mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-23 19:30:10 +00:00
Consolidate multiple precision sin/cos functions
This commit is contained in:
parent
7602d070dc
commit
09544cbcd6
27
ChangeLog
27
ChangeLog
@ -1,3 +1,30 @@
|
||||
2013-10-08 Siddhesh Poyarekar <siddhesh@redhat.com>
|
||||
|
||||
* sysdeps/generic/math_private.h (__mpsin1): Remove
|
||||
declaration.
|
||||
(__mpcos1): Likewise.
|
||||
(__mpsin): New argument __range_reduce.
|
||||
(__mpcos): Likewise.
|
||||
* sysdeps/ieee754/dbl-64/s_sin.c: Likewise.
|
||||
(slow): Use __mpsin and __mpcos.
|
||||
(slow1): Likewise.
|
||||
(slow2): Likewise.
|
||||
(sloww): Likewise.
|
||||
(sloww1): Likewise.
|
||||
(sloww2): Likewise.
|
||||
(bsloww): Likewise.
|
||||
(bsloww1): Likewise.
|
||||
(bsloww2): Likewise.
|
||||
(cslow2): Likewise.
|
||||
(csloww): Likewise.
|
||||
(csloww1): Likewise.
|
||||
(csloww2): Likewise.
|
||||
* sysdeps/ieee754/dbl-64/sincos32.c (__mpsin): Add argument
|
||||
range_reduce. Merge in __mpsin1.
|
||||
(__mpcos): Likewise.
|
||||
(__mpsin1): Remove.
|
||||
(__mpcos1): Likewise.
|
||||
|
||||
2013-10-07 Joseph Myers <joseph@codesourcery.com>
|
||||
|
||||
* locale/loadlocale.c (_nl_intern_locale_data): Use
|
||||
|
@ -356,10 +356,8 @@ extern void __dubcos (double __x, double __dx, double __v[]);
|
||||
extern double __halfulp (double __x, double __y);
|
||||
extern double __sin32 (double __x, double __res, double __res1);
|
||||
extern double __cos32 (double __x, double __res, double __res1);
|
||||
extern double __mpsin (double __x, double __dx);
|
||||
extern double __mpcos (double __x, double __dx);
|
||||
extern double __mpsin1 (double __x);
|
||||
extern double __mpcos1 (double __x);
|
||||
extern double __mpsin (double __x, double __dx, bool __range_reduce);
|
||||
extern double __mpcos (double __x, double __dx, bool __range_reduce);
|
||||
extern double __slowexp (double __x);
|
||||
extern double __slowpow (double __x, double __y, double __z);
|
||||
extern void __docos (double __x, double __dx, double __v[]);
|
||||
|
@ -127,10 +127,8 @@ static const double
|
||||
|
||||
void __dubsin (double x, double dx, double w[]);
|
||||
void __docos (double x, double dx, double w[]);
|
||||
double __mpsin (double x, double dx);
|
||||
double __mpcos (double x, double dx);
|
||||
double __mpsin1 (double x);
|
||||
double __mpcos1 (double x);
|
||||
double __mpsin (double x, double dx, bool reduce_range);
|
||||
double __mpcos (double x, double dx, bool reduce_range);
|
||||
static double slow (double x);
|
||||
static double slow1 (double x);
|
||||
static double slow2 (double x);
|
||||
@ -722,7 +720,7 @@ slow (double x)
|
||||
if (w[0] == w[0] + 1.000000001 * w[1])
|
||||
return (x > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return (x > 0) ? __mpsin (x, 0) : -__mpsin (-x, 0);
|
||||
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -762,7 +760,7 @@ slow1 (double x)
|
||||
if (w[0] == w[0] + 1.000000005 * w[1])
|
||||
return (x > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return (x > 0) ? __mpsin (x, 0) : -__mpsin (-x, 0);
|
||||
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -815,7 +813,7 @@ slow2 (double x)
|
||||
if (w[0] == w[0] + 1.000000005 * w[1])
|
||||
return (x > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return (x > 0) ? __mpsin (x, 0) : -__mpsin (-x, 0);
|
||||
return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -882,7 +880,7 @@ sloww (double x, double dx, double orig)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (a > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return __mpsin1 (orig);
|
||||
return __mpsin (orig, 0, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -939,7 +937,7 @@ sloww1 (double x, double dx, double orig)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (x > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return __mpsin1 (orig);
|
||||
