mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-25 14:30:06 +00:00
Update.
2001-02-12 Ulrich Drepper <drepper@redhat.com> * sysdeps/ieee754/ldbl-96/e_j0l.c: New file. Contributed by Stephen L. Moshier <moshier@na-net.ornl.gov>. 2001-02-11 Jakub Jelinek <jakub@redhat.com> * sysdeps/generic/strtoll.c (__strtoq_internal): Ressurect alias which was exported from libc. * sysdeps/generic/strtoull.c (__strtouq_internal): Likewise.
This commit is contained in:
parent
b5e73f5664
commit
0fc95b8219
11
ChangeLog
11
ChangeLog
@ -1,3 +1,14 @@
|
||||
2001-02-12 Ulrich Drepper <drepper@redhat.com>
|
||||
|
||||
* sysdeps/ieee754/ldbl-96/e_j0l.c: New file.
|
||||
Contributed by Stephen L. Moshier <moshier@na-net.ornl.gov>.
|
||||
|
||||
2001-02-11 Jakub Jelinek <jakub@redhat.com>
|
||||
|
||||
* sysdeps/generic/strtoll.c (__strtoq_internal): Ressurect alias
|
||||
which was exported from libc.
|
||||
* sysdeps/generic/strtoull.c (__strtouq_internal): Likewise.
|
||||
|
||||
2001-02-12 Andreas Jaeger <aj@suse.de>
|
||||
|
||||
* manual/arith.texi (Parsing of Integers): Fix some wordings.
|
||||
|
@ -205,6 +205,84 @@ This is a GNU extension.
|
||||
@end table
|
||||
@end deftp
|
||||
|
||||
For use in the @code{glob64} function @file{glob.h} contains another
|
||||
definition for a very similar type. @code{glob64_t} differs from
|
||||
@code{glob_t} only in the types of the members @code{gl_readdir},
|
||||
@code{gl_stat}, and @code{gl_lstat}.
|
||||
|
||||
@comment glob.h
|
||||
@comment GNU
|
||||
@deftp {Data Type} glob64_t
|
||||
This data type holds a pointer to a word vector. More precisely, it
|
||||
records both the address of the word vector and its size. The GNU
|
||||
implementation contains some more fields which are non-standard
|
||||
extensions.
|
||||
|
||||
@table @code
|
||||
@item gl_pathc
|
||||
The number of elements in the vector, excluding the initial null entries
|
||||
if the GLOB_DOOFFS flag is used (see gl_offs below).
|
||||
|
||||
@item gl_pathv
|
||||
The address of the vector. This field has type @w{@code{char **}}.
|
||||
|
||||
@item gl_offs
|
||||
The offset of the first real element of the vector, from its nominal
|
||||
address in the @code{gl_pathv} field. Unlike the other fields, this
|
||||
is always an input to @code{glob}, rather than an output from it.
|
||||
|
||||
If you use a nonzero offset, then that many elements at the beginning of
|
||||
the vector are left empty. (The @code{glob} function fills them with
|
||||
null pointers.)
|
||||
|
||||
The @code{gl_offs} field is meaningful only if you use the
|
||||
@code{GLOB_DOOFFS} flag. Otherwise, the offset is always zero
|
||||
regardless of what is in this field, and the first real element comes at
|
||||
the beginning of the vector.
|
||||
|
||||
@item gl_closedir
|
||||
The address of an alternative implementation of the @code{closedir}
|
||||
function. It is used if the @code{GLOB_ALTDIRFUNC} bit is set in
|
||||
the flag parameter. The type of this field is
|
||||
@w{@code{void (*) (void *)}}.
|
||||
|
||||
This is a GNU extension.
|
||||
|
||||
@item gl_readdir
|
||||
The address of an alternative implementation of the @code{readdir64}
|
||||
function used to read the contents of a directory. It is used if the
|
||||
@code{GLOB_ALTDIRFUNC} bit is set in the flag parameter. The type of
|
||||
this field is @w{@code{struct dirent64 *(*) (void *)}}.
|
||||
|
||||
This is a GNU extension.
