mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-08 18:30:18 +00:00
power7 string compare optimizations
This commit is contained in:
parent
4bc93b3033
commit
158db12267
@ -1,3 +1,10 @@
|
||||
2010-06-10 Luis Machado <luisgpm@br.ibm.com>
|
||||
|
||||
* sysdeps/powerpc/powerpc32/power7/memcmp.S: New file
|
||||
* sysdeps/powerpc/powerpc64/power7/memcmp.S: New file.
|
||||
* sysdeps/powerpc/powerpc32/power7/strncmp.S: New file.
|
||||
* sysdeps/powerpc/powerpc64/power7/strncmp.S: New file.
|
||||
|
||||
2010-06-02 Andreas Schwab <schwab@redhat.com>
|
||||
|
||||
* nis/nss_nis/nis-initgroups.c (get_uid): Properly resize buffer.
|
||||
|
988
sysdeps/powerpc/powerpc32/power7/memcmp.S
Normal file
988
sysdeps/powerpc/powerpc32/power7/memcmp.S
Normal file
@ -0,0 +1,988 @@
|
||||
/* Optimized memcmp implementation for POWER7/PowerPC32.
|
||||
Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
|
||||
02110-1301 USA. */
|
||||
|
||||
#include <sysdep.h>
|
||||
#include <bp-sym.h>
|
||||
#include <bp-asm.h>
|
||||
|
||||
/* int [r3] memcmp (const char *s1 [r3],
|
||||
const char *s2 [r4],
|
||||
size_t size [r5]) */
|
||||
|
||||
.machine power7
|
||||
EALIGN (BP_SYM(memcmp),4,0)
|
||||
CALL_MCOUNT
|
||||
|
||||
#define rTMP r0
|
||||
#define rRTN r3
|
||||
#define rSTR1 r3 /* first string arg */
|
||||
#define rSTR2 r4 /* second string arg */
|
||||
#define rN r5 /* max string length */
|
||||
#define rWORD1 r6 /* current word in s1 */
|
||||
#define rWORD2 r7 /* current word in s2 */
|
||||
#define rWORD3 r8 /* next word in s1 */
|
||||
#define rWORD4 r9 /* next word in s2 */
|
||||
#define rWORD5 r10 /* next word in s1 */
|
||||
#define rWORD6 r11 /* next word in s2 */
|
||||
#define rBITDIF r12 /* bits that differ in s1 & s2 words */
|
||||
#define rWORD7 r30 /* next word in s1 */
|
||||
#define rWORD8 r31 /* next word in s2 */
|
||||
|
||||
xor rTMP,rSTR2,rSTR1
|
||||
cmplwi cr6,rN,0
|
||||
cmplwi cr1,rN,12
|
||||
clrlwi. rTMP,rTMP,30
|
||||
clrlwi rBITDIF,rSTR1,30
|
||||
cmplwi cr5,rBITDIF,0
|
||||
beq- cr6,L(zeroLength)
|
||||
dcbt 0,rSTR1
|
||||
dcbt 0,rSTR2
|
||||
|
||||
/* If less than 8 bytes or not aligned, use the unaligned
|
||||
byte loop. */
|
||||
|
||||
blt cr1,L(bytealigned)
|
||||
stwu 1,-64(1)
|
||||
cfi_adjust_cfa_offset(64)
|
||||
stw r31,48(1)
|
||||
cfi_offset(31,(48-64))
|
||||
stw r30,44(1)
|
||||
cfi_offset(30,(44-64))
|
||||
bne L(unaligned)
|
||||
/* At this point we know both strings have the same alignment and the
|
||||
compare length is at least 8 bytes. rBITDIF contains the low order
|
||||
2 bits of rSTR1 and cr5 contains the result of the logical compare
|
||||
of rBITDIF to 0. If rBITDIF == 0 then we are already word
|
||||
aligned and can perform the word aligned loop.
|
||||
|
||||
Otherwise we know the two strings have the same alignment (but not
|
||||
yet word aligned). So we force the string addresses to the next lower
|
||||
word boundary and special case this first word using shift left to
|
||||
eliminate bits preceeding the first byte. Since we want to join the
|
||||
normal (word aligned) compare loop, starting at the second word,
|
||||
we need to adjust the length (rN) and special case the loop
|
||||
versioning for the first word. This insures that the loop count is
|
||||
correct and the first word (shifted) is in the expected register pair. */
|
||||
.align 4
|
||||
L(samealignment):
|
||||
clrrwi rSTR1,rSTR1,2
|
||||
clrrwi rSTR2,rSTR2,2
|
||||
beq cr5,L(Waligned)
|
||||
add rN,rN,rBITDIF
|
||||
slwi r11,rBITDIF,3
|
||||
srwi rTMP,rN,4 /* Divide by 16 */
|
||||
andi. rBITDIF,rN,12 /* Get the word remainder */
|
||||
lwz rWORD1,0(rSTR1)
|
||||
lwz rWORD2,0(rSTR2)
|
||||
cmplwi cr1,rBITDIF,8
|
||||
cmplwi cr7,rN,16
|
||||
clrlwi rN,rN,30
|
||||
beq L(dPs4)
|
||||
mtctr rTMP
|
||||
bgt cr1,L(dPs3)
|
||||
beq cr1,L(dPs2)
|
||||
|
||||
/* Remainder is 4 */
|
||||
.align 3
|
||||
L(dsP1):
|
||||
slw rWORD5,rWORD1,r11
|
||||
slw rWORD6,rWORD2,r11
|
||||
cmplw cr5,rWORD5,rWORD6
|
||||
blt cr7,L(dP1x)
|
||||
/* Do something useful in this cycle since we have to branch anyway. */
|
||||
lwz rWORD1,4(rSTR1)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
b L(dP1e)
|
||||
/* Remainder is 8 */
|
||||
.align 4
|
||||
L(dPs2):
|
||||
slw rWORD5,rWORD1,r11
|
||||
slw rWORD6,rWORD2,r11
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
blt cr7,L(dP2x)
|
||||
/* Do something useful in this cycle since we have to branch anyway. */
|
||||
lwz rWORD7,4(rSTR1)
|
||||
lwz rWORD8,4(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
b L(dP2e)
|
||||
/* Remainder is 12 */
|
||||
.align 4
|
||||
L(dPs3):
|
||||
slw rWORD3,rWORD1,r11
|
||||
slw rWORD4,rWORD2,r11
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
b L(dP3e)
|
||||
/* Count is a multiple of 16, remainder is 0 */
|
||||
.align 4
|
||||
L(dPs4):
|
||||
mtctr rTMP
|
||||
slw rWORD1,rWORD1,r11
|
||||
slw rWORD2,rWORD2,r11
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
b L(dP4e)
|
||||
|
||||
/* At this point we know both strings are word aligned and the
|
||||
compare length is at least 8 bytes. */
|
||||
.align 4
|
||||
L(Waligned):
|
||||
andi. rBITDIF,rN,12 /* Get the word remainder */
|
||||
srwi rTMP,rN,4 /* Divide by 16 */
|
||||
cmplwi cr1,rBITDIF,8
|
||||
cmplwi cr7,rN,16
|
||||
clrlwi rN,rN,30
|
||||
beq L(dP4)
|
||||
bgt cr1,L(dP3)
|
||||
beq cr1,L(dP2)
|
||||
|
||||
/* Remainder is 4 */
|
||||
.align 4
|
||||
L(dP1):
|
||||
mtctr rTMP
|
||||
/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early
|
||||
(8-15 byte compare), we want to use only volatile registers. This
|
||||
means we can avoid restoring non-volatile registers since we did not
|
||||
change any on the early exit path. The key here is the non-early
|
||||
exit path only cares about the condition code (cr5), not about which
|
||||
register pair was used. */
|
||||
lwz rWORD5,0(rSTR1)
|
||||
lwz rWORD6,0(rSTR2)
|
||||
cmplw cr5,rWORD5,rWORD6
|
||||
blt cr7,L(dP1x)
|
||||
lwz rWORD1,4(rSTR1)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
L(dP1e):
|
||||
lwz rWORD3,8(rSTR1)
|
||||
lwz rWORD4,8(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
lwz rWORD5,12(rSTR1)
|
||||
lwz rWORD6,12(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bne cr5,L(dLcr5)
|
||||
bne cr0,L(dLcr0)
|
||||
|
||||
lwzu rWORD7,16(rSTR1)
|
||||
lwzu rWORD8,16(rSTR2)
|
||||
bne cr1,L(dLcr1)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bdnz L(dLoop)
|
||||
bne cr6,L(dLcr6)
|
||||
lwz r30,44(1)
|
||||
lwz r31,48(1)
|
||||
.align 3
|
||||
L(dP1x):
|
||||
slwi. r12,rN,3
|
||||
bne cr5,L(dLcr5)
|
||||
subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */
|
||||
lwz 1,0(1)
|
||||
bne L(d00)
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
/* Remainder is 8 */
|
||||
.align 4
|
||||
L(dP2):
|
||||
mtctr rTMP
|
||||
lwz rWORD5,0(rSTR1)
|
||||
lwz rWORD6,0(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
blt cr7,L(dP2x)
|
||||
lwz rWORD7,4(rSTR1)
|
||||
lwz rWORD8,4(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
L(dP2e):
|
||||
lwz rWORD1,8(rSTR1)
|
||||
lwz rWORD2,8(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
lwz rWORD3,12(rSTR1)
|
||||
lwz rWORD4,12(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
addi rSTR1,rSTR1,4
|
||||
addi rSTR2,rSTR2,4
|
||||
bne cr6,L(dLcr6)
|
||||
bne cr5,L(dLcr5)
|
||||
b L(dLoop2)
|
||||
/* Again we are on a early exit path (16-23 byte compare), we want to
|
||||
only use volatile registers and avoid restoring non-volatile
|
||||
registers. */
|
||||
.align 4
|
||||
L(dP2x):
|
||||
lwz rWORD3,4(rSTR1)
|
||||
lwz rWORD4,4(rSTR2)
|
||||
cmplw cr5,rWORD3,rWORD4
