mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-11 07:40:05 +00:00
Format e_log.c
This commit is contained in:
parent
e57b0c6100
commit
0f6a8d4b0b
@ -1,3 +1,7 @@
|
||||
2013-03-29 Siddhesh Poyarekar <siddhesh@redhat.com>
|
||||
|
||||
* sysdeps/ieee754/dbl-64/e_log.c: Fix formatting.
|
||||
|
||||
2013-03-28 Roland McGrath <roland@hack.frob.com>
|
||||
|
||||
* include/stdlib.h [!SHARED] (__call_tls_dtors):
|
||||
|
@ -44,7 +44,7 @@
|
||||
# define SECTION
|
||||
#endif
|
||||
|
||||
void __mplog(mp_no *, mp_no *, int);
|
||||
void __mplog (mp_no *, mp_no *, int);
|
||||
|
||||
/*********************************************************************/
|
||||
/* An ultimate log routine. Given an IEEE double machine number x */
|
||||
@ -52,163 +52,201 @@ void __mplog(mp_no *, mp_no *, int);
|
||||
/*********************************************************************/
|
||||
double
|
||||
SECTION
|
||||
__ieee754_log(double x) {
|
||||
__ieee754_log (double x)
|
||||
{
|
||||
#define M 4
|
||||
static const int pr[M]={8,10,18,32};
|
||||
int i,j,n,ux,dx,p;
|
||||
double dbl_n,u,p0,q,r0,w,nln2a,luai,lubi,lvaj,lvbj,
|
||||
sij,ssij,ttij,A,B,B0,y,y1,y2,polI,polII,sa,sb,
|
||||
t1,t2,t7,t8,t,ra,rb,ww,
|
||||
a0,aa0,s1,s2,ss2,s3,ss3,a1,aa1,a,aa,b,bb,c;
|
||||
static const int pr[M] = {8, 10, 18, 32};
|
||||
int i, j, n, ux, dx, p;
|
||||
double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
|
||||
sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb,
|
||||
t1, t2, t7, t8, t, ra, rb, ww,
|
||||
a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c;
|
||||
#ifndef DLA_FMS
|
||||
double t3,t4,t5,t6;
|
||||
double t3, t4, t5, t6;
|
||||
#endif
|
||||
number num;
|
||||
mp_no mpx,mpy,mpy1,mpy2,mperr;
|
||||
mp_no mpx, mpy, mpy1, mpy2, mperr;
|
||||
|
||||
#include "ulog.tbl"
|
||||
#include "ulog.h"
|
||||
|
||||
/* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
|
||||
|
||||
num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
|
||||
n=0;
|
||||
if (__builtin_expect(ux < 0x00100000, 0)) {
|
||||
if (__builtin_expect(((ux & 0x7fffffff) | dx) == 0, 0))
|
||||
return MHALF/ZERO; /* return -INF */
|
||||
if (__builtin_expect(ux < 0, 0))
|
||||
return (x-x)/ZERO; /* return NaN */
|
||||
n -= 54; x *= two54.d; /* scale x */
|
||||
num.d = x;
|
||||
}
|
||||
if (__builtin_expect(ux >= 0x7ff00000, 0))
|
||||
return x+x; /* INF or NaN */
|
||||
num.d = x;
|
||||
ux = num.i[HIGH_HALF];
|
||||
dx = num.i[LOW_HALF];
|
||||
n = 0;
|
||||
if (__builtin_expect (ux < 0x00100000, 0))
|
||||
{
|
||||
if (__builtin_expect (((ux & 0x7fffffff) | dx) == 0, 0))
|
||||
return MHALF / ZERO; /* return -INF */
|
||||
if (__builtin_expect (ux < 0, 0))
|
||||
return (x - x) / ZERO; /* return NaN */
|
||||
n -= 54;
|
||||
x *= two54.d; /* scale x */
|
||||
num.d = x;
|
||||
}
|
||||
if (__builtin_expect (ux >= 0x7ff00000, 0))
|
||||
return x + x; /* INF or NaN */
|
||||
|
||||
/* Regular values of x */
|
||||
|
||||
w = x-ONE;
|
||||
if (__builtin_expect(ABS(w) > U03, 1)) { goto case_03; }
|
||||
|
||||
w = x - ONE;
|
||||
if (__builtin_expect (ABS (w) > U03, 1))
|
||||
goto case_03;
|
||||
|
||||
/*--- Stage I, the case abs(x-1) < 0.03 */
|
||||
|
||||
t8 = MHALF*w;
|
||||
EMULV(t8,w,a,aa,t1,t2,t3,t4,t5)
|
||||
EADD(w,a,b,bb)
|
||||
|
||||
t8 = MHALF * w;
|
||||
EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
