mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 13:00:06 +00:00
Update.
2000-10-25 Ulrich Drepper <drepper@redhat.com> * sysdeps/ieee754/dbl-64/e_jn.c: Use __ieee754_sqrt instead of __sqrt. * sysdeps/ieee754/dbl-64/e_j1.c: Likewise. * sysdeps/ieee754/dbl-64/e_j0.c: Likewise. * sysdeps/ieee754/flt-32/e_j1f.c: Likewise. * sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
This commit is contained in:
parent
6a39d02719
commit
106599818f
@ -1,3 +1,11 @@
|
||||
2000-10-25 Ulrich Drepper <drepper@redhat.com>
|
||||
|
||||
* sysdeps/ieee754/dbl-64/e_jn.c: Use __ieee754_sqrt instead of __sqrt.
|
||||
* sysdeps/ieee754/dbl-64/e_j1.c: Likewise.
|
||||
* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
|
||||
* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
|
||||
|
||||
2000-10-25 David Mosberger <davidm@hpl.hp.com>
|
||||
|
||||
* sysdeps/unix/sysv/linux/ia64/profil-counter.h: Multiply slot
|
||||
|
@ -124,10 +124,10 @@ static double zero = 0.0;
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(x);
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x);
|
||||
else {
|
||||
u = pzero(x); v = qzero(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__sqrt(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
@ -215,10 +215,10 @@ V[] = {1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
|
||||
else {
|
||||
u = pzero(x); v = qzero(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
@ -125,10 +125,10 @@ static double zero = 0.0;
|
||||
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(y);
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y);
|
||||
else {
|
||||
u = pone(y); v = qone(y);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__sqrt(y);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y);
|
||||
}
|
||||
if(hx<0) return -z;
|
||||
else return z;
|
||||
@ -214,10 +214,10 @@ static double V0[5] = {
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
|
||||
else {
|
||||
u = pone(x); v = qone(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
@ -5,7 +5,7 @@
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
@ -18,7 +18,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
|
||||
* __ieee754_jn(n, x), __ieee754_yn(n, x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
@ -37,7 +37,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
@ -76,7 +76,7 @@ static double zero = 0.00000000000000000000e+00;
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if J(n,NaN) is NaN */
|
||||
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
|
||||
if(n<0){
|
||||
if(n<0){
|
||||
n = -n;
|
||||
x = -x;
|
||||
hx ^= 0x80000000;
|
||||
@ -87,13 +87,13 @@ static double zero = 0.00000000000000000000e+00;
|
||||
x = fabs(x);
|
||||
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if((double)n<=x) {
|
||||
else if((double)n<=x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if(ix>=0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
@ -109,8 +109,8 @@ static double zero = 0.00000000000000000000e+00;
|
||||
case 2: temp = -__cos(x)-__sin(x); break;
|
||||
case 3: temp = __cos(x)-__sin(x); break;
|
||||
}
|
||||
b = invsqrtpi*temp/__sqrt(x);
|
||||
} else {
|
||||
b = invsqrtpi*temp/__ieee754_sqrt(x);
|
||||
} else {
|
||||
a = __ieee754_j0(x);
|
||||
b = __ieee754_j1(x);
|
||||
for(i=1;i<n;i++){
|
||||
@ -121,7 +121,7 @@ static double zero = 0.00000000000000000000e+00;
|
||||
}
|
||||
} else {
|
||||
if(ix<0x3e100000) { /* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if(n>33) /* underflow */
|
||||
@ -136,14 +136,14 @@ static double zero = 0.00000000000000000000e+00;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
@ -159,9 +159,9 @@ static double zero = 0.00000000000000000000e+00;
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
double t,v;
|
||||
@ -183,7 +183,7 @@ static double zero = 0.00000000000000000000e+00;
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
@ -219,9 +219,9 @@ static double zero = 0.00000000000000000000e+00;
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_yn(int n, double x)
|
||||
double __ieee754_yn(int n, double x)