|
||||
slwi. r12,rN,3
|
||||
bne cr6,L(dLcr6)
|
||||
addi rSTR1,rSTR1,4
|
||||
addi rSTR2,rSTR2,4
|
||||
bne cr5,L(dLcr5)
|
||||
subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */
|
||||
lwz 1,0(1)
|
||||
bne L(d00)
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
/* Remainder is 12 */
|
||||
.align 4
|
||||
L(dP3):
|
||||
mtctr rTMP
|
||||
lwz rWORD3,0(rSTR1)
|
||||
lwz rWORD4,0(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
L(dP3e):
|
||||
lwz rWORD5,4(rSTR1)
|
||||
lwz rWORD6,4(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
blt cr7,L(dP3x)
|
||||
lwz rWORD7,8(rSTR1)
|
||||
lwz rWORD8,8(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
lwz rWORD1,12(rSTR1)
|
||||
lwz rWORD2,12(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
bne cr1,L(dLcr1)
|
||||
bne cr6,L(dLcr6)
|
||||
b L(dLoop1)
|
||||
/* Again we are on a early exit path (24-31 byte compare), we want to
|
||||
only use volatile registers and avoid restoring non-volatile
|
||||
registers. */
|
||||
.align 4
|
||||
L(dP3x):
|
||||
lwz rWORD1,8(rSTR1)
|
||||
lwz rWORD2,8(rSTR2)
|
||||
cmplw cr5,rWORD1,rWORD2
|
||||
slwi. r12,rN,3
|
||||
bne cr1,L(dLcr1)
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
bne cr6,L(dLcr6)
|
||||
subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */
|
||||
bne cr5,L(dLcr5)
|
||||
lwz 1,0(1)
|
||||
bne L(d00)
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
/* Count is a multiple of 16, remainder is 0 */
|
||||
.align 4
|
||||
L(dP4):
|
||||
mtctr rTMP
|
||||
lwz rWORD1,0(rSTR1)
|
||||
lwz rWORD2,0(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
L(dP4e):
|
||||
lwz rWORD3,4(rSTR1)
|
||||
lwz rWORD4,4(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
lwz rWORD5,8(rSTR1)
|
||||
lwz rWORD6,8(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
lwzu rWORD7,12(rSTR1)
|
||||
lwzu rWORD8,12(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bne cr0,L(dLcr0)
|
||||
bne cr1,L(dLcr1)
|
||||
bdz- L(d24) /* Adjust CTR as we start with +4 */
|
||||
/* This is the primary loop */
|
||||
.align 4
|
||||
L(dLoop):
|
||||
lwz rWORD1,4(rSTR1)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
bne cr6,L(dLcr6)
|
||||
L(dLoop1):
|
||||
lwz rWORD3,8(rSTR1)
|
||||
lwz rWORD4,8(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bne cr5,L(dLcr5)
|
||||
L(dLoop2):
|
||||
lwz rWORD5,12(rSTR1)
|
||||
lwz rWORD6,12(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bne cr0,L(dLcr0)
|
||||
L(dLoop3):
|
||||
lwzu rWORD7,16(rSTR1)
|
||||
lwzu rWORD8,16(rSTR2)
|
||||
bne cr1,L(dLcr1)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
bdnz L(dLoop)
|
||||
|
||||
L(dL4):
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
bne cr6,L(dLcr6)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bne cr5,L(dLcr5)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
L(d44):
|
||||
bne cr0,L(dLcr0)
|
||||
L(d34):
|
||||
bne cr1,L(dLcr1)
|
||||
L(d24):
|
||||
bne cr6,L(dLcr6)
|
||||
L(d14):
|
||||
slwi. r12,rN,3
|
||||
bne cr5,L(dLcr5)
|
||||
L(d04):
|
||||
lwz r30,44(1)
|
||||
lwz r31,48(1)
|
||||
lwz 1,0(1)
|
||||
subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */
|
||||
beq L(zeroLength)
|
||||
/* At this point we have a remainder of 1 to 3 bytes to compare. Since
|
||||
we are aligned it is safe to load the whole word, and use
|
||||
shift right to eliminate bits beyond the compare length. */
|
||||
L(d00):
|
||||
lwz rWORD1,4(rSTR1)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
srw rWORD1,rWORD1,rN
|
||||
srw rWORD2,rWORD2,rN
|
||||
cmplw rWORD1,rWORD2
|
||||
li rRTN,0
|
||||
beqlr
|
||||
li rRTN,1
|
||||
bgtlr
|
||||
li rRTN,-1
|
||||
blr
|
||||
|
||||
.align 4
|
||||
L(dLcr0):
|
||||
lwz r30,44(1)
|
||||
lwz r31,48(1)
|
||||
li rRTN,1
|
||||
lwz 1,0(1)
|
||||
bgtlr cr0
|
||||
li rRTN,-1
|
||||
blr
|
||||
.align 4
|
||||
L(dLcr1):
|
||||
lwz r30,44(1)
|
||||
lwz r31,48(1)
|
||||
li rRTN,1
|
||||
lwz 1,0(1)
|
||||
bgtlr cr1
|
||||
li rRTN,-1
|
||||
blr
|
||||
.align 4
|
||||
L(dLcr6):
|
||||
lwz r30,44(1)
|
||||
lwz r31,48(1)
|
||||
li rRTN,1
|
||||
lwz 1,0(1)
|
||||
bgtlr cr6
|
||||
li rRTN,-1
|
||||
blr
|
||||
.align 4
|
||||
L(dLcr5):
|
||||
lwz r30,44(1)
|
||||
lwz r31,48(1)
|
||||
L(dLcr5x):
|
||||
li rRTN,1
|
||||
lwz 1,0(1)
|
||||
bgtlr cr5
|
||||
li rRTN,-1
|
||||
blr
|
||||
|
||||
.align 4
|
||||
L(bytealigned):
|
||||
cfi_adjust_cfa_offset(-64)
|
||||
mtctr rN
|
||||
|
||||
/* We need to prime this loop. This loop is swing modulo scheduled
|
||||
to avoid pipe delays. The dependent instruction latencies (load to
|
||||
compare to conditional branch) is 2 to 3 cycles. In this loop each
|
||||
dispatch group ends in a branch and takes 1 cycle. Effectively
|
||||
the first iteration of the loop only serves to load operands and
|
||||
branches based on compares are delayed until the next loop.
|
||||
|
||||
So we must precondition some registers and condition codes so that
|
||||
we don't exit the loop early on the first iteration. */
|
||||
lbz rWORD1,0(rSTR1)
|
||||
lbz rWORD2,0(rSTR2)
|
||||
bdz L(b11)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
lbz rWORD3,1(rSTR1)
|
||||
lbz rWORD4,1(rSTR2)
|
||||
bdz L(b12)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
lbzu rWORD5,2(rSTR1)
|
||||
lbzu rWORD6,2(rSTR2)
|
||||
bdz L(b13)
|
||||
.align 4
|
||||
L(bLoop):
|
||||
lbzu rWORD1,1(rSTR1)
|
||||
lbzu rWORD2,1(rSTR2)
|
||||
bne cr0,L(bLcr0)
|
||||
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bdz L(b3i)
|
||||
|
||||
lbzu rWORD3,1(rSTR1)
|
||||
lbzu rWORD4,1(rSTR2)
|
||||
bne cr1,L(bLcr1)
|
||||
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
bdz L(b2i)
|
||||
|
||||
lbzu rWORD5,1(rSTR1)
|
||||
lbzu rWORD6,1(rSTR2)
|
||||
bne cr6,L(bLcr6)
|
||||
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
bdnz L(bLoop)
|
||||
|
||||
/* We speculatively loading bytes before we have tested the previous
|
||||
bytes. But we must avoid overrunning the length (in the ctr) to
|
||||
prevent these speculative loads from causing a segfault. In this
|
||||
case the loop will exit early (before the all pending bytes are
|
||||
tested. In this case we must complete the pending operations
|
||||
before returning. */
|
||||
L(b1i):
|
||||
bne cr0,L(bLcr0)
|
||||
bne cr1,L(bLcr1)
|
||||
b L(bx56)
|
||||
.align 4
|
||||
L(b2i):
|
||||
bne cr6,L(bLcr6)
|
||||
bne cr0,L(bLcr0)
|
||||
b L(bx34)
|
||||
.align 4
|
||||
L(b3i):
|
||||
bne cr1,L(bLcr1)
|
||||
bne cr6,L(bLcr6)
|
||||
b L(bx12)
|
||||
.align 4
|
||||
L(bLcr0):
|
||||
li rRTN,1
|
||||
bgtlr cr0
|
||||
li rRTN,-1
|
||||
blr
|
||||
L(bLcr1):
|
||||
li rRTN,1
|
||||
bgtlr cr1
|
||||
li rRTN,-1
|
||||
blr
|
||||
L(bLcr6):
|
||||
li rRTN,1
|
||||
bgtlr cr6
|
||||
li rRTN,-1
|
||||
blr
|
||||
|
||||
L(b13):
|
||||
bne cr0,L(bx12)
|
||||
bne cr1,L(bx34)
|
||||
L(bx56):
|
||||
sub rRTN,rWORD5,rWORD6
|
||||
blr
|
||||
nop
|
||||
L(b12):
|
||||
bne cr0,L(bx12)
|
||||
L(bx34):
|
||||
sub rRTN,rWORD3,rWORD4
|
||||
blr
|
||||
|
||||
L(b11):
|
||||
L(bx12):
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blr
|
||||
|
||||
.align 4
|
||||
L(zeroLengthReturn):
|
||||
|
||||
L(zeroLength):
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
cfi_adjust_cfa_offset(64)
|
||||
.align 4
|
||||
/* At this point we know the strings have different alignment and the
|
||||
compare length is at least 8 bytes. rBITDIF contains the low order
|
||||
2 bits of rSTR1 and cr5 contains the result of the logical compare
|
||||
of rBITDIF to 0. If rBITDIF == 0 then rStr1 is word aligned and can
|
||||
perform the Wunaligned loop.
|
||||
|
||||
Otherwise we know that rSTR1 is not aready word aligned yet.
