep.h>
# ifndef STRRCHR
# define STRRCHR __strrchr_evex
# endif
# include "x86-evex256-vecs.h"
# ifdef USE_AS_WCSRCHR
# define SHIFT_REG rsi
# define kunpck_2x kunpckbw
# define kmov_2x kmovd
# define maskz_2x ecx
# define maskm_2x eax
# define CHAR_SIZE 4
# define VPMIN vpminud
# define VPTESTN vptestnmd
# define VPTEST vptestmd
# define VPBROADCAST vpbroadcastd
# define VPCMPEQ vpcmpeqd
# define VPCMP vpcmpd
# define USE_WIDE_CHAR
# else
# define SHIFT_REG rdi
# define kunpck_2x kunpckdq
# define kmov_2x kmovq
# define maskz_2x rcx
# define maskm_2x rax
# define CHAR_SIZE 1
# define VPMIN vpminub
# define VPTESTN vptestnmb
# define VPTEST vptestmb
# define VPBROADCAST vpbroadcastb
# define VPCMPEQ vpcmpeqb
# define VPCMP vpcmpb
# endif
# include "reg-macros.h"
# define VMATCH VMM(0)
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
# define PAGE_SIZE 4096
.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN(STRRCHR, 6)
movl %edi, %eax
/* Broadcast CHAR to VMATCH. */
VPBROADCAST %esi, %VMATCH
andl $(PAGE_SIZE - 1), %eax
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
jg L(cross_page_boundary)
L(page_cross_continue):
VMOVU (%rdi), %VMM(1)
/* k0 has a 1 for each zero CHAR in VEC(1). */
VPTESTN %VMM(1), %VMM(1), %k0
KMOV %k0, %VRSI
test %VRSI, %VRSI
jz L(aligned_more)
/* fallthrough: zero CHAR in first VEC. */
/* K1 has a 1 for each search CHAR match in VEC(1). */
VPCMPEQ %VMATCH, %VMM(1), %k1
KMOV %k1, %VRAX
/* Build mask up until first zero CHAR (used to mask of
potential search CHAR matches past the end of the string).
*/
blsmsk %VRSI, %VRSI
and %VRSI, %VRAX
jz L(ret0)
/* Get last match (the `and` removed any out of bounds matches).
*/
bsr %VRAX, %VRAX
# ifdef USE_AS_WCSRCHR
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
L(ret0):
ret
/* Returns for first vec x1/x2/x3 have hard coded backward
search path for earlier matches. */
.p2align 4,, 6
L(first_vec_x1):
VPCMPEQ %VMATCH, %VMM(2), %k1
KMOV %k1, %VRAX
blsmsk %VRCX, %VRCX
/* eax non-zero if search CHAR in range. */
and %VRCX, %VRAX
jnz L(first_vec_x1_return)
/* fallthrough: no match in VEC(2) then need to check for
earlier matches (in VEC(1)). */
.p2align 4,, 4
L(first_vec_x0_test):
VPCMPEQ %VMATCH, %VMM(1), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jz L(ret1)
bsr %VRAX, %VRAX
# ifdef USE_AS_WCSRCHR
leaq (%rsi, %rax, CHAR_SIZE), %rax
# else
addq %rsi, %rax
# endif
L(ret1):
ret
.p2align 4,, 10
L(first_vec_x1_or_x2):
VPCMPEQ %VMM(3), %VMATCH, %k3
VPCMPEQ %VMM(2), %VMATCH, %k2
/* K2 and K3 have 1 for any search CHAR match. Test if any
matches between either of them. Otherwise check VEC(1). */
KORTEST %k2, %k3
jz L(first_vec_x0_test)
/* Guranteed that VEC(2) and VEC(3) are within range so merge
the two bitmasks then get last result. */
kunpck_2x %k2, %k3, %k3
kmov_2x %k3, %maskm_2x
bsr %maskm_2x, %maskm_2x
leaq (VEC_SIZE * 1)(%r8, %rax, CHAR_SIZE), %rax
ret
.p2align 4,, 7
L(first_vec_x3):
VPCMPEQ %VMATCH, %VMM(4), %k1
KMOV %k1, %VRAX
blsmsk %VRCX, %VRCX
/* If no search CHAR match in range check VEC(1)/VEC(2)/VEC(3).