|
||||
|
||||
@item gl_opendir
|
||||
The address of an alternative implementation of the @code{opendir}
|
||||
function. It is used if the @code{GLOB_ALTDIRFUNC} bit is set in
|
||||
the flag parameter. The type of this field is
|
||||
@w{@code{void *(*) (const char *)}}.
|
||||
|
||||
This is a GNU extension.
|
||||
|
||||
@item gl_stat
|
||||
The address of an alternative implementation of the @code{stat64} function
|
||||
to get information about an object in the filesystem. It is used if the
|
||||
@code{GLOB_ALTDIRFUNC} bit is set in the flag parameter. The type of
|
||||
this field is @w{@code{int (*) (const char *, struct stat64 *)}}.
|
||||
|
||||
This is a GNU extension.
|
||||
|
||||
@item gl_lstat
|
||||
The address of an alternative implementation of the @code{lstat64}
|
||||
function to get information about an object in the filesystems, not
|
||||
following symbolic links. It is used if the @code{GLOB_ALTDIRFUNC} bit
|
||||
is set in the flag parameter. The type of this field is @code{@w{int
|
||||
(*) (const char *,} @w{struct stat64 *)}}.
|
||||
|
||||
This is a GNU extension.
|
||||
@end table
|
||||
@end deftp
|
||||
|
||||
@comment glob.h
|
||||
@comment POSIX.2
|
||||
@deftypefun int glob (const char *@var{pattern}, int @var{flags}, int (*@var{errfunc}) (const char *@var{filename}, int @var{error-code}), glob_t *@var{vector-ptr})
|
||||
@ -234,7 +312,7 @@ that your application is making.
|
||||
If @code{glob} succeeds, it returns 0. Otherwise, it returns one
|
||||
of these error codes:
|
||||
|
||||
@table @code
|
||||
@vtable @code
|
||||
@comment glob.h
|
||||
@comment POSIX.2
|
||||
@item GLOB_ABORTED
|
||||
@ -261,10 +339,38 @@ at least one file.
|
||||
@comment POSIX.2
|
||||
@item GLOB_NOSPACE
|
||||
It was impossible to allocate memory to hold the result.
|
||||
@end table
|
||||
@end vtable
|
||||
|
||||
In the event of an error, @code{glob} stores information in
|
||||
@code{*@var{vector-ptr}} about all the matches it has found so far.
|
||||
|
||||
It is important to notive that the @code{glob} function will not fail if
|
||||
it encounters directories or files which cannot be handled without the
|
||||
LFS interfaces. The implementation of @code{glob} is supposed to use
|
||||
these functions internally. This at least is the assumptions made by
|
||||
the Unix standard. The GNU extension of allowing the user to provide
|
||||
own directory handling and @code{stat} functions complicates things a
|
||||
bit. If these callback functions are used and a large file or directory
|
||||
is encountered @code{glob} @emph{can} fail.
|
||||
@end deftypefun
|
||||
|
||||
@comment glob.h
|
||||
@comment GNU
|
||||
@deftypefun int glob64 (const char *@var{pattern}, int @var{flags}, int (*@var{errfunc}) (const char *@var{filename}, int @var{error-code}), glob64_t *@var{vector-ptr})
|
||||
The @code{glob64} function was added as part of the Large File Summit
|
||||
extensions but is not part of the original LFS proposal. The reason for
|
||||
this is simple: it is not necessary. The necessity for a @code{glob64}
|
||||
function is added by the extensions of the GNU @code{glob}
|
||||
implementation which allows the user to provide own directory handling
|
||||
and @code{stat} functions. The @code{readdir} and @code{stat} functions
|
||||
do depend on the choice of @code{_FILE_OFFSET_BITS} since the definition
|
||||
of the types @code{struct dirent} and @code{struct stat} will change
|
||||
depending on the choice.
|
||||
|
||||
Beside this difference the @code{glob64} works just like @code{glob} in
|
||||
all aspects.
|
||||
|
||||
This function is a GNU extension.
|
||||
@end deftypefun
|
||||
|
||||
@node Flags for Globbing
|
||||
@ -274,7 +380,7 @@ This section describes the flags that you can specify in the
|
||||
@var{flags} argument to @code{glob}. Choose the flags you want,
|
||||
and combine them with the C bitwise OR operator @code{|}.