|
||||
So we can force the string addresses to the next lower word
|
||||
boundary and special case this first word using shift left to
|
||||
eliminate bits preceeding the first byte. Since we want to join the
|
||||
normal (Wualigned) compare loop, starting at the second word,
|
||||
we need to adjust the length (rN) and special case the loop
|
||||
versioning for the first W. This insures that the loop count is
|
||||
correct and the first W (shifted) is in the expected resister pair. */
|
||||
#define rSHL r29 /* Unaligned shift left count. */
|
||||
#define rSHR r28 /* Unaligned shift right count. */
|
||||
#define rB r27 /* Left rotation temp for rWORD2. */
|
||||
#define rD r26 /* Left rotation temp for rWORD4. */
|
||||
#define rF r25 /* Left rotation temp for rWORD6. */
|
||||
#define rH r24 /* Left rotation temp for rWORD8. */
|
||||
#define rA r0 /* Right rotation temp for rWORD2. */
|
||||
#define rC r12 /* Right rotation temp for rWORD4. */
|
||||
#define rE r0 /* Right rotation temp for rWORD6. */
|
||||
#define rG r12 /* Right rotation temp for rWORD8. */
|
||||
L(unaligned):
|
||||
stw r29,40(r1)
|
||||
cfi_offset(r29,(40-64))
|
||||
clrlwi rSHL,rSTR2,30
|
||||
stw r28,36(r1)
|
||||
cfi_offset(r28,(36-64))
|
||||
beq cr5,L(Wunaligned)
|
||||
stw r27,32(r1)
|
||||
cfi_offset(r27,(32-64))
|
||||
/* Adjust the logical start of rSTR2 to compensate for the extra bits
|
||||
in the 1st rSTR1 W. */
|
||||
sub r27,rSTR2,rBITDIF
|
||||
/* But do not attempt to address the W before that W that contains
|
||||
the actual start of rSTR2. */
|
||||
clrrwi rSTR2,rSTR2,2
|
||||
stw r26,28(r1)
|
||||
cfi_offset(r26,(28-64))
|
||||
/* Compute the left/right shift counts for the unalign rSTR2,
|
||||
compensating for the logical (W aligned) start of rSTR1. */
|
||||
clrlwi rSHL,r27,30
|
||||
clrrwi rSTR1,rSTR1,2
|
||||
stw r25,24(r1)
|
||||
cfi_offset(r25,(24-64))
|
||||
slwi rSHL,rSHL,3
|
||||
cmplw cr5,r27,rSTR2
|
||||
add rN,rN,rBITDIF
|
||||
slwi r11,rBITDIF,3
|
||||
stw r24,20(r1)
|
||||
cfi_offset(r24,(20-64))
|
||||
subfic rSHR,rSHL,32
|
||||
srwi rTMP,rN,4 /* Divide by 16 */
|
||||
andi. rBITDIF,rN,12 /* Get the W remainder */
|
||||
/* We normally need to load 2 Ws to start the unaligned rSTR2, but in
|
||||
this special case those bits may be discarded anyway. Also we
|
||||
must avoid loading a W where none of the bits are part of rSTR2 as
|
||||
this may cross a page boundary and cause a page fault. */
|
||||
li rWORD8,0
|
||||
blt cr5,L(dus0)
|
||||
lwz rWORD8,0(rSTR2)
|
||||
la rSTR2,4(rSTR2)
|
||||
slw rWORD8,rWORD8,rSHL
|
||||
|
||||
L(dus0):
|
||||
lwz rWORD1,0(rSTR1)
|
||||
lwz rWORD2,0(rSTR2)
|
||||
cmplwi cr1,rBITDIF,8
|
||||
cmplwi cr7,rN,16
|
||||
srw rG,rWORD2,rSHR
|
||||
clrlwi rN,rN,30
|
||||
beq L(duPs4)
|
||||
mtctr rTMP
|
||||
or rWORD8,rG,rWORD8
|
||||
bgt cr1,L(duPs3)
|
||||
beq cr1,L(duPs2)
|
||||
|
||||
/* Remainder is 4 */
|
||||
.align 4
|
||||
L(dusP1):
|
||||
slw rB,rWORD2,rSHL
|
||||
slw rWORD7,rWORD1,r11
|
||||
slw rWORD8,rWORD8,r11
|
||||
bge cr7,L(duP1e)
|
||||
/* At this point we exit early with the first word compare
|
||||
complete and remainder of 0 to 3 bytes. See L(du14) for details on
|
||||
how we handle the remaining bytes. */
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
slwi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmplw cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
srw rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
/* Remainder is 8 */
|
||||
.align 4
|
||||
L(duPs2):
|
||||
slw rH,rWORD2,rSHL
|
||||
slw rWORD5,rWORD1,r11
|
||||
slw rWORD6,rWORD8,r11
|
||||
b L(duP2e)
|
||||
/* Remainder is 12 */
|
||||
.align 4
|
||||
L(duPs3):
|
||||
slw rF,rWORD2,rSHL
|
||||
slw rWORD3,rWORD1,r11
|
||||
slw rWORD4,rWORD8,r11
|
||||
b L(duP3e)
|
||||
/* Count is a multiple of 16, remainder is 0 */
|
||||
.align 4
|
||||
L(duPs4):
|
||||
mtctr rTMP
|
||||
or rWORD8,rG,rWORD8
|
||||
slw rD,rWORD2,rSHL
|
||||
slw rWORD1,rWORD1,r11
|
||||
slw rWORD2,rWORD8,r11
|
||||
b L(duP4e)
|
||||
|
||||
/* At this point we know rSTR1 is word aligned and the
|
||||
compare length is at least 8 bytes. */
|
||||
.align 4
|
||||
L(Wunaligned):
|
||||
stw r27,32(r1)
|
||||
cfi_offset(r27,(32-64))
|
||||
clrrwi rSTR2,rSTR2,2
|
||||
stw r26,28(r1)
|
||||
cfi_offset(r26,(28-64))
|
||||
srwi rTMP,rN,4 /* Divide by 16 */
|
||||
stw r25,24(r1)
|
||||
cfi_offset(r25,(24-64))
|
||||
andi. rBITDIF,rN,12 /* Get the W remainder */
|
||||
stw r24,20(r1)
|
||||
cfi_offset(r24,(24-64))
|
||||
slwi rSHL,rSHL,3
|
||||
lwz rWORD6,0(rSTR2)
|
||||
lwzu rWORD8,4(rSTR2)
|
||||
cmplwi cr1,rBITDIF,8
|
||||
cmplwi cr7,rN,16
|
||||
clrlwi rN,rN,30
|
||||
subfic rSHR,rSHL,32
|
||||
slw rH,rWORD6,rSHL
|
||||
beq L(duP4)
|
||||
mtctr rTMP
|
||||
bgt cr1,L(duP3)
|
||||
beq cr1,L(duP2)
|
||||
|
||||
/* Remainder is 4 */
|
||||
.align 4
|
||||
L(duP1):
|
||||
srw rG,rWORD8,rSHR
|
||||
lwz rWORD7,0(rSTR1)
|
||||
slw rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
blt cr7,L(duP1x)
|
||||
L(duP1e):
|
||||
lwz rWORD1,4(rSTR1)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
srw rA,rWORD2,rSHR
|
||||
slw rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
lwz rWORD3,8(rSTR1)
|
||||
lwz rWORD4,8(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
srw rC,rWORD4,rSHR
|
||||
slw rF,rWORD4,rSHL
|
||||
bne cr5,L(duLcr5)
|
||||
or rWORD4,rC,rD
|
||||
lwz rWORD5,12(rSTR1)
|
||||
lwz rWORD6,12(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
srw rE,rWORD6,rSHR
|
||||
slw rH,rWORD6,rSHL
|
||||
bne cr0,L(duLcr0)
|
||||
or rWORD6,rE,rF
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
b L(duLoop3)
|
||||
.align 4
|
||||
/* At this point we exit early with the first word compare
|
||||
complete and remainder of 0 to 3 bytes. See L(du14) for details on
|
||||
how we handle the remaining bytes. */
|
||||
L(duP1x):
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
slwi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmplw cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
ld rWORD2,8(rSTR2)
|
||||
srw rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
/* Remainder is 8 */
|
||||
.align 4
|
||||
L(duP2):
|
||||
srw rE,rWORD8,rSHR
|
||||
lwz rWORD5,0(rSTR1)
|
||||
or rWORD6,rE,rH
|
||||
slw rH,rWORD8,rSHL
|
||||
L(duP2e):
|
||||
lwz rWORD7,4(rSTR1)
|
||||
lwz rWORD8,4(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
srw rG,rWORD8,rSHR
|
||||
slw rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
blt cr7,L(duP2x)
|
||||
lwz rWORD1,8(rSTR1)
|
||||
lwz rWORD2,8(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bne cr6,L(duLcr6)
|
||||
srw rA,rWORD2,rSHR
|
||||
slw rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
lwz rWORD3,12(rSTR1)
|
||||
lwz rWORD4,12(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
bne cr5,L(duLcr5)
|
||||
srw rC,rWORD4,rSHR
|
||||
slw rF,rWORD4,rSHL
|
||||
or rWORD4,rC,rD
|
||||
addi rSTR1,rSTR1,4
|
||||
addi rSTR2,rSTR2,4
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
b L(duLoop2)
|
||||
.align 4
|
||||
L(duP2x):
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
addi rSTR1,rSTR1,4
|
||||
addi rSTR2,rSTR2,4
|
||||
bne cr6,L(duLcr6)
|
||||
slwi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmplw cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
srw rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
|
||||
/* Remainder is 12 */
|
||||
.align 4
|
||||
L(duP3):
|
||||
srw rC,rWORD8,rSHR
|
||||
lwz rWORD3,0(rSTR1)
|
||||
slw rF,rWORD8,rSHL
|
||||
or rWORD4,rC,rH
|
||||
L(duP3e):
|
||||
lwz rWORD5,4(rSTR1)
|
||||
lwz rWORD6,4(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
srw rE,rWORD6,rSHR
|
||||
slw rH,rWORD6,rSHL
|
||||
or rWORD6,rE,rF
|
||||
lwz rWORD7,8(rSTR1)
|
||||
lwz rWORD8,8(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bne cr1,L(duLcr1)
|
||||
srw rG,rWORD8,rSHR
|
||||
slw rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
blt cr7,L(duP3x)
|
||||
lwz rWORD1,12(rSTR1)
|
||||
lwz rWORD2,12(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bne cr6,L(duLcr6)
|
||||
srw rA,rWORD2,rSHR
|
||||
slw rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
b L(duLoop1)
|
||||
.align 4
|
||||
L(duP3x):
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
bne cr1,L(duLcr1)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bne cr6,L(duLcr6)
|
||||
slwi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmplw cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
srw rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
|
||||
/* Count is a multiple of 16, remainder is 0 */
|
||||
.align 4
|
||||
L(duP4):
|
||||
mtctr rTMP
|
||||
srw rA,rWORD8,rSHR
|
||||
lwz rWORD1,0(rSTR1)
|
||||
slw rD,rWORD8,rSHL
|
||||
or rWORD2,rA,rH
|
||||
L(duP4e):
|
||||
lwz rWORD3,4(rSTR1)
|
||||
lwz rWORD4,4(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
srw rC,rWORD4,rSHR
|
||||
slw rF,rWORD4,rSHL
|
||||
or rWORD4,rC,rD
|
||||
lwz rWORD5,8(rSTR1)
|
||||
lwz rWORD6,8(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
bne cr0,L(duLcr0)
|
||||
srw rE,rWORD6,rSHR
|
||||
slw rH,rWORD6,rSHL
|
||||
or rWORD6,rE,rF
|
||||
lwzu rWORD7,12(rSTR1)
|
||||
lwzu rWORD8,12(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bne cr1,L(duLcr1)
|
||||
srw rG,rWORD8,rSHR
|
||||
slw rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bdz L(du24) /* Adjust CTR as we start with +4 */
|
||||
/* This is the primary loop */
|
||||
.align 4
|
||||
L(duLoop):
|
||||
lwz rWORD1,4(rSTR1)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
bne cr6,L(duLcr6)
|
||||
srw rA,rWORD2,rSHR
|
||||
slw rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
L(duLoop1):
|
||||
lwz rWORD3,8(rSTR1)
|
||||
lwz rWORD4,8(rSTR2)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bne cr5,L(duLcr5)
|
||||
srw rC,rWORD4,rSHR
|
||||
slw rF,rWORD4,rSHL
|
||||
or rWORD4,rC,rD
|
||||
L(duLoop2):
|
||||
lwz rWORD5,12(rSTR1)
|
||||
lwz rWORD6,12(rSTR2)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
bne cr0,L(duLcr0)
|
||||
srw rE,rWORD6,rSHR
|
||||
slw rH,rWORD6,rSHL
|
||||
or rWORD6,rE,rF
|
||||
L(duLoop3):
|
||||
lwzu rWORD7,16(rSTR1)
|
||||
lwzu rWORD8,16(rSTR2)
|
||||
cmplw cr0,rWORD1,rWORD2
|
||||
bne cr1,L(duLcr1)
|
||||
srw rG,rWORD8,rSHR
|
||||
slw rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
bdnz L(duLoop)
|
||||
|
||||
L(duL4):
|
||||
bne cr1,L(duLcr1)
|
||||
cmplw cr1,rWORD3,rWORD4
|
||||
bne cr6,L(duLcr6)
|
||||
cmplw cr6,rWORD5,rWORD6
|
||||
bne cr5,L(duLcr5)
|
||||
cmplw cr5,rWORD7,rWORD8
|
||||
L(du44):
|
||||
bne cr0,L(duLcr0)
|
||||
L(du34):
|
||||
bne cr1,L(duLcr1)
|
||||
L(du24):
|
||||
bne cr6,L(duLcr6)
|
||||
L(du14):
|
||||
slwi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
/* At this point we have a remainder of 1 to 3 bytes to compare. We use
|
||||
shift right to eliminate bits beyond the compare length.