*/
and %VRCX, %VRAX
jz L(first_vec_x1_or_x2)
bsr %VRAX, %VRAX
leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4,, 6
L(first_vec_x0_x1_test):
VPCMPEQ %VMATCH, %VMM(2), %k1
KMOV %k1, %VRAX
/* Check VEC(2) for last match first. If no match try VEC(1).
*/
test %VRAX, %VRAX
jz L(first_vec_x0_test)
.p2align 4,, 4
L(first_vec_x1_return):
bsr %VRAX, %VRAX
leaq (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4,, 10
L(first_vec_x2):
VPCMPEQ %VMATCH, %VMM(3), %k1
KMOV %k1, %VRAX
blsmsk %VRCX, %VRCX
/* Check VEC(3) for last match first. If no match try
VEC(2)/VEC(1). */
and %VRCX, %VRAX
jz L(first_vec_x0_x1_test)
bsr %VRAX, %VRAX
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4,, 12
L(aligned_more):
/* Need to keep original pointer incase VEC(1) has last match.
*/
movq %rdi, %rsi
andq $-VEC_SIZE, %rdi
VMOVU VEC_SIZE(%rdi), %VMM(2)
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x1)
VMOVU (VEC_SIZE * 2)(%rdi), %VMM(3)
VPTESTN %VMM(3), %VMM(3), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x2)
VMOVU (VEC_SIZE * 3)(%rdi), %VMM(4)
VPTESTN %VMM(4), %VMM(4), %k0
KMOV %k0, %VRCX
movq %rdi, %r8
test %VRCX, %VRCX
jnz L(first_vec_x3)
andq $-(VEC_SIZE * 2), %rdi
.p2align 4,, 10
L(first_aligned_loop):
/* Preserve VEC(1), VEC(2), VEC(3), and VEC(4) until we can
gurantee they don't store a match. */
VMOVA (VEC_SIZE * 4)(%rdi), %VMM(5)
VMOVA (VEC_SIZE * 5)(%rdi), %VMM(6)
VPCMPEQ %VMM(5), %VMATCH, %k2
vpxord %VMM(6), %VMATCH, %VMM(7)
VPMIN %VMM(5), %VMM(6), %VMM(8)
VPMIN %VMM(8), %VMM(7), %VMM(7)
VPTESTN %VMM(7), %VMM(7), %k1
subq $(VEC_SIZE * -2), %rdi
KORTEST %k1, %k2
jz L(first_aligned_loop)
VPCMPEQ %VMM(6), %VMATCH, %k3
VPTESTN %VMM(8), %VMM(8), %k1
/* If k1 is zero, then we found a CHAR match but no null-term.
We can now safely throw out VEC1-4. */
KTEST %k1, %k1
jz L(second_aligned_loop_prep)
KORTEST %k2, %k3
jnz L(return_first_aligned_loop)
.p2align 4,, 6
L(first_vec_x1_or_x2_or_x3):
VPCMPEQ %VMM(4), %VMATCH, %k4
KMOV %k4, %VRAX
bsr %VRAX, %VRAX
jz L(first_vec_x1_or_x2)
leaq (VEC_SIZE * 3)(%r8, %rax, CHAR_SIZE), %rax
ret
.p2align 4,, 8
L(return_first_aligned_loop):
VPTESTN %VMM(5), %VMM(5), %k0
/* Combined results from VEC5/6. */
kunpck_2x %k0, %k1, %k0
kmov_2x %k0, %maskz_2x
blsmsk %maskz_2x, %maskz_2x
kunpck_2x %k2, %k3, %k3
kmov_2x %k3, %maskm_2x
and %maskz_2x, %maskm_2x
jz L(first_vec_x1_or_x2_or_x3)
bsr %maskm_2x, %maskm_2x
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
/* We can throw away the work done for the first 4x checks here
as we have a later match. This is the 'fast' path persay.