return __mpsin (orig, 0, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -996,7 +994,7 @@ sloww2 (double x, double dx, double orig, int n)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (n & 2) ? -w[0] : w[0];
|
||||
else
|
||||
return __mpsin1 (orig);
|
||||
return __mpsin (orig, 0, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1028,7 +1026,7 @@ bsloww (double x, double dx, double orig, int n)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (x > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return (n & 1) ? __mpcos1 (orig) : __mpsin1 (orig);
|
||||
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1079,7 +1077,7 @@ bsloww1 (double x, double dx, double orig, int n)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (x > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return (n & 1) ? __mpcos1 (orig) : __mpsin1 (orig);
|
||||
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1131,7 +1129,7 @@ bsloww2 (double x, double dx, double orig, int n)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (n & 2) ? -w[0] : w[0];
|
||||
else
|
||||
return (n & 1) ? __mpsin1 (orig) : __mpcos1 (orig);
|
||||
return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1173,7 +1171,7 @@ cslow2 (double x)
|
||||
if (w[0] == w[0] + 1.000000005 * w[1])
|
||||
return w[0];
|
||||
else
|
||||
return __mpcos (x, 0);
|
||||
return __mpcos (x, 0, false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1246,7 +1244,7 @@ csloww (double x, double dx, double orig)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (a > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return __mpcos1 (orig);
|
||||
return __mpcos (orig, 0, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1301,7 +1299,7 @@ csloww1 (double x, double dx, double orig)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (x > 0) ? w[0] : -w[0];
|
||||
else
|
||||
return __mpcos1 (orig);
|
||||
return __mpcos (orig, 0, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1357,7 +1355,7 @@ csloww2 (double x, double dx, double orig, int n)
|
||||
if (w[0] == w[0] + cor)
|
||||
return (n) ? -w[0] : w[0];
|
||||
else
|
||||
return __mpcos1 (orig);
|
||||
return __mpcos (orig, 0, true);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -187,50 +187,119 @@ __cos32 (double x, double res, double res1)
|
||||
return (res < res1) ? res : res1;
|
||||
}
|
||||
|
||||
/* Compute sin(x+dx) as Multi Precision number and return result as double. */
|
||||
/* Compute sin() of double-length number (X + DX) as Multi Precision number and
|
||||
return result as double. If REDUCE_RANGE is true, X is assumed to be the
|
||||
original input and DX is ignored. */
|
||||
double
|
||||
SECTION
|
||||
__mpsin (double x, double dx)
|
||||
__mpsin (double x, double dx, bool reduce_range)
|
||||
{
|
||||
int p;
|
||||
double y;
|
||||
mp_no a, b, c;
|
||||
p = 32;
|
||||
__dbl_mp (x, &a, p);
|
||||
__dbl_mp (dx, &b, p);
|
||||
__add (&a, &b, &c, p);
|
||||
if (x > 0.8)
|
||||
mp_no a, b, c, s;
|
||||
int n;
|
||||
int p = 32;
|
||||
|
||||
if (reduce_range)
|
||||
{
|
||||
__sub (&hp, &c, &a, p);
|
||||
__c32 (&a, &b, &c, p);
|
||||
n = __mpranred (x, &a, p); /* n is 0, 1, 2 or 3. */
|
||||
__c32 (&a, &c, &s, p);
|
||||
}
|
||||
else
|
||||
__c32 (&c, &a, &b, p); /* b = sin(x+dx) */
|
||||
__mp_dbl (&b, &y, p);
|
||||
{
|
||||
n = -1;
|
||||
__dbl_mp (x, &b, p);
|
||||
__dbl_mp (dx, &c, p);
|
||||
__add (&b, &c, &a, p);
|
||||
if (x > 0.8)
|
||||
{
|
||||
__sub (&hp, &a, &b, p);
|
||||
__c32 (&b, &s, &c, p);
|
||||
}
|
||||
else
|
||||
__c32 (&a, &c, &s, p); /* b = sin(x+dx) */
|
||||
}
|
||||
|
||||
/* Convert result based on which quarter of unit circle y is in. */
|
||||
switch (n)
|
||||
{
|
||||
case 1:
|
||||
__mp_dbl (&c, &y, p);
|
||||
break;
|
||||
|
||||
case 3:
|
||||
__mp_dbl (&c, &y, p);
|
||||
y = -y;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
__mp_dbl (&s, &y, p);
|
||||
y = -y;
|
||||
break;
|
||||
|
||||
/* Quadrant not set, so the result must be sin (X + DX), which is also in
