diff --git a/ChangeLog b/ChangeLog index d26979335c..536046845e 100644 --- a/ChangeLog +++ b/ChangeLog @@ -1,3 +1,20 @@ +2017-06-16 Rical Jasan + + * manual/arith.texi (FP_NAN): Add or complete header and standard + annotations. + (FP_INFINITE): Likewise. + (FP_ZERO): Likewise. + (FP_SUBNORMAL): Likewise. + (FP_NORMAL): Likewise. + (SNAN): Likewise. + (SNANL): Likewise. + (totalorderf): Likewise. + (totalorderl): Likewise. + (totalordermagf): Likewise. + (totalordermagl): Likewise. + (_Complex_I): Likewise. + (I): Likewise. + 2017-06-16 Rical Jasan * manual/argp.texi (ARGP_HELP_USAGE): Add missing header and diff --git a/manual/arith.texi b/manual/arith.texi index 4554f94495..dd6020cf4f 100644 --- a/manual/arith.texi +++ b/manual/arith.texi @@ -323,22 +323,27 @@ which returns a value of type @code{int}. The possible values are: @vtable @code @item FP_NAN +@standards{C99, math.h} The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity and NaN}) @item FP_INFINITE +@standards{C99, math.h} The value of @var{x} is either plus or minus infinity (@pxref{Infinity and NaN}) @item FP_ZERO +@standards{C99, math.h} The value of @var{x} is zero. In floating-point formats like @w{IEEE 754}, where zero can be signed, this value is also returned if @var{x} is negative zero. @item FP_SUBNORMAL +@standards{C99, math.h} Numbers whose absolute value is too small to be represented in the normal format are represented in an alternate, @dfn{denormalized} format (@pxref{Floating Point Concepts}). This format is less precise but can represent values closer to zero. @code{fpclassify} returns this value for values of @var{x} in this alternate format. @item FP_NORMAL +@standards{C99, math.h} This value is returned for all other values of @var{x}. It indicates that there is nothing special about the number. @end vtable @@ -681,7 +686,7 @@ such as by defining @code{_GNU_SOURCE}, and then you must include @deftypevr Macro float SNANF @deftypevrx Macro double SNAN @deftypevrx Macro {long double} SNANL -@standardsx{SNANF, ISO, math.h} +@standards{TS 18661-1:2014, math.h} These macros, defined by TS 18661-1:2014, are constant expressions for signaling NaNs. @end deftypevr @@ -1881,9 +1886,7 @@ NaN. @deftypefun int totalorder (double @var{x}, double @var{y}) @deftypefunx int totalorderf (float @var{x}, float @var{y}) @deftypefunx int totalorderl (long double @var{x}, long double @var{y}) -@standards{ISO, math.h} -@standardsx{totalorderf, ISO, ???} -@standardsx{totalorderl, ISO, ???} +@standards{TS 18661-1:2014, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions determine whether the total order relationship, defined in IEEE 754-2008, is true for @var{x} and @var{y}, returning @@ -1902,9 +1905,7 @@ payload. @deftypefun int totalordermag (double @var{x}, double @var{y}) @deftypefunx int totalordermagf (float @var{x}, float @var{y}) @deftypefunx int totalordermagl (long double @var{x}, long double @var{y}) -@standards{ISO, math.h} -@standardsx{totalordermagf, ISO, ???} -@standardsx{totalordermagl, ISO, ???} +@standards{TS 18661-1:2014, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions determine whether the total order relationship, defined in IEEE 754-2008, is true for the absolute values of @var{x} @@ -2038,6 +2039,7 @@ floating point constant. Instead, @file{complex.h} defines two macros that can be used to create complex numbers. @deftypevr Macro {const float complex} _Complex_I +@standards{C99, complex.h} This macro is a representation of the complex number ``@math{0+1i}''. Multiplying a real floating-point value by @code{_Complex_I} gives a complex number whose value is purely imaginary. You can use this to @@ -2086,6 +2088,7 @@ imaginary part -4.0. a shorter name for the same constant. @deftypevr Macro {const float complex} I +@standards{C99, complex.h} This macro has exactly the same value as @code{_Complex_I}. Most of the time it is preferable. However, it causes problems if you want to use the identifier @code{I} for something else. You can safely write