|
||||
EADD (w, a, b, bb);
|
||||
/* Evaluate polynomial II */
|
||||
polII = (b0.d+w*(b1.d+w*(b2.d+w*(b3.d+w*(b4.d+
|
||||
w*(b5.d+w*(b6.d+w*(b7.d+w*b8.d))))))))*w*w*w;
|
||||
c = (aa+bb)+polII;
|
||||
polII = b7.d + w * b8.d;
|
||||
polII = b6.d + w * polII;
|
||||
polII = b5.d + w * polII;
|
||||
polII = b4.d + w * polII;
|
||||
polII = b3.d + w * polII;
|
||||
polII = b2.d + w * polII;
|
||||
polII = b1.d + w * polII;
|
||||
polII = b0.d + w * polII;
|
||||
polII *= w * w * w;
|
||||
c = (aa + bb) + polII;
|
||||
|
||||
/* End stage I, case abs(x-1) < 0.03 */
|
||||
if ((y=b+(c+b*E2)) == b+(c-b*E2)) return y;
|
||||
if ((y = b + (c + b * E2)) == b + (c - b * E2))
|
||||
return y;
|
||||
|
||||
/*--- Stage II, the case abs(x-1) < 0.03 */
|
||||
|
||||
a = d11.d+w*(d12.d+w*(d13.d+w*(d14.d+w*(d15.d+w*(d16.d+
|
||||
w*(d17.d+w*(d18.d+w*(d19.d+w*d20.d))))))));
|
||||
EMULV(w,a,s2,ss2,t1,t2,t3,t4,t5)
|
||||
ADD2(d10.d,dd10.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d9.d,dd9.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d8.d,dd8.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d7.d,dd7.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d6.d,dd6.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d5.d,dd5.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d4.d,dd4.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d3.d,dd3.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(d2.d,dd2.d,s2,ss2,s3,ss3,t1,t2)
|
||||
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
MUL2(w,ZERO,s2,ss2,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(w,ZERO, s3,ss3, b, bb,t1,t2)
|
||||
a = d19.d + w * d20.d;
|
||||
a = d18.d + w * a;
|
||||
a = d17.d + w * a;
|
||||
a = d16.d + w * a;
|
||||
a = d15.d + w * a;
|
||||
a = d14.d + w * a;
|
||||
a = d13.d + w * a;
|
||||
a = d12.d + w * a;
|
||||
a = d11.d + w * a;
|
||||
|
||||
EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5);
|
||||
ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2);
|
||||
MUL2 (w, ZERO, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
MUL2 (w, ZERO, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (w, ZERO, s3, ss3, b, bb, t1, t2);
|
||||
|
||||
/* End stage II, case abs(x-1) < 0.03 */
|
||||
if ((y=b+(bb+b*E4)) == b+(bb-b*E4)) return y;
|
||||
if ((y = b + (bb + b * E4)) == b + (bb - b * E4))
|
||||
return y;
|
||||
goto stage_n;
|
||||
|
||||
/*--- Stage I, the case abs(x-1) > 0.03 */
|
||||
case_03:
|
||||
case_03:
|
||||
|
||||
/* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
|
||||
n += (num.i[HIGH_HALF] >> 20) - 1023;
|
||||
num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
|
||||
if (num.d > SQRT_2) { num.d *= HALF; n++; }
|
||||
u = num.d; dbl_n = (double) n;
|
||||
if (num.d > SQRT_2)
|
||||
{
|
||||
num.d *= HALF;
|
||||
n++;
|
||||
}
|
||||
u = num.d;
|
||||
dbl_n = (double) n;
|
||||
|
||||
/* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
|
||||
num.d += h1.d;
|
||||
i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
|
||||
|
||||
/* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
|
||||
num.d = u*Iu[i].d + h2.d;
|
||||
num.d = u * Iu[i].d + h2.d;
|
||||
j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
|
||||
|
||||
/* Compute w=(u-ui*vj)/(ui*vj) */
|
||||
p0=(ONE+(i-75)*DEL_U)*(ONE+(j-180)*DEL_V);
|
||||
q=u-p0; r0=Iu[i].d*Iv[j].d; w=q*r0;