|
||||
|
||||
However it may not be safe to load rWORD2 which may be beyond the
|
||||
string length. So we compare the bit length of the remainder to
|
||||
the right shift count (rSHR). If the bit count is less than or equal
|
||||
we do not need to load rWORD2 (all significant bits are already in
|
||||
rB). */
|
||||
cmplw cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
lwz rWORD2,4(rSTR2)
|
||||
srw rA,rWORD2,rSHR
|
||||
.align 4
|
||||
L(dutrim):
|
||||
lwz rWORD1,4(rSTR1)
|
||||
lwz r31,48(1)
|
||||
subfic rN,rN,32 /* Shift count is 32 - (rN * 8). */
|
||||
or rWORD2,rA,rB
|
||||
lwz r30,44(1)
|
||||
lwz r29,40(r1)
|
||||
srw rWORD1,rWORD1,rN
|
||||
srw rWORD2,rWORD2,rN
|
||||
lwz r28,36(r1)
|
||||
lwz r27,32(r1)
|
||||
cmplw rWORD1,rWORD2
|
||||
li rRTN,0
|
||||
beq L(dureturn26)
|
||||
li rRTN,1
|
||||
bgt L(dureturn26)
|
||||
li rRTN,-1
|
||||
b L(dureturn26)
|
||||
.align 4
|
||||
L(duLcr0):
|
||||
lwz r31,48(1)
|
||||
lwz r30,44(1)
|
||||
li rRTN,1
|
||||
bgt cr0,L(dureturn29)
|
||||
lwz r29,40(r1)
|
||||
lwz r28,36(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 4
|
||||
L(duLcr1):
|
||||
lwz r31,48(1)
|
||||
lwz r30,44(1)
|
||||
li rRTN,1
|
||||
bgt cr1,L(dureturn29)
|
||||
lwz r29,40(r1)
|
||||
lwz r28,36(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 4
|
||||
L(duLcr6):
|
||||
lwz r31,48(1)
|
||||
lwz r30,44(1)
|
||||
li rRTN,1
|
||||
bgt cr6,L(dureturn29)
|
||||
lwz r29,40(r1)
|
||||
lwz r28,36(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 4
|
||||
L(duLcr5):
|
||||
lwz r31,48(1)
|
||||
lwz r30,44(1)
|
||||
li rRTN,1
|
||||
bgt cr5,L(dureturn29)
|
||||
lwz r29,40(r1)
|
||||
lwz r28,36(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 3
|
||||
L(duZeroReturn):
|
||||
li rRTN,0
|
||||
.align 4
|
||||
L(dureturn):
|
||||
lwz r31,48(1)
|
||||
lwz r30,44(1)
|
||||
L(dureturn29):
|
||||
lwz r29,40(r1)
|
||||
lwz r28,36(r1)
|
||||
L(dureturn27):
|
||||
lwz r27,32(r1)
|
||||
L(dureturn26):
|
||||
lwz r26,28(r1)
|
||||
L(dureturn25):
|
||||
lwz r25,24(r1)
|
||||
lwz r24,20(r1)
|
||||
lwz 1,0(1)
|
||||
blr
|
||||
END (BP_SYM (memcmp))
|
||||
libc_hidden_builtin_def (memcmp)
|
||||
weak_alias (memcmp,bcmp)
|
177
sysdeps/powerpc/powerpc32/power7/strncmp.S
Normal file
177
sysdeps/powerpc/powerpc32/power7/strncmp.S
Normal file
@ -0,0 +1,177 @@
|
||||
/* Optimized strcmp implementation for POWER7/PowerPC32.
|
||||
Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
|
||||
02110-1301 USA. */
|
||||
|
||||
#include <sysdep.h>
|
||||
#include <bp-sym.h>
|
||||
#include <bp-asm.h>
|
||||
|
||||
/* See strlen.s for comments on how the end-of-string testing works. */
|
||||
|
||||
/* int [r3] strncmp (const char *s1 [r3],
|
||||
const char *s2 [r4],
|
||||
size_t size [r5]) */
|
||||
|
||||
EALIGN (BP_SYM(strncmp),4,0)
|
||||
|
||||
#define rTMP r0
|
||||
#define rRTN r3
|
||||
#define rSTR1 r3 /* first string arg */
|
||||
#define rSTR2 r4 /* second string arg */
|
||||
#define rN r5 /* max string length */
|
||||
/* Note: The Bounded pointer support in this code is broken. This code
|
||||
was inherited from PPC32 and and that support was never completed.
|
||||
Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */
|
||||
#define rWORD1 r6 /* current word in s1 */
|
||||
#define rWORD2 r7 /* current word in s2 */
|
||||
#define rWORD3 r10
|
||||
#define rWORD4 r11
|
||||
#define rFEFE r8 /* constant 0xfefefeff (-0x01010101) */
|
||||
#define r7F7F r9 /* constant 0x7f7f7f7f */
|
||||
#define rNEG r10 /* ~(word in s1 | 0x7f7f7f7f) */
|
||||
#define rBITDIF r11 /* bits that differ in s1 & s2 words */
|
||||
|
||||
dcbt 0,rSTR1
|
||||
or rTMP,rSTR2,rSTR1
|
||||
lis r7F7F,0x7f7f
|
||||
dcbt 0,rSTR2
|
||||
clrlwi. rTMP,rTMP,30
|
||||
cmplwi cr1,rN,0
|
||||
lis rFEFE,-0x101
|
||||
bne L(unaligned)
|
||||
/* We are word alligned so set up for two loops. first a word
|
||||
loop, then fall into the byte loop if any residual. */
|
||||
srwi. rTMP,rN,2
|
||||
clrlwi rN,rN,30
|
||||
addi rFEFE,rFEFE,-0x101
|
||||
addi r7F7F,r7F7F,0x7f7f
|
||||
cmplwi cr1,rN,0
|
||||
beq L(unaligned)
|
||||
|
||||
mtctr rTMP
|
||||
lwz rWORD1,0(rSTR1)
|
||||
lwz rWORD2,0(rSTR2)
|
||||
b L(g1)
|
||||
|
||||
L(g0):
|
||||
lwzu rWORD1,4(rSTR1)
|
||||
bne cr1,L(different)
|
||||
lwzu rWORD2,4(rSTR2)
|
||||
L(g1): add rTMP,rFEFE,rWORD1
|
||||
nor rNEG,r7F7F,rWORD1
|
||||
bdz L(tail)
|
||||
and. rTMP,rTMP,rNEG
|
||||
cmpw cr1,rWORD1,rWORD2
|
||||
beq L(g0)
|
||||
|
||||
/* OK. We've hit the end of the string. We need to be careful that
|
||||
we don't compare two strings as different because of gunk beyond
|
||||
the end of the strings... */
|
||||
|
||||
L(endstring):
|
||||
and rTMP,r7F7F,rWORD1
|
||||
beq cr1,L(equal)
|
||||
add rTMP,rTMP,r7F7F
|
||||
xor. rBITDIF,rWORD1,rWORD2
|
||||
|
||||
andc rNEG,rNEG,rTMP
|
||||
blt L(highbit)
|
||||
cntlzw rBITDIF,rBITDIF
|
||||
cntlzw rNEG,rNEG
|
||||
addi rNEG,rNEG,7
|
||||
cmpw cr1,rNEG,rBITDIF
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blt cr1,L(equal)
|
||||
srawi rRTN,rRTN,31
|
||||
ori rRTN,rRTN,1
|
||||
blr
|
||||
L(equal):
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
L(different):
|
||||
lwzu rWORD1,-4(rSTR1)
|
||||
xor. rBITDIF,rWORD1,rWORD2
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blt L(highbit)
|
||||
srawi rRTN,rRTN,31
|
||||
ori rRTN,rRTN,1
|
||||
blr
|
||||
L(highbit):
|
||||
srwi rWORD2,rWORD2,24
|
||||
srwi rWORD1,rWORD1,24
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blr
|
||||
|
||||
|
||||
/* Oh well. In this case, we just do a byte-by-byte comparison. */
|
||||
.align 4
|
||||
L(tail):
|
||||
and. rTMP,rTMP,rNEG
|
||||
cmpw cr1,rWORD1,rWORD2
|
||||
bne L(endstring)
|
||||
addi rSTR1,rSTR1,4
|
||||
bne cr1,L(different)
|
||||
addi rSTR2,rSTR2,4
|
||||
cmplwi cr1,rN,0
|
||||
L(unaligned):
|
||||
mtctr rN
|
||||
ble cr1,L(ux)
|
||||
L(uz):
|
||||
lbz rWORD1,0(rSTR1)
|
||||
lbz rWORD2,0(rSTR2)
|
||||
.align 4
|
||||
L(u1):
|
||||
cmpwi cr1,rWORD1,0
|
||||
bdz L(u4)
|
||||
cmpw rWORD1,rWORD2
|
||||
beq cr1,L(u4)
|
||||
lbzu rWORD3,1(rSTR1)
|
||||
lbzu rWORD4,1(rSTR2)
|
||||
bne L(u4)
|
||||
cmpwi cr1,rWORD3,0
|
||||
bdz L(u3)
|
||||
cmpw rWORD3,rWORD4
|
||||
beq cr1,L(u3)
|
||||
lbzu rWORD1,1(rSTR1)
|
||||
lbzu rWORD2,1(rSTR2)
|
||||
bne L(u3)
|
||||
cmpwi cr1,rWORD1,0
|
||||
bdz L(u4)
|
||||
cmpw rWORD1,rWORD2
|
||||
beq cr1,L(u4)
|
||||
lbzu rWORD3,1(rSTR1)
|
||||
lbzu rWORD4,1(rSTR2)
|
||||
bne L(u4)
|
||||
cmpwi cr1,rWORD3,0
|
||||
bdz L(u3)
|
||||
cmpw rWORD3,rWORD4
|
||||
beq cr1,L(u3)
|
||||
lbzu rWORD1,1(rSTR1)
|
||||
lbzu rWORD2,1(rSTR2)
|
||||
beq L(u1)
|
||||
|
||||
L(u3): sub rRTN,rWORD3,rWORD4
|
||||
blr
|
||||
L(u4): sub rRTN,rWORD1,rWORD2
|
||||
blr
|
||||
L(ux):
|
||||
li rRTN,0
|
||||
blr
|
||||
END (BP_SYM (strncmp))
|
||||
libc_hidden_builtin_def (strncmp)
|
984
sysdeps/powerpc/powerpc64/power7/memcmp.S
Normal file
984
sysdeps/powerpc/powerpc64/power7/memcmp.S
Normal file
@ -0,0 +1,984 @@
|
||||
/* Optimized memcmp implementation for POWER7/PowerPC64.