*/
L(second_aligned_loop_prep):
L(second_aligned_loop_set_furthest_match):
movq %rdi, %rsi
/* Ideally we would safe k2/k3 but `kmov/kunpck` take uops on
port0 and have noticable overhead in the loop. */
VMOVA %VMM(5), %VMM(7)
VMOVA %VMM(6), %VMM(8)
.p2align 4
L(second_aligned_loop):
VMOVU (VEC_SIZE * 4)(%rdi), %VMM(5)
VMOVU (VEC_SIZE * 5)(%rdi), %VMM(6)
VPCMPEQ %VMM(5), %VMATCH, %k2
vpxord %VMM(6), %VMATCH, %VMM(3)
VPMIN %VMM(5), %VMM(6), %VMM(4)
VPMIN %VMM(3), %VMM(4), %VMM(3)
VPTESTN %VMM(3), %VMM(3), %k1
subq $(VEC_SIZE * -2), %rdi
KORTEST %k1, %k2
jz L(second_aligned_loop)
VPCMPEQ %VMM(6), %VMATCH, %k3
VPTESTN %VMM(4), %VMM(4), %k1
KTEST %k1, %k1
jz L(second_aligned_loop_set_furthest_match)
/* branch here because we know we have a match in VEC7/8 but
might not in VEC5/6 so the latter is expected to be less
likely. */
KORTEST %k2, %k3
jnz L(return_new_match)
L(return_old_match):
VPCMPEQ %VMM(8), %VMATCH, %k0
KMOV %k0, %VRCX
bsr %VRCX, %VRCX
jnz L(return_old_match_ret)
VPCMPEQ %VMM(7), %VMATCH, %k0
KMOV %k0, %VRCX
bsr %VRCX, %VRCX
subq $VEC_SIZE, %rsi
L(return_old_match_ret):
leaq (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %rax
ret
.p2align 4,, 10
L(return_new_match):
VPTESTN %VMM(5), %VMM(5), %k0
/* Combined results from VEC5/6. */
kunpck_2x %k0, %k1, %k0
kmov_2x %k0, %maskz_2x
blsmsk %maskz_2x, %maskz_2x
kunpck_2x %k2, %k3, %k3
kmov_2x %k3, %maskm_2x
/* Match at end was out-of-bounds so use last known match. */
and %maskz_2x, %maskm_2x
jz L(return_old_match)
bsr %maskm_2x, %maskm_2x
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
L(cross_page_boundary):
/* eax contains all the page offset bits of src (rdi). `xor rdi,
rax` sets pointer will all page offset bits cleared so
offset of (PAGE_SIZE - VEC_SIZE) will get last aligned VEC
before page cross (guranteed to be safe to read). Doing this
as opposed to `movq %rdi, %rax; andq $-VEC_SIZE, %rax` saves
a bit of code size. */
xorq %rdi, %rax
VMOVU (PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1)
VPTESTN %VMM(1), %VMM(1), %k0
KMOV %k0, %VRCX
/* Shift out zero CHAR matches that are before the begining of
src (rdi). */
# ifdef USE_AS_WCSRCHR
movl %edi, %esi
andl $(VEC_SIZE - 1), %esi
shrl $2, %esi
# endif
shrx %VGPR(SHIFT_REG), %VRCX, %VRCX
test %VRCX, %VRCX
jz L(page_cross_continue)
/* Found zero CHAR so need to test for search CHAR. */
VPCMP $0, %VMATCH, %VMM(1), %k1
KMOV %k1, %VRAX
/* Shift out search CHAR matches that are before the begining of
src (rdi). */
shrx %VGPR(SHIFT_REG), %VRAX, %VRAX
/* Check if any search CHAR match in range. */
blsmsk %VRCX, %VRCX
and %VRCX, %VRAX
jz L(ret3)
bsr %VRAX, %VRAX
# ifdef USE_AS_WCSRCHR
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
L(ret3):
ret
END(STRRCHR)
#endif