|
||||
p0 = (ONE + (i - 75) * DEL_U) * (ONE + (j - 180) * DEL_V);
|
||||
q = u - p0;
|
||||
r0 = Iu[i].d * Iv[j].d;
|
||||
w = q * r0;
|
||||
|
||||
/* Evaluate polynomial I */
|
||||
polI = w+(a2.d+a3.d*w)*w*w;
|
||||
polI = w + (a2.d + a3.d * w) * w * w;
|
||||
|
||||
/* Add up everything */
|
||||
nln2a = dbl_n*LN2A;
|
||||
luai = Lu[i][0].d; lubi = Lu[i][1].d;
|
||||
lvaj = Lv[j][0].d; lvbj = Lv[j][1].d;
|
||||
EADD(luai,lvaj,sij,ssij)
|
||||
EADD(nln2a,sij,A ,ttij)
|
||||
B0 = (((lubi+lvbj)+ssij)+ttij)+dbl_n*LN2B;
|
||||
B = polI+B0;
|
||||
nln2a = dbl_n * LN2A;
|
||||
luai = Lu[i][0].d;
|
||||
lubi = Lu[i][1].d;
|
||||
lvaj = Lv[j][0].d;
|
||||
lvbj = Lv[j][1].d;
|
||||
EADD (luai, lvaj, sij, ssij);
|
||||
EADD (nln2a, sij, A, ttij);
|
||||
B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
|
||||
B = polI + B0;
|
||||
|
||||
/* End stage I, case abs(x-1) >= 0.03 */
|
||||
if ((y=A+(B+E1)) == A+(B-E1)) return y;
|
||||
if ((y = A + (B + E1)) == A + (B - E1))
|
||||
return y;
|
||||
|
||||
|
||||
/*--- Stage II, the case abs(x-1) > 0.03 */
|
||||
|
||||
/* Improve the accuracy of r0 */
|
||||
EMULV(p0,r0,sa,sb,t1,t2,t3,t4,t5)
|
||||
t=r0*((ONE-sa)-sb);
|
||||
EADD(r0,t,ra,rb)
|
||||
EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5);
|
||||
t = r0 * ((ONE - sa) - sb);
|
||||
EADD (r0, t, ra, rb);
|
||||
|
||||
/* Compute w */
|
||||
MUL2(q,ZERO,ra,rb,w,ww,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
MUL2 (q, ZERO, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
|
||||
EADD(A,B0,a0,aa0)
|
||||
EADD (A, B0, a0, aa0);
|
||||
|
||||
/* Evaluate polynomial III */
|
||||
s1 = (c3.d+(c4.d+c5.d*w)*w)*w;
|
||||
EADD(c2.d,s1,s2,ss2)
|
||||
MUL2(s2,ss2,w,ww,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
MUL2(s3,ss3,w,ww,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
|
||||
ADD2(s2,ss2,w,ww,s3,ss3,t1,t2)
|
||||
ADD2(s3,ss3,a0,aa0,a1,aa1,t1,t2)
|
||||
s1 = (c3.d + (c4.d + c5.d * w) * w) * w;
|
||||
EADD (c2.d, s1, s2, ss2);
|
||||
MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||
ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2);
|
||||
ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2);
|
||||
|
||||
/* End stage II, case abs(x-1) >= 0.03 */
|
||||
if ((y=a1+(aa1+E3)) == a1+(aa1-E3)) return y;
|
||||
if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3))
|
||||
return y;
|
||||
|
||||
|
||||
/* Final stages. Use multi-precision arithmetic. */
|
||||
stage_n:
|
||||
stage_n:
|
||||
|
||||
for (i=0; i<M; i++) {
|
||||
p = pr[i];
|
||||
__dbl_mp(x,&mpx,p); __dbl_mp(y,&mpy,p);
|
||||
__mplog(&mpx,&mpy,p);
|
||||
__dbl_mp(e[i].d,&mperr,p);
|
||||
__add(&mpy,&mperr,&mpy1,p); __sub(&mpy,&mperr,&mpy2,p);
|
||||
__mp_dbl(&mpy1,&y1,p); __mp_dbl(&mpy2,&y2,p);
|
||||
if (y1==y2) return y1;
|
||||
}
|
||||
for (i = 0; i < M; i++)
|
||||
{
|
||||
p = pr[i];
|
||||
__dbl_mp (x, &mpx, p);
|
||||
__dbl_mp (y, &mpy, p);
|
||||
__mplog (&mpx, &mpy, p);
|
||||
__dbl_mp (e[i].d, &mperr, p);
|
||||
__add (&mpy, &mperr, &mpy1, p);
|
||||
__sub (&mpy, &mperr, &mpy2, p);
|
||||
__mp_dbl (&mpy1, &y1, p);
|
||||
__mp_dbl (&mpy2, &y2, p);
|
||||
if (y1 == y2)
|
||||
return y1;
|
||||
}
|
||||
return y1;
|
||||
}
|
||||
|
||||
#ifndef __ieee754_log
|
||||
strong_alias (__ieee754_log, __log_finite)
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user