|
||||
Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
|
||||
02110-1301 USA. */
|
||||
|
||||
#include <sysdep.h>
|
||||
#include <bp-sym.h>
|
||||
#include <bp-asm.h>
|
||||
|
||||
/* int [r3] memcmp (const char *s1 [r3],
|
||||
const char *s2 [r4],
|
||||
size_t size [r5]) */
|
||||
|
||||
.machine power7
|
||||
EALIGN (BP_SYM(memcmp),4,0)
|
||||
CALL_MCOUNT 3
|
||||
|
||||
#define rTMP r0
|
||||
#define rRTN r3
|
||||
#define rSTR1 r3 /* first string arg */
|
||||
#define rSTR2 r4 /* second string arg */
|
||||
#define rN r5 /* max string length */
|
||||
/* Note: The Bounded pointer support in this code is broken. This code
|
||||
was inherited from PPC32 and and that support was never completed.
|
||||
Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */
|
||||
#define rWORD1 r6 /* current word in s1 */
|
||||
#define rWORD2 r7 /* current word in s2 */
|
||||
#define rWORD3 r8 /* next word in s1 */
|
||||
#define rWORD4 r9 /* next word in s2 */
|
||||
#define rWORD5 r10 /* next word in s1 */
|
||||
#define rWORD6 r11 /* next word in s2 */
|
||||
#define rBITDIF r12 /* bits that differ in s1 & s2 words */
|
||||
#define rWORD7 r30 /* next word in s1 */
|
||||
#define rWORD8 r31 /* next word in s2 */
|
||||
|
||||
xor rTMP,rSTR2,rSTR1
|
||||
cmpldi cr6,rN,0
|
||||
cmpldi cr1,rN,12
|
||||
clrldi. rTMP,rTMP,61
|
||||
clrldi rBITDIF,rSTR1,61
|
||||
cmpldi cr5,rBITDIF,0
|
||||
beq- cr6,L(zeroLength)
|
||||
dcbt 0,rSTR1
|
||||
dcbt 0,rSTR2
|
||||
/* If less than 8 bytes or not aligned, use the unalligned
|
||||
byte loop. */
|
||||
blt cr1,L(bytealigned)
|
||||
std rWORD8,-8(r1)
|
||||
cfi_offset(rWORD8,-8)
|
||||
std rWORD7,-16(r1)
|
||||
cfi_offset(rWORD7,-16)
|
||||
bne L(unaligned)
|
||||
/* At this point we know both strings have the same alignment and the
|
||||
compare length is at least 8 bytes. rBITDIF containes the low order
|
||||
3 bits of rSTR1 and cr5 contains the result of the logical compare
|
||||
of rBITDIF to 0. If rBITDIF == 0 then we are already double word
|
||||
aligned and can perform the DWaligned loop.
|
||||
|
||||
Otherwise we know the two strings have the same alignment (but not
|
||||
yet DW). So we can force the string addresses to the next lower DW
|
||||
boundary and special case this first DW word using shift left to
|
||||
ellimiate bits preceeding the first byte. Since we want to join the
|
||||
normal (DWaligned) compare loop, starting at the second double word,
|
||||
we need to adjust the length (rN) and special case the loop
|
||||
versioning for the first DW. This insures that the loop count is
|
||||
correct and the first DW (shifted) is in the expected resister pair. */
|
||||
.align 4
|
||||
L(samealignment):
|
||||
clrrdi rSTR1,rSTR1,3
|
||||
clrrdi rSTR2,rSTR2,3
|
||||
beq cr5,L(DWaligned)
|
||||
add rN,rN,rBITDIF
|
||||
sldi r11,rBITDIF,3
|
||||
srdi rTMP,rN,5 /* Divide by 32 */
|
||||
andi. rBITDIF,rN,24 /* Get the DW remainder */
|
||||
ld rWORD1,0(rSTR1)
|
||||
ld rWORD2,0(rSTR2)
|
||||
cmpldi cr1,rBITDIF,16
|
||||
cmpldi cr7,rN,32
|
||||
clrldi rN,rN,61
|
||||
beq L(dPs4)
|
||||
mtctr rTMP
|
||||
bgt cr1,L(dPs3)
|
||||
beq cr1,L(dPs2)
|
||||
|
||||
/* Remainder is 8 */
|
||||
.align 3
|
||||
L(dsP1):
|
||||
sld rWORD5,rWORD1,r11
|
||||
sld rWORD6,rWORD2,r11
|
||||
cmpld cr5,rWORD5,rWORD6
|
||||
blt cr7,L(dP1x)
|
||||
/* Do something useful in this cycle since we have to branch anyway. */
|
||||
ld rWORD1,8(rSTR1)
|
||||
ld rWORD2,8(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
b L(dP1e)
|
||||
/* Remainder is 16 */
|
||||
.align 4
|
||||
L(dPs2):
|
||||
sld rWORD5,rWORD1,r11
|
||||
sld rWORD6,rWORD2,r11
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
blt cr7,L(dP2x)
|
||||
/* Do something useful in this cycle since we have to branch anyway. */
|
||||
ld rWORD7,8(rSTR1)
|
||||
ld rWORD8,8(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
b L(dP2e)
|
||||
/* Remainder is 24 */
|
||||
.align 4
|
||||
L(dPs3):
|
||||
sld rWORD3,rWORD1,r11
|
||||
sld rWORD4,rWORD2,r11
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
b L(dP3e)
|
||||
/* Count is a multiple of 32, remainder is 0 */
|
||||
.align 4
|
||||
L(dPs4):
|
||||
mtctr rTMP
|
||||
sld rWORD1,rWORD1,r11
|
||||
sld rWORD2,rWORD2,r11
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
b L(dP4e)
|
||||
|
||||
/* At this point we know both strings are double word aligned and the
|
||||
compare length is at least 8 bytes. */
|
||||
.align 4
|
||||
L(DWaligned):
|
||||
andi. rBITDIF,rN,24 /* Get the DW remainder */
|
||||
srdi rTMP,rN,5 /* Divide by 32 */
|
||||
cmpldi cr1,rBITDIF,16
|
||||
cmpldi cr7,rN,32
|
||||
clrldi rN,rN,61
|
||||
beq L(dP4)
|
||||
bgt cr1,L(dP3)
|
||||
beq cr1,L(dP2)
|
||||
|
||||
/* Remainder is 8 */
|
||||
.align 4
|
||||
L(dP1):
|
||||
mtctr rTMP
|
||||
/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early
|
||||
(8-15 byte compare), we want to use only volitile registers. This
|
||||
means we can avoid restoring non-volitile registers since we did not
|
||||
change any on the early exit path. The key here is the non-early
|
||||
exit path only cares about the condition code (cr5), not about which
|
||||
register pair was used. */
|
||||
ld rWORD5,0(rSTR1)
|
||||
ld rWORD6,0(rSTR2)
|
||||
cmpld cr5,rWORD5,rWORD6
|
||||
blt cr7,L(dP1x)
|
||||
ld rWORD1,8(rSTR1)
|
||||
ld rWORD2,8(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
L(dP1e):
|
||||
ld rWORD3,16(rSTR1)
|
||||
ld rWORD4,16(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
ld rWORD5,24(rSTR1)
|
||||
ld rWORD6,24(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bne cr5,L(dLcr5)
|
||||
bne cr0,L(dLcr0)
|
||||
|
||||
ldu rWORD7,32(rSTR1)
|
||||
ldu rWORD8,32(rSTR2)
|
||||
bne cr1,L(dLcr1)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bdnz L(dLoop)
|
||||
bne cr6,L(dLcr6)
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
.align 3
|
||||
L(dP1x):
|
||||
sldi. r12,rN,3
|
||||
bne cr5,L(dLcr5)
|
||||
subfic rN,r12,64 /* Shift count is 64 - (rN * 8). */
|
||||
bne L(d00)
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
/* Remainder is 16 */
|
||||
.align 4
|
||||
L(dP2):
|
||||
mtctr rTMP
|
||||
ld rWORD5,0(rSTR1)
|
||||
ld rWORD6,0(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
blt cr7,L(dP2x)
|
||||
ld rWORD7,8(rSTR1)
|
||||
ld rWORD8,8(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
L(dP2e):
|
||||
ld rWORD1,16(rSTR1)
|
||||
ld rWORD2,16(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
ld rWORD3,24(rSTR1)
|
||||
ld rWORD4,24(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
bne cr6,L(dLcr6)
|
||||
bne cr5,L(dLcr5)
|
||||
b L(dLoop2)
|
||||
/* Again we are on a early exit path (16-23 byte compare), we want to
|
||||
only use volitile registers and avoid restoring non-volitile
|
||||
registers. */
|
||||
.align 4
|
||||
L(dP2x):
|
||||
ld rWORD3,8(rSTR1)
|
||||
ld rWORD4,8(rSTR2)
|
||||
cmpld cr5,rWORD3,rWORD4
|
||||
sldi. r12,rN,3
|
||||
bne cr6,L(dLcr6)
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
bne cr5,L(dLcr5)
|
||||
subfic rN,r12,64 /* Shift count is 64 - (rN * 8). */
|
||||
bne L(d00)
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
/* Remainder is 24 */
|
||||
.align 4
|
||||
L(dP3):
|
||||
mtctr rTMP
|
||||
ld rWORD3,0(rSTR1)
|
||||
ld rWORD4,0(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
L(dP3e):
|
||||
ld rWORD5,8(rSTR1)
|
||||
ld rWORD6,8(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
blt cr7,L(dP3x)
|
||||
ld rWORD7,16(rSTR1)
|
||||
ld rWORD8,16(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
ld rWORD1,24(rSTR1)
|
||||
ld rWORD2,24(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
addi rSTR1,rSTR1,16
|
||||
addi rSTR2,rSTR2,16
|
||||
bne cr1,L(dLcr1)
|
||||
bne cr6,L(dLcr6)
|
||||
b L(dLoop1)
|
||||
/* Again we are on a early exit path (24-31 byte compare), we want to
|
||||
only use volitile registers and avoid restoring non-volitile
|
||||
registers. */
|
||||
.align 4
|
||||
L(dP3x):
|
||||
ld rWORD1,16(rSTR1)
|
||||
ld rWORD2,16(rSTR2)
|
||||
cmpld cr5,rWORD1,rWORD2
|
||||
sldi. r12,rN,3
|
||||
bne cr1,L(dLcr1)
|
||||
addi rSTR1,rSTR1,16
|
||||
addi rSTR2,rSTR2,16
|
||||
bne cr6,L(dLcr6)
|
||||
subfic rN,r12,64 /* Shift count is 64 - (rN * 8). */
|
||||
bne cr5,L(dLcr5)
|
||||
bne L(d00)
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
/* Count is a multiple of 32, remainder is 0 */
|
||||
.align 4
|
||||
L(dP4):
|
||||
mtctr rTMP
|
||||
ld rWORD1,0(rSTR1)
|
||||
