* sysdeps/x86_64/strchr.S: Likewise.

This commit is contained in:
Ulrich Drepper 2009-04-06 03:29:26 +00:00
parent a152f366dc
commit 1df6f9d808
3 changed files with 45 additions and 265 deletions

View File

@ -1,6 +1,7 @@
2009-04-05 Ulrich Drepper <drepper@redhat.com> 2009-04-05 Ulrich Drepper <drepper@redhat.com>
* sysdeps/x86_64/strlen.S: Optimize by using SSE2 instructions. * sysdeps/x86_64/strlen.S: Optimize by using SSE2 instructions.
* sysdeps/x86_64/strchr.S: Likewise.
2009-04-03 Ulrich Drepper <drepper@redhat.com> 2009-04-03 Ulrich Drepper <drepper@redhat.com>

2
NEWS
View File

@ -37,7 +37,7 @@ Version 2.10
* New locale: nan_TW@latin * New locale: nan_TW@latin
* Faster strlen on x86-64. * Faster strlen and strchr on x86-64.
Implemented by Ulrich Drepper. Implemented by Ulrich Drepper.

View File

@ -1,6 +1,6 @@
/* strchr (str, ch) -- Return pointer to first occurrence of CH in STR. /* strchr (str, ch) -- Return pointer to first occurrence of CH in STR.
For AMD x86-64. For AMD x86-64.
Copyright (C) 2002, 2005 Free Software Foundation, Inc. Copyright (C) 2009 Free Software Foundation, Inc.
This file is part of the GNU C Library. This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or The GNU C Library is free software; you can redistribute it and/or
@ -19,273 +19,52 @@
02111-1307 USA. */ 02111-1307 USA. */
#include <sysdep.h> #include <sysdep.h>
#include "asm-syntax.h"
#include "bp-sym.h"
#include "bp-asm.h"
.text .text
ENTRY (BP_SYM (strchr)) ENTRY (strchr)
movd %esi, %xmm1
movq %rdi, %rcx
punpcklbw %xmm1, %xmm1
andq $~15, %rdi
pxor %xmm2, %xmm2
punpcklbw %xmm1, %xmm1
orl $0xffffffff, %esi
movdqa (%rdi), %xmm0
pshufd $0, %xmm1, %xmm1
subq %rdi, %rcx
movdqa %xmm0, %xmm3
leaq 16(%rdi), %rdi
pcmpeqb %xmm1, %xmm0
pcmpeqb %xmm2, %xmm3
shl %cl, %esi
pmovmskb %xmm0, %edx
pmovmskb %xmm3, %ecx
andl %esi, %edx
andl %esi, %ecx
orl %edx, %ecx
jnz 1f
/* Before we start with the main loop we process single bytes 2: movdqa (%rdi), %xmm0
until the source pointer is aligned. This has two reasons: leaq 16(%rdi), %rdi
1. aligned 64-bit memory access is faster movdqa %xmm0, %xmm3
and (more important) pcmpeqb %xmm1, %xmm0
2. we process in the main loop 64 bit in one step although pcmpeqb %xmm2, %xmm3
we don't know the end of the string. But accessing at pmovmskb %xmm0, %edx
8-byte alignment guarantees that we never access illegal pmovmskb %xmm3, %ecx
memory if this would not also be done by the trivial orl %edx, %ecx
implementation (this is because all processor inherent jz 2b
boundaries are multiples of 8). */
movq %rdi, %rdx 1: bsfl %edx, %edx
andl $7, %edx /* Mask alignment bits */ jz 4f
movq %rdi, %rax /* duplicate destination. */ bsfl %ecx, %ecx
jz 1f /* aligned => start loop */ leaq -16(%rdi,%rdx), %rax
neg %edx cmpl %edx, %ecx
addl $8, %edx /* Align to 8 bytes. */ je 5f
4: xorl %eax, %eax
5: ret
END (strchr)
/* Search the first bytes directly. */ weak_alias (strchr, index)
0: movb (%rax), %cl /* load byte */
cmpb %cl,%sil /* compare byte. */
je 6f /* target found */
testb %cl,%cl /* is byte NUL? */
je 7f /* yes => return NULL */
incq %rax /* increment pointer */
decl %edx
jnz 0b
1:
/* At the moment %rsi contains C. What we need for the
algorithm is C in all bytes of the register. Avoid
operations on 16 bit words because these require an
prefix byte (and one more cycle). */
/* Populate 8 bit data to full 64-bit. */
movabs $0x0101010101010101,%r9
movzbl %sil,%edx
imul %rdx,%r9
movq $0xfefefefefefefeff, %r8 /* Save magic. */
/* We exit the loop if adding MAGIC_BITS to LONGWORD fails to
change any of the hole bits of LONGWORD.
1) Is this safe? Will it catch all the zero bytes?
Suppose there is a byte with all zeros. Any carry bits
propagating from its left will fall into the hole at its
least significant bit and stop. Since there will be no
carry from its most significant bit, the LSB of the
byte to the left will be unchanged, and the zero will be
detected.
2) Is this worthwhile? Will it ignore everything except
zero bytes? Suppose every byte of QUARDWORD has a bit set
somewhere. There will be a carry into bit 8. If bit 8
is set, this will carry into bit 16. If bit 8 is clear,
one of bits 9-15 must be set, so there will be a carry
into bit 16. Similarly, there will be a carry into bit
24 tec.. If one of bits 54-63 is set, there will be a carry
into bit 64 (=carry flag), so all of the hole bits will
be changed.
3) But wait! Aren't we looking for C, not zero?
Good point. So what we do is XOR LONGWORD with a longword,
each of whose bytes is C. This turns each byte that is C
into a zero. */
.p2align 4
4:
/* Main Loop is unrolled 4 times. */
/* First unroll. */
movq (%rax), %rcx /* get double word (= 8 bytes) in question */
addq $8,%rax /* adjust pointer for next word */
movq %r8, %rdx /* magic value */
xorq %r9, %rcx /* XOR with qword c|...|c => bytes of str == c
are now 0 */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 3f /* highest byte is NUL => return pointer */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jnz 3f /* found c => return pointer */
/* The quadword we looked at does not contain the value we're looking