|
||||
#else
|
||||
double __ieee754_yn(n,x)
|
||||
double __ieee754_yn(n,x)
|
||||
int n; double x;
|
||||
#endif
|
||||
{
|
||||
@ -244,10 +244,10 @@ static double zero = 0.00000000000000000000e+00;
|
||||
if(n==1) return(sign*__ieee754_y1(x));
|
||||
if(ix==0x7ff00000) return zero;
|
||||
if(ix>=0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
@ -263,14 +263,14 @@ static double zero = 0.00000000000000000000e+00;
|
||||
case 2: temp = -__sin(x)+__cos(x); break;
|
||||
case 3: temp = __sin(x)+__cos(x); break;
|
||||
}
|
||||
b = invsqrtpi*temp/__sqrt(x);
|
||||
b = invsqrtpi*temp/__ieee754_sqrt(x);
|
||||
} else {
|
||||
u_int32_t high;
|
||||
a = __ieee754_y0(x);
|
||||
b = __ieee754_y1(x);
|
||||
/* quit if b is -inf */
|
||||
GET_HIGH_WORD(high,b);
|
||||
for(i=1;i<n&&high!=0xfff00000;i++){
|
||||
for(i=1;i<n&&high!=0xfff00000;i++){
|
||||
temp = b;
|
||||
b = ((double)(i+i)/x)*b - a;
|
||||
GET_HIGH_WORD(high,b);
|
||||
|
@ -8,7 +8,7 @@
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
@ -27,9 +27,9 @@ static float pzerof(), qzerof();
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
static float
|
||||
#endif
|
||||
huge = 1e30,
|
||||
one = 1.0,
|
||||
@ -52,9 +52,9 @@ static float zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_j0f(float x)
|
||||
float __ieee754_j0f(float x)
|
||||
#else
|
||||
float __ieee754_j0f(x)
|
||||
float __ieee754_j0f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
@ -79,10 +79,10 @@ static float zero = 0.0;
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(x);
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__sqrtf(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
@ -121,9 +121,9 @@ v03 = 2.5915085189e-07, /* 0x348b216c */
|
||||
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_y0f(float x)
|
||||
float __ieee754_y0f(float x)
|
||||
#else
|
||||
float __ieee754_y0f(x)
|
||||
float __ieee754_y0f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
@ -133,7 +133,7 @@ v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
@ -161,10 +161,10 @@ v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
@ -306,7 +306,7 @@ static float pS2[5] = {
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
|
@ -8,7 +8,7 @@
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
@ -27,9 +27,9 @@ static float ponef(), qonef();
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
static float
|
||||
#endif
|
||||
huge = 1e30,
|
||||
one = 1.0,
|
||||
@ -53,9 +53,9 @@ static float zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_j1f(float x)
|
||||
float __ieee754_j1f(float x)
|
||||
#else
|
||||
float __ieee754_j1f(x)
|
||||
float __ieee754_j1f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
@ -80,10 +80,10 @@ static float zero = 0.0;
|
||||
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(y);
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y);
|
||||
else {
|
||||
u = ponef(y); v = qonef(y);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__sqrtf(y);
|
||||
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y);
|
||||
}
|
||||
if(hx<0) return -z;
|
||||
else return z;
|
||||
@ -122,9 +122,9 @@ static float V0[5] = {
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_y1f(float x)
|
||||
float __ieee754_y1f(float x)
|
||||
#else
|
||||
float __ieee754_y1f(x)
|
||||
float __ieee754_y1f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
@ -134,7 +134,7 @@ static float V0[5] = {
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
@ -158,16 +158,16 @@ static float V0[5] = {
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
|
||||
else {
|
||||
u = ponef(x); v = qonef(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
}
|
||||
if(ix<=0x24800000) { /* x < 2**-54 */
|
||||
return(-tpi/x);
|
||||
}
|
||||
}
|
||||
z = x*x;
|
||||
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
|
||||
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
|
||||
@ -305,7 +305,7 @@ static float ps2[5] = {
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
|
Loading…
Reference in New Issue
Block a user