ld rWORD2,0(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
L(dP4e):
|
||||
ld rWORD3,8(rSTR1)
|
||||
ld rWORD4,8(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
ld rWORD5,16(rSTR1)
|
||||
ld rWORD6,16(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
ldu rWORD7,24(rSTR1)
|
||||
ldu rWORD8,24(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bne cr0,L(dLcr0)
|
||||
bne cr1,L(dLcr1)
|
||||
bdz- L(d24) /* Adjust CTR as we start with +4 */
|
||||
/* This is the primary loop */
|
||||
.align 4
|
||||
L(dLoop):
|
||||
ld rWORD1,8(rSTR1)
|
||||
ld rWORD2,8(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
bne cr6,L(dLcr6)
|
||||
L(dLoop1):
|
||||
ld rWORD3,16(rSTR1)
|
||||
ld rWORD4,16(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bne cr5,L(dLcr5)
|
||||
L(dLoop2):
|
||||
ld rWORD5,24(rSTR1)
|
||||
ld rWORD6,24(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bne cr0,L(dLcr0)
|
||||
L(dLoop3):
|
||||
ldu rWORD7,32(rSTR1)
|
||||
ldu rWORD8,32(rSTR2)
|
||||
bne cr1,L(dLcr1)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
bdnz L(dLoop)
|
||||
|
||||
L(dL4):
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
bne cr6,L(dLcr6)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bne cr5,L(dLcr5)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
L(d44):
|
||||
bne cr0,L(dLcr0)
|
||||
L(d34):
|
||||
bne cr1,L(dLcr1)
|
||||
L(d24):
|
||||
bne cr6,L(dLcr6)
|
||||
L(d14):
|
||||
sldi. r12,rN,3
|
||||
bne cr5,L(dLcr5)
|
||||
L(d04):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
subfic rN,r12,64 /* Shift count is 64 - (rN * 8). */
|
||||
beq L(zeroLength)
|
||||
/* At this point we have a remainder of 1 to 7 bytes to compare. Since
|
||||
we are aligned it is safe to load the whole double word, and use
|
||||
shift right double to elliminate bits beyond the compare length. */
|
||||
L(d00):
|
||||
ld rWORD1,8(rSTR1)
|
||||
ld rWORD2,8(rSTR2)
|
||||
srd rWORD1,rWORD1,rN
|
||||
srd rWORD2,rWORD2,rN
|
||||
cmpld cr5,rWORD1,rWORD2
|
||||
bne cr5,L(dLcr5x)
|
||||
li rRTN,0
|
||||
blr
|
||||
.align 4
|
||||
L(dLcr0):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
li rRTN,1
|
||||
bgtlr cr0
|
||||
li rRTN,-1
|
||||
blr
|
||||
.align 4
|
||||
L(dLcr1):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
li rRTN,1
|
||||
bgtlr cr1
|
||||
li rRTN,-1
|
||||
blr
|
||||
.align 4
|
||||
L(dLcr6):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
li rRTN,1
|
||||
bgtlr cr6
|
||||
li rRTN,-1
|
||||
blr
|
||||
.align 4
|
||||
L(dLcr5):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
L(dLcr5x):
|
||||
li rRTN,1
|
||||
bgtlr cr5
|
||||
li rRTN,-1
|
||||
blr
|
||||
|
||||
.align 4
|
||||
L(bytealigned):
|
||||
mtctr rN
|
||||
beq cr6,L(zeroLength)
|
||||
|
||||
/* We need to prime this loop. This loop is swing modulo scheduled
|
||||
to avoid pipe delays. The dependent instruction latencies (load to
|
||||
compare to conditional branch) is 2 to 3 cycles. In this loop each
|
||||
dispatch group ends in a branch and takes 1 cycle. Effectively
|
||||
the first iteration of the loop only serves to load operands and
|
||||
branches based on compares are delayed until the next loop.
|
||||
|
||||
So we must precondition some registers and condition codes so that
|
||||
we don't exit the loop early on the first iteration. */
|
||||
|
||||
lbz rWORD1,0(rSTR1)
|
||||
lbz rWORD2,0(rSTR2)
|
||||
bdz L(b11)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
lbz rWORD3,1(rSTR1)
|
||||
lbz rWORD4,1(rSTR2)
|
||||
bdz L(b12)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
lbzu rWORD5,2(rSTR1)
|
||||
lbzu rWORD6,2(rSTR2)
|
||||
bdz L(b13)
|
||||
.align 4
|
||||
L(bLoop):
|
||||
lbzu rWORD1,1(rSTR1)
|
||||
lbzu rWORD2,1(rSTR2)
|
||||
bne cr0,L(bLcr0)
|
||||
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bdz L(b3i)
|
||||
|
||||
lbzu rWORD3,1(rSTR1)
|
||||
lbzu rWORD4,1(rSTR2)
|
||||
bne cr1,L(bLcr1)
|
||||
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
bdz L(b2i)
|
||||
|
||||
lbzu rWORD5,1(rSTR1)
|
||||
lbzu rWORD6,1(rSTR2)
|
||||
bne cr6,L(bLcr6)
|
||||
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
bdnz L(bLoop)
|
||||
|
||||
/* We speculatively loading bytes before we have tested the previous
|
||||
bytes. But we must avoid overrunning the length (in the ctr) to
|
||||
prevent these speculative loads from causing a segfault. In this
|
||||
case the loop will exit early (before the all pending bytes are
|
||||
tested. In this case we must complete the pending operations
|
||||
before returning. */
|
||||
L(b1i):
|
||||
bne cr0,L(bLcr0)
|
||||
bne cr1,L(bLcr1)
|
||||
b L(bx56)
|
||||
.align 4
|
||||
L(b2i):
|
||||
bne cr6,L(bLcr6)
|
||||
bne cr0,L(bLcr0)
|
||||
b L(bx34)
|
||||
.align 4
|
||||
L(b3i):
|
||||
bne cr1,L(bLcr1)
|
||||
bne cr6,L(bLcr6)
|
||||
b L(bx12)
|
||||
.align 4
|
||||
L(bLcr0):
|
||||
li rRTN,1
|
||||
bgtlr cr0
|
||||
li rRTN,-1
|
||||
blr
|
||||
L(bLcr1):
|
||||
li rRTN,1
|
||||
bgtlr cr1
|
||||
li rRTN,-1
|
||||
blr
|
||||
L(bLcr6):
|
||||
li rRTN,1
|
||||
bgtlr cr6
|
||||
li rRTN,-1
|
||||
blr
|
||||
|
||||
L(b13):
|
||||
bne cr0,L(bx12)
|
||||
bne cr1,L(bx34)
|
||||
L(bx56):
|
||||
sub rRTN,rWORD5,rWORD6
|
||||
blr
|
||||
nop
|
||||
L(b12):
|
||||
bne cr0,L(bx12)
|
||||
L(bx34):
|
||||
sub rRTN,rWORD3,rWORD4
|
||||
blr
|
||||
L(b11):
|
||||
L(bx12):
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blr
|
||||
.align 4
|
||||
L(zeroLengthReturn):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
L(zeroLength):
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
.align 4
|
||||
/* At this point we know the strings have different alignment and the
|
||||
compare length is at least 8 bytes. rBITDIF containes the low order
|
||||
3 bits of rSTR1 and cr5 contains the result of the logical compare
|
||||
of rBITDIF to 0. If rBITDIF == 0 then rStr1 is double word
|
||||
aligned and can perform the DWunaligned loop.
|
||||
|
||||
Otherwise we know that rSTR1 is not aready DW aligned yet.
|
||||
So we can force the string addresses to the next lower DW
|
||||
boundary and special case this first DW word using shift left to
|
||||
ellimiate bits preceeding the first byte. Since we want to join the
|
||||
normal (DWaligned) compare loop, starting at the second double word,
|
||||
we need to adjust the length (rN) and special case the loop
|
||||
versioning for the first DW. This insures that the loop count is
|
||||
correct and the first DW (shifted) is in the expected resister pair. */
|
||||
#define rSHL r29 /* Unaligned shift left count. */
|
||||
#define rSHR r28 /* Unaligned shift right count. */
|
||||
#define rB r27 /* Left rotation temp for rWORD2. */
|
||||
#define rD r26 /* Left rotation temp for rWORD4. */
|
||||
#define rF r25 /* Left rotation temp for rWORD6. */
|
||||
#define rH r24 /* Left rotation temp for rWORD8. */
|
||||
#define rA r0 /* Right rotation temp for rWORD2. */
|
||||
#define rC r12 /* Right rotation temp for rWORD4. */
|
||||
#define rE r0 /* Right rotation temp for rWORD6. */
|
||||
#define rG r12 /* Right rotation temp for rWORD8. */
|
||||
L(unaligned):
|
||||
std r29,-24(r1)
|
||||
cfi_offset(r29,-24)
|
||||
clrldi rSHL,rSTR2,61
|
||||
beq cr6,L(duzeroLength)
|
||||
std r28,-32(r1)
|
||||
cfi_offset(r28,-32)
|
||||
beq cr5,L(DWunaligned)
|
||||
std r27,-40(r1)
|
||||
cfi_offset(r27,-40)
|
||||
/* Adjust the logical start of rSTR2 ro compensate for the extra bits
|
||||
in the 1st rSTR1 DW. */
|
||||
sub r27,rSTR2,rBITDIF
|
||||
/* But do not attempt to address the DW before that DW that contains
|
||||
the actual start of rSTR2. */
|
||||
clrrdi rSTR2,rSTR2,3
|
||||
std r26,-48(r1)
|
||||
cfi_offset(r26,-48)
|
||||
/* Compute the leaft/right shift counts for the unalign rSTR2,
|
||||
compensating for the logical (DW aligned) start of rSTR1. */
|
||||
clrldi rSHL,r27,61
|
||||
clrrdi rSTR1,rSTR1,3
|
||||
std r25,-56(r1)
|
||||
cfi_offset(r25,-56)
|
||||
sldi rSHL,rSHL,3
|
||||
cmpld cr5,r27,rSTR2
|
||||
add rN,rN,rBITDIF
|
||||
sldi r11,rBITDIF,3
|
||||
std r24,-64(r1)
|
||||
cfi_offset(r24,-64)
|
||||
subfic rSHR,rSHL,64
|
||||
srdi rTMP,rN,5 /* Divide by 32 */
|
||||
andi. rBITDIF,rN,24 /* Get the DW remainder */
|
||||
/* We normally need to load 2 DWs to start the unaligned rSTR2, but in
|
||||
this special case those bits may be discarded anyway. Also we
|
||||
must avoid loading a DW where none of the bits are part of rSTR2 as
|
||||
this may cross a page boundary and cause a page fault. */
|
||||
li rWORD8,0
|
||||
blt cr5,L(dus0)