|
||||
|
||||
@table @code
|
||||
@vtable @code
|
||||
@comment glob.h
|
||||
@comment POSIX.2
|
||||
@item GLOB_APPEND
|
||||
@ -362,7 +468,7 @@ If you use @code{GLOB_NOESCAPE}, then @samp{\} is an ordinary character.
|
||||
@code{glob} does its work by calling the function @code{fnmatch}
|
||||
repeatedly. It handles the flag @code{GLOB_NOESCAPE} by turning on the
|
||||
@code{FNM_NOESCAPE} flag in calls to @code{fnmatch}.
|
||||
@end table
|
||||
@end vtable
|
||||
|
||||
@node More Flags for Globbing
|
||||
@subsection More Flags for Globbing
|
||||
@ -372,7 +478,7 @@ Beside the flags described in the last section, the GNU implementation of
|
||||
@file{glob.h} file. Some of the extensions implement functionality
|
||||
which is available in modern shell implementations.
|
||||
|
||||
@table @code
|
||||
@vtable @code
|
||||
@comment glob.h
|
||||
@comment GNU
|
||||
@item GLOB_PERIOD
|
||||
@ -502,7 +608,7 @@ This functionality is only available with the GNU @code{glob}
|
||||
implementation. It is mainly used internally to increase the
|
||||
performance but might be useful for a user as well and therefore is
|
||||
documented here.
|
||||
@end table
|
||||
@end vtable
|
||||
|
||||
Calling @code{glob} will in most cases allocate resources which are used
|
||||
to represent the result of the function call. If the same object of
|
||||
@ -519,6 +625,13 @@ calls to @code{glob} associated with the object pointed to by
|
||||
@code{glob_t} typed object isn't used anymore.
|
||||
@end deftypefun
|
||||
|
||||
@comment glob.h
|
||||
@comment GNU
|
||||
@deftypefun void globfree64 (glob64_t *@var{pglob})
|
||||
This function is equivalent to @code{globfree} but it frees records of
|
||||
type @code{glob64_t} which were allocated by @code{glob64}.
|
||||
@end deftypefun
|
||||
|
||||
|
||||
@node Regular Expressions
|
||||
@section Regular Expression Matching
|
||||
|
@ -21,4 +21,5 @@
|
||||
|
||||
#include <strtol.c>
|
||||
|
||||
strong_alias (__strtoll_internal, __strtoq_internal)
|
||||
weak_alias (strtoll, strtoq)
|
||||
|
@ -22,5 +22,6 @@
|
||||
#include <strtoul.c>
|
||||
|
||||
#ifdef _LIBC
|
||||
strong_alias (__strtoull_internal, __strtouq_internal)
|
||||
weak_alias (strtoull, strtouq)
|
||||
#endif
|
||||
|
630
sysdeps/ieee754/ldbl-96/e_j0l.c
Normal file
630
sysdeps/ieee754/ldbl-96/e_j0l.c
Normal file
@ -0,0 +1,630 @@
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* Long double expansions contributed by
|
||||
Stephen L. Moshier <moshier@na-net.ornl.gov> */
|
||||
|
||||
/* __ieee754_j0(x), __ieee754_y0(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j0(x):
|
||||
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
|
||||
* 2. Reduce x to |x| since j0(x)=j0(-x), and
|
||||
* for x in (0,2)
|
||||
* j0(x) = 1 - z/4 + z^2*R0/S0, where z = x*x;
|
||||
* for x in (2,inf)
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* as follow:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (cos(x) + sin(x))
|
||||
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j0(nan)= nan
|
||||
* j0(0) = 1
|
||||
* j0(inf) = 0
|
||||
*
|
||||
* Method -- y0(x):
|
||||
* 1. For x<2.
|
||||
* Since
|
||||
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
|
||||
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
|
||||
* We use the following function to approximate y0,
|
||||
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
|
||||
*
|
||||
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
|
||||
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
|
||||
* 2. For x>=2.