|
||||
S. */
|
||||
case 0:
|
||||
default:
|
||||
__mp_dbl (&s, &y, p);
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
||||
/* Compute cos() of double-length number (x+dx) as Multi Precision number and
|
||||
return result as double. */
|
||||
/* Compute cos() of double-length number (X + DX) as Multi Precision number and
|
||||
return result as double. If REDUCE_RANGE is true, X is assumed to be the
|
||||
original input and DX is ignored. */
|
||||
double
|
||||
SECTION
|
||||
__mpcos (double x, double dx)
|
||||
__mpcos (double x, double dx, bool reduce_range)
|
||||
{
|
||||
int p;
|
||||
double y;
|
||||
mp_no a, b, c;
|
||||
p = 32;
|
||||
__dbl_mp (x, &a, p);
|
||||
__dbl_mp (dx, &b, p);
|
||||
__add (&a, &b, &c, p);
|
||||
if (x > 0.8)
|
||||
mp_no a, b, c, s;
|
||||
int n;
|
||||
int p = 32;
|
||||
|
||||
if (reduce_range)
|
||||
{
|
||||
__sub (&hp, &c, &b, p);
|
||||
__c32 (&b, &c, &a, p);
|
||||
n = __mpranred (x, &a, p); /* n is 0, 1, 2 or 3. */
|
||||
__c32 (&a, &c, &s, p);
|
||||
}
|
||||
else
|
||||
__c32 (&c, &a, &b, p); /* a = cos(x+dx) */
|
||||
__mp_dbl (&a, &y, p);
|
||||
{
|
||||
n = -1;
|
||||
__dbl_mp (x, &b, p);
|
||||
__dbl_mp (dx, &c, p);
|
||||
__add (&b, &c, &a, p);
|
||||
if (x > 0.8)
|
||||
{
|
||||
__sub (&hp, &a, &b, p);
|
||||
__c32 (&b, &s, &c, p);
|
||||
}
|
||||
else
|
||||
__c32 (&a, &c, &s, p); /* a = cos(x+dx) */
|
||||
}
|
||||
|
||||
/* Convert result based on which quarter of unit circle y is in. */
|
||||
switch (n)
|
||||
{
|
||||
case 1:
|
||||
__mp_dbl (&s, &y, p);
|
||||
y = -y;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
__mp_dbl (&s, &y, p);
|
||||
break;
|
||||
|
||||
case 2:
|
||||
__mp_dbl (&c, &y, p);
|
||||
y = -y;
|
||||
break;
|
||||
|
||||
/* Quadrant not set, so the result must be cos (X + DX), which is also
|
||||
stored in C. */
|
||||
case 0:
|
||||
default:
|
||||
__mp_dbl (&c, &y, p);
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
||||
@ -294,84 +363,3 @@ __mpranred (double x, mp_no *y, int p)
|
||||
return (n & 3);
|
||||
}
|
||||
}
|
||||
|
||||
/* Multi-Precision sin() function subroutine, for p = 32. It is based on the
|
||||
routines mpranred() and c32(). */
|
||||
double
|
||||
SECTION
|
||||
__mpsin1 (double x)
|
||||
{
|
||||
int p;
|
||||
int n;
|
||||
mp_no u, s, c;
|
||||
double y;
|
||||
p = 32;
|
||||
n = __mpranred (x, &u, p); /* n is 0, 1, 2 or 3. */
|
||||
__c32 (&u, &c, &s, p);
|
||||
/* Convert result based on which quarter of unit circle y is in. */
|
||||
switch (n)
|
||||
{
|
||||
case 0:
|
||||
__mp_dbl (&s, &y, p);
|
||||
return y;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
__mp_dbl (&s, &y, p);
|
||||
return -y;
|
||||
break;
|
||||
|
||||
case 1:
|
||||
__mp_dbl (&c, &y, p);
|
||||
return y;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
__mp_dbl (&c, &y, p);
|
||||
return -y;
|
||||
break;
|
||||
}
|
||||
/* Unreachable, to make the compiler happy. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Multi-Precision cos() function subroutine, for p = 32. It is based on the
|
||||
routines mpranred() and c32(). */
|
||||
double
|
||||
SECTION
|
||||
__mpcos1 (double x)
|
||||
{
|
||||
int p;
|
||||
int n;
|
||||
mp_no u, s, c;
|
||||
double y;
|
||||
|
||||
p = 32;
|
||||
n = __mpranred (x, &u, p); /* n is 0, 1, 2 or 3. */
|
||||
__c32 (&u, &c, &s, p);
|
||||
/* Convert result based on which quarter of unit circle y is in. */
|
||||
switch (n)
|
||||
{
|
||||
case 0:
|
||||
__mp_dbl (&c, &y, p);
|
||||
return y;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
__mp_dbl (&c, &y, p);
|
||||
return -y;
|
||||
break;
|
||||
|
||||
case 1:
|
||||
__mp_dbl (&s, &y, p);
|
||||
return -y;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
__mp_dbl (&s, &y, p);
|
||||
return y;
|
||||
break;
|
||||
}
|
||||
/* Unreachable, to make the compiler happy. */
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user