|
||||
ld rWORD8,0(rSTR2)
|
||||
la rSTR2,8(rSTR2)
|
||||
sld rWORD8,rWORD8,rSHL
|
||||
|
||||
L(dus0):
|
||||
ld rWORD1,0(rSTR1)
|
||||
ld rWORD2,0(rSTR2)
|
||||
cmpldi cr1,rBITDIF,16
|
||||
cmpldi cr7,rN,32
|
||||
srd rG,rWORD2,rSHR
|
||||
clrldi rN,rN,61
|
||||
beq L(duPs4)
|
||||
mtctr rTMP
|
||||
or rWORD8,rG,rWORD8
|
||||
bgt cr1,L(duPs3)
|
||||
beq cr1,L(duPs2)
|
||||
|
||||
/* Remainder is 8 */
|
||||
.align 4
|
||||
L(dusP1):
|
||||
sld rB,rWORD2,rSHL
|
||||
sld rWORD7,rWORD1,r11
|
||||
sld rWORD8,rWORD8,r11
|
||||
bge cr7,L(duP1e)
|
||||
/* At this point we exit early with the first double word compare
|
||||
complete and remainder of 0 to 7 bytes. See L(du14) for details on
|
||||
how we handle the remaining bytes. */
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
sldi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmpld cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
ld rWORD2,8(rSTR2)
|
||||
srd rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
/* Remainder is 16 */
|
||||
.align 4
|
||||
L(duPs2):
|
||||
sld rH,rWORD2,rSHL
|
||||
sld rWORD5,rWORD1,r11
|
||||
sld rWORD6,rWORD8,r11
|
||||
b L(duP2e)
|
||||
/* Remainder is 24 */
|
||||
.align 4
|
||||
L(duPs3):
|
||||
sld rF,rWORD2,rSHL
|
||||
sld rWORD3,rWORD1,r11
|
||||
sld rWORD4,rWORD8,r11
|
||||
b L(duP3e)
|
||||
/* Count is a multiple of 32, remainder is 0 */
|
||||
.align 4
|
||||
L(duPs4):
|
||||
mtctr rTMP
|
||||
or rWORD8,rG,rWORD8
|
||||
sld rD,rWORD2,rSHL
|
||||
sld rWORD1,rWORD1,r11
|
||||
sld rWORD2,rWORD8,r11
|
||||
b L(duP4e)
|
||||
|
||||
/* At this point we know rSTR1 is double word aligned and the
|
||||
compare length is at least 8 bytes. */
|
||||
.align 4
|
||||
L(DWunaligned):
|
||||
std r27,-40(r1)
|
||||
cfi_offset(r27,-40)
|
||||
clrrdi rSTR2,rSTR2,3
|
||||
std r26,-48(r1)
|
||||
cfi_offset(r26,-48)
|
||||
srdi rTMP,rN,5 /* Divide by 32 */
|
||||
std r25,-56(r1)
|
||||
cfi_offset(r25,-56)
|
||||
andi. rBITDIF,rN,24 /* Get the DW remainder */
|
||||
std r24,-64(r1)
|
||||
cfi_offset(r24,-64)
|
||||
sldi rSHL,rSHL,3
|
||||
ld rWORD6,0(rSTR2)
|
||||
ldu rWORD8,8(rSTR2)
|
||||
cmpldi cr1,rBITDIF,16
|
||||
cmpldi cr7,rN,32
|
||||
clrldi rN,rN,61
|
||||
subfic rSHR,rSHL,64
|
||||
sld rH,rWORD6,rSHL
|
||||
beq L(duP4)
|
||||
mtctr rTMP
|
||||
bgt cr1,L(duP3)
|
||||
beq cr1,L(duP2)
|
||||
|
||||
/* Remainder is 8 */
|
||||
.align 4
|
||||
L(duP1):
|
||||
srd rG,rWORD8,rSHR
|
||||
ld rWORD7,0(rSTR1)
|
||||
sld rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
blt cr7,L(duP1x)
|
||||
L(duP1e):
|
||||
ld rWORD1,8(rSTR1)
|
||||
ld rWORD2,8(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
srd rA,rWORD2,rSHR
|
||||
sld rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
ld rWORD3,16(rSTR1)
|
||||
ld rWORD4,16(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
srd rC,rWORD4,rSHR
|
||||
sld rF,rWORD4,rSHL
|
||||
bne cr5,L(duLcr5)
|
||||
or rWORD4,rC,rD
|
||||
ld rWORD5,24(rSTR1)
|
||||
ld rWORD6,24(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
srd rE,rWORD6,rSHR
|
||||
sld rH,rWORD6,rSHL
|
||||
bne cr0,L(duLcr0)
|
||||
or rWORD6,rE,rF
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
b L(duLoop3)
|
||||
.align 4
|
||||
/* At this point we exit early with the first double word compare
|
||||
complete and remainder of 0 to 7 bytes. See L(du14) for details on
|
||||
how we handle the remaining bytes. */
|
||||
L(duP1x):
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
sldi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmpld cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
ld rWORD2,8(rSTR2)
|
||||
srd rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
/* Remainder is 16 */
|
||||
.align 4
|
||||
L(duP2):
|
||||
srd rE,rWORD8,rSHR
|
||||
ld rWORD5,0(rSTR1)
|
||||
or rWORD6,rE,rH
|
||||
sld rH,rWORD8,rSHL
|
||||
L(duP2e):
|
||||
ld rWORD7,8(rSTR1)
|
||||
ld rWORD8,8(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
srd rG,rWORD8,rSHR
|
||||
sld rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
blt cr7,L(duP2x)
|
||||
ld rWORD1,16(rSTR1)
|
||||
ld rWORD2,16(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bne cr6,L(duLcr6)
|
||||
srd rA,rWORD2,rSHR
|
||||
sld rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
ld rWORD3,24(rSTR1)
|
||||
ld rWORD4,24(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
bne cr5,L(duLcr5)
|
||||
srd rC,rWORD4,rSHR
|
||||
sld rF,rWORD4,rSHL
|
||||
or rWORD4,rC,rD
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
b L(duLoop2)
|
||||
.align 4
|
||||
L(duP2x):
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
addi rSTR1,rSTR1,8
|
||||
addi rSTR2,rSTR2,8
|
||||
bne cr6,L(duLcr6)
|
||||
sldi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmpld cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
ld rWORD2,8(rSTR2)
|
||||
srd rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
|
||||
/* Remainder is 24 */
|
||||
.align 4
|
||||
L(duP3):
|
||||
srd rC,rWORD8,rSHR
|
||||
ld rWORD3,0(rSTR1)
|
||||
sld rF,rWORD8,rSHL
|
||||
or rWORD4,rC,rH
|
||||
L(duP3e):
|
||||
ld rWORD5,8(rSTR1)
|
||||
ld rWORD6,8(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
srd rE,rWORD6,rSHR
|
||||
sld rH,rWORD6,rSHL
|
||||
or rWORD6,rE,rF
|
||||
ld rWORD7,16(rSTR1)
|
||||
ld rWORD8,16(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bne cr1,L(duLcr1)
|
||||
srd rG,rWORD8,rSHR
|
||||
sld rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
blt cr7,L(duP3x)
|
||||
ld rWORD1,24(rSTR1)
|
||||
ld rWORD2,24(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bne cr6,L(duLcr6)
|
||||
srd rA,rWORD2,rSHR
|
||||
sld rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
addi rSTR1,rSTR1,16
|
||||
addi rSTR2,rSTR2,16
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
b L(duLoop1)
|
||||
.align 4
|
||||
L(duP3x):
|
||||
addi rSTR1,rSTR1,16
|
||||
addi rSTR2,rSTR2,16
|
||||
bne cr1,L(duLcr1)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bne cr6,L(duLcr6)
|
||||
sldi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
cmpld cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
ld rWORD2,8(rSTR2)
|
||||
srd rA,rWORD2,rSHR
|
||||
b L(dutrim)
|
||||
|
||||
/* Count is a multiple of 32, remainder is 0 */
|
||||
.align 4
|
||||
L(duP4):
|
||||
mtctr rTMP
|
||||
srd rA,rWORD8,rSHR
|
||||
ld rWORD1,0(rSTR1)
|
||||
sld rD,rWORD8,rSHL
|
||||
or rWORD2,rA,rH
|
||||
L(duP4e):
|
||||
ld rWORD3,8(rSTR1)
|
||||
ld rWORD4,8(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
srd rC,rWORD4,rSHR
|
||||
sld rF,rWORD4,rSHL
|
||||
or rWORD4,rC,rD
|
||||
ld rWORD5,16(rSTR1)
|
||||
ld rWORD6,16(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
bne cr0,L(duLcr0)
|
||||
srd rE,rWORD6,rSHR
|
||||
sld rH,rWORD6,rSHL
|
||||
or rWORD6,rE,rF
|
||||
ldu rWORD7,24(rSTR1)
|
||||
ldu rWORD8,24(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bne cr1,L(duLcr1)
|
||||
srd rG,rWORD8,rSHR
|
||||
sld rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bdz L(du24) /* Adjust CTR as we start with +4 */
|
||||
/* This is the primary loop */
|
||||
.align 4
|
||||
L(duLoop):
|
||||
ld rWORD1,8(rSTR1)
|
||||
ld rWORD2,8(rSTR2)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
bne cr6,L(duLcr6)
|
||||
srd rA,rWORD2,rSHR
|
||||
sld rD,rWORD2,rSHL
|
||||
or rWORD2,rA,rB
|
||||
L(duLoop1):
|
||||
ld rWORD3,16(rSTR1)
|
||||
ld rWORD4,16(rSTR2)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bne cr5,L(duLcr5)
|
||||
srd rC,rWORD4,rSHR
|
||||
sld rF,rWORD4,rSHL
|
||||
or rWORD4,rC,rD
|
||||
L(duLoop2):
|
||||
ld rWORD5,24(rSTR1)
|
||||
ld rWORD6,24(rSTR2)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
bne cr0,L(duLcr0)
|
||||
srd rE,rWORD6,rSHR
|
||||
sld rH,rWORD6,rSHL
|
||||
or rWORD6,rE,rF
|
||||
L(duLoop3):
|
||||
ldu rWORD7,32(rSTR1)
|
||||
ldu rWORD8,32(rSTR2)
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
bne- cr1,L(duLcr1)
|
||||
srd rG,rWORD8,rSHR
|
||||
sld rB,rWORD8,rSHL
|
||||
or rWORD8,rG,rH
|
||||
bdnz L(duLoop)
|
||||
|
||||
L(duL4):
|
||||
bne cr1,L(duLcr1)
|
||||
cmpld cr1,rWORD3,rWORD4
|
||||
bne cr6,L(duLcr6)
|
||||
cmpld cr6,rWORD5,rWORD6
|
||||
bne cr5,L(duLcr5)
|
||||
cmpld cr5,rWORD7,rWORD8
|
||||
L(du44):
|
||||
bne cr0,L(duLcr0)
|
||||
L(du34):
|
||||
bne cr1,L(duLcr1)
|
||||
L(du24):
|
||||
bne cr6,L(duLcr6)
|
||||
L(du14):
|
||||
sldi. rN,rN,3
|
||||
bne cr5,L(duLcr5)
|
||||
/* At this point we have a remainder of 1 to 7 bytes to compare. We use
|
||||
shift right double to elliminate bits beyond the compare length.