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* by the method mentioned above.
|
||||
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static long double pzero (long double), qzero (long double);
|
||||
#else
|
||||
static long double pzero (), qzero ();
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double
|
||||
#else
|
||||
static long double
|
||||
#endif
|
||||
huge = 1e4930L,
|
||||
one = 1.0L,
|
||||
invsqrtpi = 5.6418958354775628694807945156077258584405e-1L,
|
||||
tpi = 6.3661977236758134307553505349005744813784e-1L,
|
||||
j0z1 = 2.40482555769577276862163187932650662155139L,
|
||||
j0z2 = 5.520078110286310649596604112813027425221865L,
|
||||
|
||||
/* J0(x) = 1 - x^2 / 4 + x^4 R0(x^2) / S0(x^2)
|
||||
0 <= x <= 2
|
||||
peak relative error 1.41e-22 */
|
||||
R[5] = {
|
||||
4.287176872744686992880841716723478740566E7L,
|
||||
-6.652058897474241627570911531740907185772E5L,
|
||||
7.011848381719789863458364584613651091175E3L,
|
||||
-3.168040850193372408702135490809516253693E1L,
|
||||
6.030778552661102450545394348845599300939E-2L,
|
||||
},
|
||||
|
||||
S[4] = {
|
||||
2.743793198556599677955266341699130654342E9L,
|
||||
3.364330079384816249840086842058954076201E7L,
|
||||
1.924119649412510777584684927494642526573E5L,
|
||||
6.239282256012734914211715620088714856494E2L,
|
||||
/* 1.000000000000000000000000000000000000000E0L,*/
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double zero = 0.0;
|
||||
#else
|
||||
static long double zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
long double
|
||||
__ieee754_j0l (long double x)
|
||||
#else
|
||||
long double
|
||||
__ieee754_j0l (x)
|
||||
long double x;
|
||||
#endif
|
||||
{
|
||||
long double z, s, c, ss, cc, r, u, v;
|
||||
int32_t ix;
|
||||
u_int32_t se, i0, i1;
|
||||
|
||||
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
||||
ix = se & 0x7fff;
|
||||
if (ix >= 0x7fff)
|
||||
return one / (x * x);
|
||||
x = fabsl (x);
|
||||
if (ix >= 0x4000) /* |x| >= 2.0 */
|
||||
{
|
||||
s = __sinl (x);
|
||||
c = __cosl (x);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
if (ix < 0x7ffe)
|
||||
{ /* make sure x+x not overflow */
|
||||
z = -__cosl (x + x);
|
||||
if ((s * c) < zero)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if (ix > 0x4080) /* 2^129 */
|
||||
z = (invsqrtpi * cc) / __ieee754_sqrtl (x);
|
||||
else
|
||||
{
|
||||
u = pzero (x);
|
||||
v = qzero (x);
|
||||
z = invsqrtpi * (u * cc - v * ss) / __ieee754_sqrtl (x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if (ix < 0x3fef) /* |x| < 2**-16 */
|
||||
{
|
||||
if (huge + x > one)
|
||||
{ /* raise inexact if x != 0 */
|
||||
if (ix < 0x3fde) /* |x| < 2^-33 */
|
||||
return one;
|
||||
else
|
||||
return one - 0.25 * x * x;
|
||||
}
|
||||
}
|
||||
z = x * x;
|
||||
r = z * (R[0] + z * (R[1] + z * (R[2] + z * (R[3] + z * R[4]))));
|
||||
s = S[0] + z * (S[1] + z * (S[2] + z * (S[3] + z)));
|
||||
if (ix < 0x3fff)
|
||||
{ /* |x| < 1.00 */
|
||||
return (one - 0.25 * z + z * (r / s));
|
||||
}
|
||||
else
|
||||
{
|
||||
u = 0.5 * x;
|
||||
return ((one + u) * (one - u) + z * (r / s));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* y0(x) = 2/pi ln(x) J0(x) + U(x^2)/V(x^2)
|
||||
0 < x <= 2
|
||||
peak relative error 1.7e-21 */
|
||||
#ifdef __STDC__
|
||||
static const long double
|
||||
#else
|
||||
static long double
|
||||
#endif
|
||||
U[6] = {
|
||||
-1.054912306975785573710813351985351350861E10L,
|
||||
2.520192609749295139432773849576523636127E10L,
|
||||
-1.856426071075602001239955451329519093395E9L,