for. Let's search now whether we have reached the end of the
string. */
xorq %r9, %rcx /* restore original dword without reload */
movq %r8, %rdx /* magic value */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 7f /* highest byte is NUL => return NULL */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jnz 7f /* found NUL => return NULL */
/* Second unroll. */
movq (%rax), %rcx /* get double word (= 8 bytes) in question */
addq $8,%rax /* adjust pointer for next word */
movq %r8, %rdx /* magic value */
xorq %r9, %rcx /* XOR with qword c|...|c => bytes of str == c
are now 0 */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 3f /* highest byte is NUL => return pointer */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jnz 3f /* found c => return pointer */
/* The quadword we looked at does not contain the value we're looking
for. Let's search now whether we have reached the end of the
string. */
xorq %r9, %rcx /* restore original dword without reload */
movq %r8, %rdx /* magic value */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 7f /* highest byte is NUL => return NULL */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jnz 7f /* found NUL => return NULL */
/* Third unroll. */
movq (%rax), %rcx /* get double word (= 8 bytes) in question */
addq $8,%rax /* adjust pointer for next word */
movq %r8, %rdx /* magic value */
xorq %r9, %rcx /* XOR with qword c|...|c => bytes of str == c
are now 0 */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 3f /* highest byte is NUL => return pointer */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jnz 3f /* found c => return pointer */
/* The quadword we looked at does not contain the value we're looking
for. Let's search now whether we have reached the end of the
string. */
xorq %r9, %rcx /* restore original dword without reload */
movq %r8, %rdx /* magic value */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 7f /* highest byte is NUL => return NULL */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jnz 7f /* found NUL => return NULL */
/* Fourth unroll. */
movq (%rax), %rcx /* get double word (= 8 bytes) in question */
addq $8,%rax /* adjust pointer for next word */
movq %r8, %rdx /* magic value */
xorq %r9, %rcx /* XOR with qword c|...|c => bytes of str == c
are now 0 */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 3f /* highest byte is NUL => return pointer */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jnz 3f /* found c => return pointer */
/* The quadword we looked at does not contain the value we're looking
for. Let's search now whether we have reached the end of the
string. */
xorq %r9, %rcx /* restore original dword without reload */
movq %r8, %rdx /* magic value */
addq %rcx, %rdx /* add the magic value to the word. We get
carry bits reported for each byte which
is *not* 0 */
jnc 7f /* highest byte is NUL => return NULL */
xorq %rcx, %rdx /* (word+magic)^word */
orq %r8, %rdx /* set all non-carry bits */
incq %rdx /* add 1: if one carry bit was *not* set
the addition will not result in 0. */
jz 4b /* no NUL found => restart loop */
7: /* Return NULL. */
xorl %eax, %eax
retq
/* We now scan for the byte in which the character was matched.
But we have to take care of the case that a NUL char is
found before this in the dword. Note that we XORed %rcx
with the byte we're looking for, therefore the tests below look
reversed. */
.p2align 4 /* Align, it's a jump target. */
3: movq %r9,%rdx /* move to %rdx so that we can access bytes */
subq $8,%rax /* correct pointer increment. */
testb %cl, %cl /* is first byte C? */
jz 6f /* yes => return pointer */
cmpb %dl, %cl /* is first byte NUL? */
je 7b /* yes => return NULL */
incq %rax /* increment pointer */
testb %ch, %ch /* is second byte C? */
jz 6f /* yes => return pointer */
cmpb %dl, %ch /* is second byte NUL? */
je 7b /* yes => return NULL? */
incq %rax /* increment pointer */
shrq $16, %rcx /* make upper bytes accessible */
testb %cl, %cl /* is third byte C? */
jz 6f /* yes => return pointer */
cmpb %dl, %cl /* is third byte NUL? */
je 7b /* yes => return NULL */
incq %rax /* increment pointer */
testb %ch, %ch /* is fourth byte C? */
jz 6f /* yes => return pointer */
cmpb %dl, %ch /* is fourth byte NUL? */
je 7b /* yes => return NULL? */
incq %rax /* increment pointer */
shrq $16, %rcx /* make upper bytes accessible */
testb %cl, %cl /* is fifth byte C? */
jz 6f /* yes => return pointer */
cmpb %dl, %cl /* is fifth byte NUL? */
je 7b /* yes => return NULL */
incq %rax /* increment pointer */
testb %ch, %ch /* is sixth byte C? */
jz 6f /* yes => return pointer */
cmpb %dl, %ch /* is sixth byte NUL? */
je 7b /* yes => return NULL? */
incq %rax /* increment pointer */
shrq $16, %rcx /* make upper bytes accessible */
testb %cl, %cl /* is seventh byte C? */
jz 6f /* yes => return pointer */
cmpb %dl, %cl /* is seventh byte NUL? */
je 7b /* yes => return NULL */
/* It must be in the eigth byte and it cannot be NUL. */
incq %rax
6:
nop
retq
END (BP_SYM (strchr))
weak_alias (BP_SYM (strchr), BP_SYM (index))
libc_hidden_builtin_def (strchr) libc_hidden_builtin_def (strchr)