|
||||
This allows the use of double word subtract to compute the final
|
||||
result.
|
||||
|
||||
However it may not be safe to load rWORD2 which may be beyond the
|
||||
string length. So we compare the bit length of the remainder to
|
||||
the right shift count (rSHR). If the bit count is less than or equal
|
||||
we do not need to load rWORD2 (all significant bits are already in
|
||||
rB). */
|
||||
cmpld cr7,rN,rSHR
|
||||
beq L(duZeroReturn)
|
||||
li rA,0
|
||||
ble cr7,L(dutrim)
|
||||
ld rWORD2,8(rSTR2)
|
||||
srd rA,rWORD2,rSHR
|
||||
.align 4
|
||||
L(dutrim):
|
||||
ld rWORD1,8(rSTR1)
|
||||
ld rWORD8,-8(r1)
|
||||
subfic rN,rN,64 /* Shift count is 64 - (rN * 8). */
|
||||
or rWORD2,rA,rB
|
||||
ld rWORD7,-16(r1)
|
||||
ld r29,-24(r1)
|
||||
srd rWORD1,rWORD1,rN
|
||||
srd rWORD2,rWORD2,rN
|
||||
ld r28,-32(r1)
|
||||
ld r27,-40(r1)
|
||||
li rRTN,0
|
||||
cmpld cr0,rWORD1,rWORD2
|
||||
ld r26,-48(r1)
|
||||
ld r25,-56(r1)
|
||||
beq cr0,L(dureturn24)
|
||||
li rRTN,1
|
||||
ld r24,-64(r1)
|
||||
bgtlr cr0
|
||||
li rRTN,-1
|
||||
blr
|
||||
.align 4
|
||||
L(duLcr0):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
li rRTN,1
|
||||
bgt cr0,L(dureturn29)
|
||||
ld r29,-24(r1)
|
||||
ld r28,-32(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 4
|
||||
L(duLcr1):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
li rRTN,1
|
||||
bgt cr1,L(dureturn29)
|
||||
ld r29,-24(r1)
|
||||
ld r28,-32(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 4
|
||||
L(duLcr6):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
li rRTN,1
|
||||
bgt cr6,L(dureturn29)
|
||||
ld r29,-24(r1)
|
||||
ld r28,-32(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 4
|
||||
L(duLcr5):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
li rRTN,1
|
||||
bgt cr5,L(dureturn29)
|
||||
ld r29,-24(r1)
|
||||
ld r28,-32(r1)
|
||||
li rRTN,-1
|
||||
b L(dureturn27)
|
||||
.align 3
|
||||
L(duZeroReturn):
|
||||
li rRTN,0
|
||||
.align 4
|
||||
L(dureturn):
|
||||
ld rWORD8,-8(r1)
|
||||
ld rWORD7,-16(r1)
|
||||
L(dureturn29):
|
||||
ld r29,-24(r1)
|
||||
ld r28,-32(r1)
|
||||
L(dureturn27):
|
||||
ld r27,-40(r1)
|
||||
L(dureturn26):
|
||||
ld r26,-48(r1)
|
||||
L(dureturn25):
|
||||
ld r25,-56(r1)
|
||||
L(dureturn24):
|
||||
ld r24,-64(r1)
|
||||
blr
|
||||
L(duzeroLength):
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
END (BP_SYM (memcmp))
|
||||
libc_hidden_builtin_def (memcmp)
|
||||
weak_alias (memcmp,bcmp)
|
181
sysdeps/powerpc/powerpc64/power7/strncmp.S
Normal file
181
sysdeps/powerpc/powerpc64/power7/strncmp.S
Normal file
@ -0,0 +1,181 @@
|
||||
/* Optimized strcmp implementation for POWER7/PowerPC64.
|
||||
Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA
|
||||
02110-1301 USA. */
|
||||
|
||||
#include <sysdep.h>
|
||||
#include <bp-sym.h>
|
||||
#include <bp-asm.h>
|
||||
|
||||
/* See strlen.s for comments on how the end-of-string testing works. */
|
||||
|
||||
/* int [r3] strncmp (const char *s1 [r3],
|
||||
const char *s2 [r4],
|
||||
size_t size [r5]) */
|
||||
|
||||
EALIGN (BP_SYM(strncmp),4,0)
|
||||
CALL_MCOUNT 3
|
||||
|
||||
#define rTMP r0
|
||||
#define rRTN r3
|
||||
#define rSTR1 r3 /* first string arg */
|
||||
#define rSTR2 r4 /* second string arg */
|
||||
#define rN r5 /* max string length */
|
||||
/* Note: The Bounded pointer support in this code is broken. This code
|
||||
was inherited from PPC32 and and that support was never completed.
|
||||
Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */
|
||||
#define rWORD1 r6 /* current word in s1 */
|
||||
#define rWORD2 r7 /* current word in s2 */
|
||||
#define rWORD3 r10
|
||||
#define rWORD4 r11
|
||||
#define rFEFE r8 /* constant 0xfefefefefefefeff (-0x0101010101010101) */
|
||||
#define r7F7F r9 /* constant 0x7f7f7f7f7f7f7f7f */
|
||||
#define rNEG r10 /* ~(word in s1 | 0x7f7f7f7f7f7f7f7f) */
|
||||
#define rBITDIF r11 /* bits that differ in s1 & s2 words */
|
||||
|
||||
dcbt 0,rSTR1
|
||||
or rTMP,rSTR2,rSTR1
|
||||
lis r7F7F,0x7f7f
|
||||
dcbt 0,rSTR2
|
||||
clrldi. rTMP,rTMP,61
|
||||
cmpldi cr1,rN,0
|
||||
lis rFEFE,-0x101
|
||||
bne L(unaligned)
|
||||
/* We are doubleword alligned so set up for two loops. first a double word
|
||||
loop, then fall into the byte loop if any residual. */
|
||||
srdi. rTMP,rN,3
|
||||
clrldi rN,rN,61
|
||||
addi rFEFE,rFEFE,-0x101
|
||||
addi r7F7F,r7F7F,0x7f7f
|
||||
cmpldi cr1,rN,0
|
||||
beq L(unaligned)
|
||||
|
||||
mtctr rTMP
|
||||
ld rWORD1,0(rSTR1)
|
||||
ld rWORD2,0(rSTR2)
|
||||
sldi rTMP,rFEFE,32
|
||||
insrdi r7F7F,r7F7F,32,0
|
||||
add rFEFE,rFEFE,rTMP
|
||||
b L(g1)
|
||||
|
||||
L(g0):
|
||||
ldu rWORD1,8(rSTR1)
|
||||
bne cr1,L(different)
|
||||
ldu rWORD2,8(rSTR2)
|
||||
L(g1): add rTMP,rFEFE,rWORD1
|
||||
nor rNEG,r7F7F,rWORD1
|
||||
bdz L(tail)
|
||||
and. rTMP,rTMP,rNEG
|
||||
cmpd cr1,rWORD1,rWORD2
|
||||
beq L(g0)
|
||||
|
||||
/* OK. We've hit the end of the string. We need to be careful that
|
||||
we don't compare two strings as different because of gunk beyond
|
||||
the end of the strings... */
|
||||
|
||||
L(endstring):
|
||||
and rTMP,r7F7F,rWORD1
|
||||
beq cr1,L(equal)
|
||||
add rTMP,rTMP,r7F7F
|
||||
xor. rBITDIF,rWORD1,rWORD2
|
||||
|
||||
andc rNEG,rNEG,rTMP
|
||||
blt L(highbit)
|
||||
cntlzd rBITDIF,rBITDIF
|
||||
cntlzd rNEG,rNEG
|
||||
addi rNEG,rNEG,7
|
||||
cmpd cr1,rNEG,rBITDIF
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blt cr1,L(equal)
|
||||
sradi rRTN,rRTN,63
|
||||
ori rRTN,rRTN,1
|
||||
blr
|
||||
L(equal):
|
||||
li rRTN,0
|
||||
blr
|
||||
|
||||
L(different):
|
||||
ldu rWORD1,-8(rSTR1)
|
||||
xor. rBITDIF,rWORD1,rWORD2
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blt L(highbit)
|
||||
sradi rRTN,rRTN,63
|
||||
ori rRTN,rRTN,1
|
||||
blr
|
||||
L(highbit):
|
||||
srdi rWORD2,rWORD2,56
|
||||
srdi rWORD1,rWORD1,56
|
||||
sub rRTN,rWORD1,rWORD2
|
||||
blr
|
||||
|
||||
|
||||
/* Oh well. In this case, we just do a byte-by-byte comparison. */
|
||||
.align 4
|
||||
L(tail):
|
||||
and. rTMP,rTMP,rNEG
|
||||
cmpd cr1,rWORD1,rWORD2
|
||||
bne L(endstring)
|
||||
addi rSTR1,rSTR1,8
|
||||
bne cr1,L(different)
|
||||
addi rSTR2,rSTR2,8
|
||||
cmpldi cr1,rN,0
|
||||
L(unaligned):
|
||||
mtctr rN
|
||||
ble cr1,L(ux)
|
||||
L(uz):
|
||||
lbz rWORD1,0(rSTR1)
|
||||
lbz rWORD2,0(rSTR2)
|
||||
.align 4
|
||||
L(u1):
|
||||
cmpdi cr1,rWORD1,0
|
||||
bdz L(u4)
|
||||
cmpd rWORD1,rWORD2
|
||||
beq cr1,L(u4)
|
||||
lbzu rWORD3,1(rSTR1)
|
||||
lbzu rWORD4,1(rSTR2)
|
||||
bne L(u4)
|
||||
cmpdi cr1,rWORD3,0
|
||||
bdz L(u3)
|
||||
cmpd rWORD3,rWORD4
|
||||
beq cr1,L(u3)
|
||||
lbzu rWORD1,1(rSTR1)
|
||||
lbzu rWORD2,1(rSTR2)
|
||||
bne L(u3)
|
||||
cmpdi cr1,rWORD1,0
|
||||
bdz L(u4)
|
||||
cmpd rWORD1,rWORD2
|
||||
beq cr1,L(u4)
|
||||
lbzu rWORD3,1(rSTR1)
|
||||
lbzu rWORD4,1(rSTR2)
|
||||
bne L(u4)
|
||||
cmpdi cr1,rWORD3,0
|
||||
bdz L(u3)
|
||||
cmpd rWORD3,rWORD4
|
||||
beq cr1,L(u3)
|
||||
lbzu rWORD1,1(rSTR1)
|
||||
lbzu rWORD2,1(rSTR2)
|
||||
beq L(u1)
|
||||
|
||||
L(u3): sub rRTN,rWORD3,rWORD4
|
||||
blr
|
||||
L(u4): sub rRTN,rWORD1,rWORD2
|
||||
blr
|
||||
L(ux):
|
||||
li rRTN,0
|
||||
blr
|
||||
END (BP_SYM (strncmp))
|
||||
libc_hidden_builtin_def (strncmp)
|
Loading…
Reference in New Issue
Block a user