|
||||
4.079209129698891442683267466276785956784E7L,
|
||||
-3.440684087134286610316661166492641011539E5L,
|
||||
1.005524356159130626192144663414848383774E3L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double
|
||||
#else
|
||||
static long double
|
||||
#endif
|
||||
V[5] = {
|
||||
1.429337283720789610137291929228082613676E11L,
|
||||
2.492593075325119157558811370165695013002E9L,
|
||||
2.186077620785925464237324417623665138376E7L,
|
||||
1.238407896366385175196515057064384929222E5L,
|
||||
4.693924035211032457494368947123233101664E2L,
|
||||
/* 1.000000000000000000000000000000000000000E0L */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
long double
|
||||
__ieee754_y0l (long double x)
|
||||
#else
|
||||
long double
|
||||
__ieee754_y0l (x)
|
||||
long double x;
|
||||
#endif
|
||||
{
|
||||
long double z, s, c, ss, cc, u, v;
|
||||
int32_t ix;
|
||||
u_int32_t se, i0, i1;
|
||||
|
||||
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
||||
ix = se & 0x7fff;
|
||||
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
|
||||
if (se & 0x8000)
|
||||
return zero / zero;
|
||||
if (ix >= 0x7fff)
|
||||
return one / (x + x * x);
|
||||
if ((i0 | i1) == 0)
|
||||
return -one / zero;
|
||||
if (ix >= 0x4000)
|
||||
{ /* |x| >= 2.0 */
|
||||
|
||||
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
||||
* where x0 = x-pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) + cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
s = __sinl (x);
|
||||
c = __cosl (x);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if (ix < 0x7ffe)
|
||||
{ /* make sure x+x not overflow */
|
||||
z = -__cosl (x + x);
|
||||
if ((s * c) < zero)
|
||||
cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
if (ix > 0x4080) /* 1e39 */
|
||||
z = (invsqrtpi * ss) / __ieee754_sqrtl (x);
|
||||
else
|
||||
{
|
||||
u = pzero (x);
|
||||
v = qzero (x);
|
||||
z = invsqrtpi * (u * ss + v * cc) / __ieee754_sqrtl (x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if (ix <= 0x3fde) /* x < 2^-33 */
|
||||
{
|
||||
z = -7.380429510868722527629822444004602747322E-2L
|
||||
+ tpi * __ieee754_logl (x);
|
||||
return z;
|
||||
}
|
||||
z = x * x;
|
||||
u = U[0] + z * (U[1] + z * (U[2] + z * (U[3] + z * (U[4] + z * U[5]))));
|
||||
v = V[0] + z * (V[1] + z * (V[2] + z * (V[3] + z * (V[4] + z))));
|
||||
return (u / v + tpi * (__ieee754_j0l (x) * __ieee754_logl (x)));
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + s^2 R(s^2) / S(s^2)
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const long double pR8[7] = {
|
||||
#else
|
||||
static long double pR8[7] = {
|
||||
#endif
|
||||
/* 8 <= x <= inf
|
||||
Peak relative error 4.62 */
|
||||
-4.094398895124198016684337960227780260127E-9L,
|
||||
-8.929643669432412640061946338524096893089E-7L,
|
||||
-6.281267456906136703868258380673108109256E-5L,
|
||||
-1.736902783620362966354814353559382399665E-3L,
|
||||
-1.831506216290984960532230842266070146847E-2L,
|
||||
-5.827178869301452892963280214772398135283E-2L,
|
||||
-2.087563267939546435460286895807046616992E-2L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double pS8[6] = {
|
||||
#else
|
||||
static long double pS8[6] = {
|
||||
#endif
|
||||
5.823145095287749230197031108839653988393E-8L,
|
||||
1.279281986035060320477759999428992730280E-5L,
|
||||
9.132668954726626677174825517150228961304E-4L,
|
||||
2.606019379433060585351880541545146252534E-2L,
|
||||
2.956262215119520464228467583516287175244E-1L,
|
||||
1.149498145388256448535563278632697465675E0L,
|
||||
/* 1.000000000000000000000000000000000000000E0L, */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double pR5[7] = {
|
||||
#else
|
||||
static long double pR5[7] = {
|
||||
#endif
|
||||
/* 4.54541015625 <= x <= 8
|
||||
Peak relative error 6.51E-22 */
|
||||
-2.041226787870240954326915847282179737987E-7L,
|
||||
-2.255373879859413325570636768224534428156E-5L,
|
||||
-7.957485746440825353553537274569102059990E-4L,
|
||||
-1.093205102486816696940149222095559439425E-2L,
|
||||
-5.657957849316537477657603125260701114646E-2L,
|
||||
-8.641175552716402616180994954177818461588E-2L,
|
||||
-1.354654710097134007437166939230619726157E-2L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double pS5[6] = {
|
||||
#else
|
||||
static long double pS5[6] = {
|
||||
#endif
|
||||
2.903078099681108697057258628212823545290E-6L,
|
||||
3.253948449946735405975737677123673867321E-4L,
|
||||
1.181269751723085006534147920481582279979E-2L,
|
||||
1.719212057790143888884745200257619469363E-1L,
|
||||
1.006306498779212467670654535430694221924E0L,
|
||||
2.069568808688074324555596301126375951502E0L,
|
||||
/* 1.000000000000000000000000000000000000000E0L, */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double pR3[7] = {
|
||||
#else
|
||||
static long double pR3[7] = {
|
||||
#endif
|
||||
/* 2.85711669921875 <= x <= 4.54541015625
|
||||
peak relative error 5.25e-21 */
|
||||
-5.755732156848468345557663552240816066802E-6L,
|
||||
-3.703675625855715998827966962258113034767E-4L,
|
||||
-7.390893350679637611641350096842846433236E-3L,
|
||||
-5.571922144490038765024591058478043873253E-2L,
|
||||
-1.531290690378157869291151002472627396088E-1L,
|
||||
-1.193350853469302941921647487062620011042E-1L,
|
||||
-8.567802507331578894302991505331963782905E-3L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double pS3[6] = {
|
||||
#else
|
||||
static long double pS3[6] = {
|
||||
#endif
|
||||
8.185931139070086158103309281525036712419E-5L,
|
||||
5.398016943778891093520574483111255476787E-3L,
|
||||
1.130589193590489566669164765853409621081E-1L,
|
||||
9.358652328786413274673192987670237145071E-1L,
|
||||
3.091711512598349056276917907005098085273E0L,
|
||||
3.594602474737921977972586821673124231111E0L,
|
||||
/* 1.000000000000000000000000000000000000000E0L, */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double pR2[7] = {
|
||||
#else
|
||||
static long double pR2[7] = {
|
||||
#endif
|
||||
/* 2 <= x <= 2.85711669921875
|
||||
peak relative error 2.64e-21 */
|
||||
-1.219525235804532014243621104365384992623E-4L,
|
||||
-4.838597135805578919601088680065298763049E-3L,
|
||||
-5.732223181683569266223306197751407418301E-2L,
|
||||
-2.472947430526425064982909699406646503758E-1L,
|
||||
-3.753373645974077960207588073975976327695E-1L,
|
||||
-1.556241316844728872406672349347137975495E-1L,
|
||||
-5.355423239526452209595316733635519506958E-3L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double pS2[6] = {
|
||||
#else
|
||||
static long double pS2[6] = {
|
||||
#endif
|
||||
1.734442793664291412489066256138894953823E-3L,
|
||||
7.158111826468626405416300895617986926008E-2L,
|
||||
9.153839713992138340197264669867993552641E-1L,
|
||||
4.539209519433011393525841956702487797582E0L,
|
||||
8.868932430625331650266067101752626253644E0L,
|
||||
6.067161890196324146320763844772857713502E0L,
|
||||
/* 1.000000000000000000000000000000000000000E0L, */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static long double
|
||||
pzero (long double x)
|
||||
#else
|
||||
static long double
|
||||
pzero (x)
|
||||
long double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const long double *p, *q;
|
||||
#else
|
||||
long double *p, *q;
|
||||
#endif
|
||||
long double z, r, s;
|
||||
int32_t ix;
|
||||
u_int32_t se, i0, i1;
|
||||
|
||||
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
||||
ix = se & 0x7fff;
|
||||
if (ix >= 0x4002)
|
||||
{
|
||||
p = pR8;
|
||||
q = pS8;
|
||||
} /* x >= 8 */
|
||||
else
|
||||
{
|
||||
i1 = (ix << 16) | (i0 >> 16);
|
||||
if (i1 >= 0x40019174) /* x >= 4.54541015625 */
|
||||
{
|
||||
p = pR5;
|
||||
q = pS5;
|
||||
}
|
||||
else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */
|
||||
{
|
||||
p = pR3;
|
||||
q = pS3;
|
||||
}
|
||||
else if (ix >= 0x4000) /* x better be >= 2 */
|
||||
{
|
||||
p = pR2;
|
||||
q = pS2;
|
||||
}
|
||||
}
|
||||
z = one / (x * x);
|
||||
r =
|
||||
p[0] + z * (p[1] +
|
||||
z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
|
||||
s =
|
||||
q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * (q[5] + z)))));
|
||||
return (one + z * r / s);
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate qzero by
|
||||
* qzero(x) = s*(-.125 + R(s^2) / S(s^2))
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const long double qR8[7] = {
|
||||
#else
|
||||
static long double qR8[7] = {
|
||||
#endif
|
||||
/* 8 <= x <= inf
|
||||
peak relative error 2.23e-21 */
|
||||
3.001267180483191397885272640777189348008E-10L,
|
||||
8.693186311430836495238494289942413810121E-8L,
|
||||
8.496875536711266039522937037850596580686E-6L,
|
||||
3.482702869915288984296602449543513958409E-4L,
|
||||
6.036378380706107692863811938221290851352E-3L,
|
||||
3.881970028476167836382607922840452192636E-2L,
|
||||
6.132191514516237371140841765561219149638E-2L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double qS8[7] = {
|
||||
#else
|
||||
static long double qS8[7] = {
|
||||
#endif
|
||||
4.097730123753051126914971174076227600212E-9L,
|
||||
1.199615869122646109596153392152131139306E-6L,
|
||||
1.196337580514532207793107149088168946451E-4L,
|
||||
5.099074440112045094341500497767181211104E-3L,
|
||||
9.577420799632372483249761659674764460583E-2L,
|
||||
7.385243015344292267061953461563695918646E-1L,
|
||||
1.917266424391428937962682301561699055943E0L,
|
||||
/* 1.000000000000000000000000000000000000000E0L, */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double qR5[7] = {
|
||||
#else
|
||||
static long double qR5[7] = {
|
||||
#endif
|
||||
/* 4.54541015625 <= x <= 8
|
||||
peak relative error 1.03e-21 */
|
||||
3.406256556438974327309660241748106352137E-8L,
|
||||
4.855492710552705436943630087976121021980E-6L,
|
||||
2.301011739663737780613356017352912281980E-4L,
|
||||
4.500470249273129953870234803596619899226E-3L,
|
||||
3.651376459725695502726921248173637054828E-2L,
|
||||
1.071578819056574524416060138514508609805E-1L,
|
||||
7.458950172851611673015774675225656063757E-2L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double qS5[7] = {
|
||||
#else
|
||||
static long double qS5[7] = {
|
||||
#endif
|
||||
4.650675622764245276538207123618745150785E-7L,
|
||||
6.773573292521412265840260065635377164455E-5L,
|
||||
3.340711249876192721980146877577806687714E-3L,
|
||||
7.036218046856839214741678375536970613501E-2L,
|
||||
6.569599559163872573895171876511377891143E-1L,
|
||||
2.557525022583599204591036677199171155186E0L,
|
||||
3.457237396120935674982927714210361269133E0L,
|
||||
/* 1.000000000000000000000000000000000000000E0L,*/
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double qR3[7] = {
|
||||
#else
|
||||
static long double qR3[7] = {
|
||||
#endif
|
||||
/* 2.85711669921875 <= x <= 4.54541015625
|
||||
peak relative error 5.24e-21 */
|
||||
1.749459596550816915639829017724249805242E-6L,
|
||||
1.446252487543383683621692672078376929437E-4L,
|
||||
3.842084087362410664036704812125005761859E-3L,
|
||||
4.066369994699462547896426554180954233581E-2L,
|
||||
1.721093619117980251295234795188992722447E-1L,
|
||||
2.538595333972857367655146949093055405072E-1L,
|
||||
8.560591367256769038905328596020118877936E-2L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double qS3[7] = {
|
||||
#else
|
||||
static long double qS3[7] = {
|
||||
#endif
|
||||
2.388596091707517488372313710647510488042E-5L,
|
||||
2.048679968058758616370095132104333998147E-3L,
|
||||
5.824663198201417760864458765259945181513E-2L,
|
||||
6.953906394693328750931617748038994763958E-1L,
|
||||
3.638186936390881159685868764832961092476E0L,
|
||||
7.900169524705757837298990558459547842607E0L,
|
||||
5.992718532451026507552820701127504582907E0L,
|
||||
/* 1.000000000000000000000000000000000000000E0L, */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const long double qR2[7] = {
|
||||
#else
|
||||
static long double qR2[7] = {
|
||||
#endif
|
||||
/* 2 <= x <= 2.85711669921875
|
||||
peak relative error 1.58e-21 */
|
||||
6.306524405520048545426928892276696949540E-5L,
|
||||
3.209606155709930950935893996591576624054E-3L,
|
||||
5.027828775702022732912321378866797059604E-2L,
|
||||
3.012705561838718956481911477587757845163E-1L,
|
||||
6.960544893905752937420734884995688523815E-1L,
|
||||
5.431871999743531634887107835372232030655E-1L,
|
||||
9.447736151202905471899259026430157211949E-2L,
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const long double qS2[7] = {
|
||||
#else
|
||||
static long double qS2[7] = {
|
||||
#endif
|
||||
8.610579901936193494609755345106129102676E-4L,
|
||||
4.649054352710496997203474853066665869047E-2L,
|
||||
8.104282924459837407218042945106320388339E-1L,
|
||||
5.807730930825886427048038146088828206852E0L,
|
||||
1.795310145936848873627710102199881642939E1L,
|
||||
2.281313316875375733663657188888110605044E1L,
|
||||
1.011242067883822301487154844458322200143E1L,
|
||||
/* 1.000000000000000000000000000000000000000E0L, */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static long double
|
||||
qzero (long double x)
|
||||
#else
|
||||
static long double
|
||||
qzero (x)
|
||||
long double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const long double *p, *q;
|
||||
#else
|
||||
long double *p, *q;
|
||||
#endif
|
||||
long double s, r, z;
|
||||
int32_t ix;
|
||||
u_int32_t se, i0, i1;
|
||||
|
||||
GET_LDOUBLE_WORDS (se, i0, i1, x);
|
||||
ix = se & 0x7fff;
|
||||
if (ix >= 0x4002) /* x >= 8 */
|
||||
{
|
||||
p = qR8;
|
||||
q = qS8;
|
||||
}
|
||||
else
|
||||
{
|
||||
i1 = (ix << 16) | (i0 >> 16);
|
||||
if (i1 >= 0x40019174) /* x >= 4.54541015625 */
|
||||
{
|
||||
p = qR5;
|
||||
q = qS5;
|
||||
}
|
||||
else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */
|
||||
{
|
||||
p = qR3;
|
||||
q = qS3;
|
||||
}
|
||||
else if (ix >= 0x4000) /* x better be >= 2 */
|
||||
{
|
||||
p = qR2;
|
||||
q = qS2;
|
||||
}
|
||||
}
|
||||
z = one / (x * x);
|
||||
r =
|
||||
p[0] + z * (p[1] +
|
||||
z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
|
||||
s =
|
||||
q[0] + z * (q[1] +
|
||||
z * (q[2] +
|
||||
z * (q[3] + z * (q[4] + z * (q[5] + z * (q[6] + z))))));
|
||||
return (-.125 + z * r / s) / x;
|
||||
}
|
Loading…
Reference in New Issue
Block a user